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Abstract

In this thesis we have studied four different problems on the effects of disorders in low

dimensional quantum systems. In the first problem we studied the how the low energy prop-

erties of a non-interacting system of electron on a bipartite lattice gets effected due to random

site dilution. We conclude that the behavior of the density of states the gapless phase is of

so called “Gade type” and in the gapped phase is of so called “Griffiths” type. We also tried

to understand the possible origin of generation of such states at low energy. In the second

problem we have tried to understand the effect of random site dilution in a SU(2) symmetric

spin model by mapping the model into a non interacting fermion gas, this map helped us to

understand the behavior of the spin system from the results of the non-interacting electronic

systems of previous problem. We conclude that from the magnetic response of the system

that at low energy the system stabilizes to a “random-singlet” phase. In the third problem we

have focused on the ground state properties of finite size antiferromagnetic which can arise in

a thermodynamic system as a result of random site dilution. In the fourth problem we focused

on the effects of a single impurity on the spin texture in an antiferromagnetically ordered spin

chain.
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Chapter 1

Synopsis

A majority of solid state systems in the real world deviates from an ordered arrangement of atoms

or ions. Such deviations from a perfect crystalline structure are called defects or disorders in the

systems. Defects in crystalline solids not only demand different set of theoretical techniques from the

one used for idealized pure systems, but also shows interesting behavior which are different from the

pure system. In this synopsis we will overview our work on three different studies to understand effects

of defects in strongly correlated systems.

Local changes in the strongly correlated system properties due to defects is interesting as the re-

sponse of the system in the vicinity of an impurity is a measurable quantity with local probes like

NMR and STM, also such responses can give us important hints about the properties of the ground

state. In the first problem of the synopsis, we have tried to understand origins of multiplicative loga-

rithmic corrections to the scaling predictions of spin textures in presence of a missing site in the Néel

ordered phase of the one-dimensional Heisenberg antiferromagnet. We used standard Bosonization

techniques and RG improved perturbation theory to calculate [1] the spin texture in the Néel ordered

phase and compared those results with the numerical results [1] obtained by QMC for a different model

with same Néel ordered phase in one-dimension. The details of the analysis is presented in first section

of this synopsis.

In the second problem of the synopsis we tried to understand certain ground state properties of finite

size antiferromagnetic systems, which is important because in computational studies working with

finite size systems is inescapable. Also experiments have shown that when a square lattice Heisenberg

antiferromagnets (SLHAF) is randomly diluted with non magnetic impurities it shows a percolation

transition; with dilution above the percolation threshold the magnetic order of the system breaks in

many puddles of finite size [2]. In finite size clusters of SLHAF the ground state can be a either singlet

or a doublet which can have fundamentally different behavior. Properties of singlet ground state in

a SLHAF have been analyzed before, both numerically [3] and analytically [4]; whereas for doublet

such detailed analytical understanding is lacking. In this problem we focus on the doublet ground

state properties of SLHAF [5]. Using three different approximate analytic approaches we characterize
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a universal relation (with respect to the microscopic details of the Hamiltonian) between the singlet

and doublet antiferromagnetic ground state magnetic order in those clusters, observed from numerical

experiments [5]. The details of the universal relation and details of the analysis is presented in the

second section of this synopsis.

In the third problem of the synopsis we tried to understand certain behavior of disordered quantum

spin liquids(QSL). QSLs are very interesting low energy states of strongly correlated matter, where at

temperatures lower than the scale of exchange coupling, there is no conventional magnetic order due

to interplay between quantum fluctuation and geometric frustration. Several experimental [6, 7, 8, 9]

proposals exist where such a state can be realized. This work is related to a realization of the SU(2)

invariant spin liquid with spinful Majorana fermion excitation previously discussed at mean field level

by Biswas et al [10] to model the phenomenology of EtMe3Sb[Pd(dmit)2]2 [11, 12]. In the third

problem of this synopsis, we considered an exactly solvable spin model [13] with such SU(2) invariant

Majorana QSL ground state and studied the low temperature susceptibility in presence of random site

dilution, which is a kind of defect common to experimental systems.

1.1 Vacancy-induced spin texture in one dimensional S = 1/2 Heisen-

berg antiferromagnet

In this part we consider a one-dimensional spin chain with a S = 1/2 moment at every site, with

nearest neighbors interacting via Heisenberg antiferromagnetic interaction (1DHAFC). We study the

vacancy induced spin texture in this system, in the Néel ordered phase.

Even though for S = 1/2 1DHAFC, the thermodynamic properties can be exactly calculated in

the ground state using Bethe Ansatz [14], such calculations are often too complicated to be useful in

calculating correlation functions [15]. Here we took an alternative route to study this problem i.e. the

bosonization approach, which is asymptotically exact in the limit of low energies and long wavelengths.

Using bosonization techniques one can map S = 1/2 1DHAFC to a 1 + 1 dimensional bosonic field

theory with a ‘sine-Gordon’ action, which has a scale invariant free-field part perturbed by a non-linear

cosine interaction [16]. The renormalization group (RG) analysis of such cosine interaction perturbing

the scale invariant free-field action is an well known example of ‘marginally irrelevant’ interactions

in the neighborhood of a well-characterized scale free RG fixed point. Such marginally irrelevant

interaction can give violation of scaling predictions at critical points due to the presence of logarithmic

corrections that multiply the scaling predictions. However, the physics of the multiplicative correction

for a marginal operator is quite general and applicable in other models like the textbook example of

φ4 theory. The importance of studying the same physics in the context of S = 1/2 chain is that we

can access the system by a number of numerical and exact methods. So it represents an ideal testing

ground for this important result.
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More generally this problem is relevant in the context of similar multiplicative logarithmic violations

of scaling, which have been argued to exist [3, 17] at the critical point of a continuous quantum phase

transition [18, 3] between the usual Néel ordered antiferromagnetic ground state and a spontaneously

dimerized non-magnetic state with valence-bond order in a two dimensional S = 1/2 SLHAF. The

questions about nature of that phase transition, existence of such corrections and the origin of the same

are not clear and under debate [3, 19, 17, 20, 21, 22].

In this problem, we tried to understand the origin of similar multiplicative logarithmic corrections by

studying the Néel ordered phase of this analytically and numerically tractable S = 1/2 1DHAFC. We

calculate the spin texture around a missing site from the corresponding bosonic field theory by keep-

ing careful track of the effects of the marginal cosine interaction term using one loop RG improved

perturbation theory. Those field theory results for spin texture, are compared to available numeri-

cal results [1], which was calculated previously using Quantum Monte-Carlo (QMC) [1] for a one-

dimensional chain with nearest neighbor Heisenberg exchange J and six-spin coupling Q = 4qJ (JQ

model). Our main conclusion is that this marginal cosine interaction leads to multiplicative logarithmic

corrections of scaling in the power-law Néel phase. We compare these analytical predictions with our

numerical results for q < qc (in the Néel phase, above qc the JQ model goes to a VBS phase) and find

good agreement with the data. By good agreement we mean that the strength of the log corrections is

larger for q further away from the critical point, and vanishes for q = qc, which is consistent with the

bosonized field theory results.

1.1.1 Details of calculation

Using bosonization, S = 1/2 1DHAFC with a non-magnetic impurity (or open boundaries) can be

modeled in low energy as the following effective Hamiltonian [16], where φ is the bosonic field with

[φ(x), φ(y)] = −iΘ(x− y) (Θ(x) is the step function).

H = H0 +H1 (1.1)

where the free field part H0 is written as

H0 =
u

2

 L

0
dx




dφ

dx

2

+


dφ
dx

2

 , (1.2)

and the interaction term H1 reads

H1 = −uǫ0
r20

 L

0
dx cos


2φ(x)

R


; (1.3)

here r0 is an ultraviolet regulator defined later and

1

2πR2
= 1− πǫ0 . (1.4)
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The last constraint that relates R to the bare coupling constant ǫ0 at scale r0 arises from the SU(2) spin

invariance of the underlying microscopic theory [23]. Within this bosonized formulation, the operator

Sz(r) at site r = ja is represented as

Sz(r) =
a

2πR

dφ

dr
+

A√
r0
(−1)

r
a sin


φ(r)

R


. (1.5)

The alternating part of this is denoted by Nz(r) and compared with available numerical results. We

first calculate the alternating part(Nz(r)) of Sz(r)↑(the numerical calculation [1] was done in the

doublet ground state Sz
tot = +1/2, created by one missing site in a periodic lattice with even number

of sites) by using bare perturbation theory [24, 23, 25] of first order in ǫ0 for a finite system of length

L. However, the bare perturbation theory result turns out to depend logarithmically on the value of the

ultraviolet cutoff r0 via a logarithmic ultraviolet divergence proportional to ǫ0 log
L
r0

.

This logarithmic divergence makes bare perturbation theory suspect, since a notionally small O(ǫ0)

correction turns out to have a logarithmically diverging coefficient. To extract useful information from

the bare perturbation theory, it is therefore necessary to appeal to the Callan-Symanzik equation1 for

the one point function S =  1√
r0

sin

φ(r)
R


↑ . Using the general form of solution of the Callan-

Symanzik equation for one-point correlation and comparing that with the bare perturbation theory

results we obtain the alternating part of Sz(r)↑ as,

Nz(r) = c
√
a
F0√
L


ǫ0

ǫ(L)

 1
4

(1 + ǫ(L)R) , (1.6)

with

F0(
r

L
) = −


π sin θr

2
, (1.7)

and

R(
r

L
) =

π

2
log

2π

sin θr
+ 2

 θr

0
+

 π−θr

0


φ cotφdφ , (1.8)

with θr ≡ πr
L .

Expressing ǫ(L) as (obtained by solving the one loop expression for the beta function )

ǫ(L) = − |ǫ0|
1 + 2π|ǫ0|


log


L
r0


+ 1

2 log

log


L
r0

 , (1.9)

we choose the short-distance cutoff as r0 = a, and set the length L to L = (N+1)a. Eqns(6.43),(6.44),

(6.45) with these inputs constitutes a theoretical prediction with two free parameters (the overall ampli-

tude c, and the bare coupling ǫ0 at the lattice scale), and we find below that this provides an extremely

good two-parameter fit of the available numerical data in the power-law ordered antiferromagnetic

phase of the one dimensional JQ3 model(Figure 6.1).

In addition, the spin texture at q = qc,(qc = 0.04 is known from numerics) the critical end-point

of this power-law ordered Néel phase, fits extremely well to the general prediction with ǫ0 = 0(Figure

6.3).

1The Callan-Symanzik equation is a differential equation describing the evolution of the correlation functions under

variation of the energy scale at which the theory is defined.
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Figure 1.1: L1/2Nz(r) plotted versus r/L (where L = N + 1 for chains with N = 959 and N = 479

spins and open boundary conditions) and compared with the scaling prediction F0 for q = qc = 0.04,

the approximate location of the quantum critical point separating the power-law Néel phase from the

VBS ordered phase in the one dimensional JQ3 model. Note the data at both sizes fits essentially

perfectly to the scaling prediction with the same prefactor csc. Also note that the best two-parameter

fit corresponding to our RG improved perturbation theory result also gives |ǫ0| = 0, and thus coincides

with the scaling answer.

1.1.2 Comparing numerical and analytical results

In Figure (6.3), we have shown the numerical data [1] for the alternating part of the spin texture to

compare it with the scaling prediction at the critical point q = qc and RG prediction for the same, for

two system sizes. As can be seen from these two figures, the scaling prediction fits extremely well to

all the data at both sizes. Also, a two-parameter fit using the RG-improved perturbation theory result

yields a best-fit value of ǫ0 indistinguishable from ǫ0 = 0. This confirms the location of the critical

point, as the bare coefficient of the marginally irrelevant cosine interaction is expected to be zero at the

transition point. This almost perfect fit to the scaling prediction is contrasted with the results shown

in Figure (6.1), which show numerical results at two representative points(q = 0 and q = 0.02) in the

power-law Néel phase compared with the one-parameter fit obtained from the scaling prediction. As

shown in these two figures, the scaling prediction cannot predict well the numerical results for q < qc.

Additionally we note that the misfit of scaling predictions with numerical results increases as we go

further from the critical point(i.e. smaller q). In the same figures, we also show the best two-parameter

fit obtained by using our RG improved perturbation theory results. We show here that the best-fit values

of |ǫ0| increase as one goes further away from q = qc, which is consistent with the expectation that

the bare coefficient of the cosine interaction vanishes as q approaches qc. Also we show that the RG

improved perturbation theory provides a much better fit at q = 0.02 than at the Heisenberg point q = 0,

consistent with the fact that our calculation is perturbative in the renormalized coupling ǫ(L), and is
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supposed to be a better approximation when the bare value of |ǫ0| is smaller to begin with.

To summarize the first work, we did a field theoretical analysis to understand the origin of multi-

plicative logarithmic corrections in the critical scaling form, observed numerically on the verge of the

Néel to VBS transition of an one dimensional antiferromagnetic model.

1.2 Antiferromagnetic systems with doublet ground states

In the second problem we have investigated ground state properties of the square lattice Heisenberg

antiferromagnets(SLHAF) with S = 1/2 moments at every site of a finite size cluster. Such kind of

finite size systems can be relevant when the antiferromagnetic order breaks into puddles in an SLHAF

due to randomly dilution with non magnetic impurities above the percolation threshold.

On the other hand in computational studies, to obtain information about the system in the thermo-

dynamic limit one needs to know how the physical quantities of interest are dependent on the size of

the system and the thermodynamic limit extrapolation of the same [26, 27] . For example, consider

S = 1/2 SLHAF defined on a rectangular region of a two-dimensional lattice, where the sides of the

rectangle are Lx (Ly) in the x (y) direction in lattice units and periodic boundary conditions are im-

posed in both directions. The antiferromagnetic order parameter is defined as the singlet ground state

average of square of staggered magnetization. It is is given by:

m2
0 =

1

Ntot



rr′

ηrηr′ Sr · S
r
′ 0, (1.10)

with Ntot ≡ LxLy. Here ηr is +1 when r ∈ A-sublattice, −1 when r ∈ B-sublattice on a bipartite

graph, ...0 and subscript 0 denotes expectation values over the singlet ground state. Usually numerical

studies [28, 29] of the finite size properties of the system are done by taking a sequence of Lx ×
Ly systems, keeping both Lx and Ly even and imposing periodic boundary conditions(PBC) in both

directions. From the analytical side, the form of finite size dependence of m2 and the leading effects on

low energy spectrum, are derived with even Lx, Ly and PBC [26]. However, some numerical studies

[27] use “cylindrical” samples with PBC in one direction and pinning fields on one pair of edges to

keep the spins fixed on the boundaries, focusing on the dependence of ground state properties on the

aspect ratio Ly/Lx in various lattices.

The common thing about all those approaches is that they focus on systems with an even number

of spin-half moments(Ntot). According to the Lieb-Mattis theorem the ground state of such a system

is a singlet [30] with Stot = 0. Certainly there can be another kind of finite size cluster with a very

different ground state i.e. SLHAF on an L×L square lattice with odd L and open boundary condition

imposed in both of the directions. According to Lieb-Mattis [30] theorem such a system should have

a doublet ground state with total spin Stot = 1/2. A measure of antiferromagnetic ordering in such a
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Figure 1.3: L1/2Nz(r) plotted versus r/L in the power-law ordered Néel phase at q = 0.0 in the top

figures and q = 0.02 at the bottom figures, where L = N + 1 for chains with N = 959(right) and

N = 479(left) spins and open boundary conditions. Those are compared with the scaling prediction

with a common best-fit prefactor csc. Note that for all the figures the deviation of the data from the

scaling prediction cannot be simply ascribed to an overall multiplicative factor that grows with N ,

since the shape of the curves is slightly different. For top two figures data at both sizes is also fit

to the best two-parameter fit corresponding to our RG improved perturbation theory result, and the

agreement is seen to be quite reasonable, but not perfect, for the best fit values of cRG and |ǫ0| listed

in the legend. Whereas for the bottom two figures, data at both sizes is also fitted to the best two-

parameter fit corresponding to our RG improved perturbation theory result, and the agreement is seen

to be excellent for the best fit values of cRG and |ǫ0| listed in the legend.
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system could be staggered component of this ground state spin texture (defined as Φz(r) ≡ Sz
r ↑),

nz
↑ =

1

Ntot



r

ηrSz
r
↑. (1.11)

Where . . . ↑ and subscript ↑ denotes expectation values calculated in the Sz
tot = +1/2 sector of the

doublet ground state(ηr = +1 on the A sublattice and −1 on the B sublattice). The quantities nz
↑,

calculated in a particular sector of the doublet ground state and m0, calculated in singlet ground state

are different ways of measuring antiferromagnetic order in ground states of different nature.

In this work we focus on the the functional dependence of nz
↑ on m0, which is a property of

the spontaneously broken SU(2) symmetry of the Néel state in the thermodynamic limit. It might

be possible to describe the low energy physics of SLHAF in doublet ground state by some effective

theory with a local term to capture the open boundary, where the effective field theory parameters2

can be extracted from the knowledge of the microscopic Hamiltonian. Such an effective field theory

description is not available since it is not clear what kind of local terms will capture the effect of

open boundaries and how to project out the Stot = +1/2 sector of the ground state in the field theory

description.

From QMC studies [5] by deforming nearest neighbor interacting Heisenberg antiferromagnet with

additional multispin interactions, it turns out that irrespective of the model Hamiltonian nz
↑ can be fitted

as an universal polynomial function of m0 in the antiferromagnetic phase. The function is given by:

nz
↑ ≈ (

1

3
− a

2
− b

4
)m0 + am2

0 + bm3
0, (1.12)

where a ≈ 0.288 and b ≈ −0.306. Here we tried to understand this functional dependence nz
↑(m0) in

the antiferromagnetic phase from three approximate analytical methods: spin wave theory, sublattice

mean field theory and rotor model. In next subsection we will describe the details of the analysis and

the conclusions.

1.2.1 Details of the approximate analytical calculation

Spin wave analysis: Spin wave theory is a perturbative approach to understand the long wave-

length behavior of spin systems. Still it is surprisingly accurate in the description of SLHAF, even in

the predictions for finite size systems with periodic [31] and semi-open boundaries [4]. Motivated by

this success of spin wave theory in predicting finite size results of SLHAF, we developed a formal-

ism to do linear spin-wave expansion for a SLHAF with open boundary. The method is based on the

2The effective, long-distance/time and zero temperature description of 2D Heisenberg model is given by non linear sigma

model(NLSM). Such effective low-energy/momentum description of the system is completely determined by two ground

state parameters i.e. spinwave velocity c, spin stiffness constant ρs. The values of those two parameters have to be deter-

mined from the microscopic Hamiltonian. The partition function looks like, Z =
�
Dn̂(x, τ)δ(n̂2 − 1)exp[−SB − Sn̂]

, where SB is the Berry phase term and it is not important in the present context. For d-dimensional antiferromagnets

Sn̂ =
�
dτddx[χ⊥

2
(
−→
▽n̂)2 + ρs

2
(∂τ n̂)

2] and c2 = ρs
χ⊥

. One can choose c = 1 to set the scale and that leaves only one

free parameter ρs. Hence all the physical quantities should be a function of ρs. Like the antiferromagnetic order parameter

m2
0(equation 2.16) can be calculated from this NLSM description as a function of ρs and can be fitted with the experimen-

tal/numerical results of m2
0 to obtain the value of ρs for a particular microscopic system.
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J
J

J′
J2

J2

Figure 1.4: An illustration of the interactions present in the JJ ′ (left panel) and JJ2 (right panel)

model Hamiltonians. In this illustration, black bonds denote exchange interaction strength of J , while

a red bond represents exchange strength of J ′ (J2) in the left (right) panel

Holstein-Primakoff [32] representation of spin operators by bosons. The Heisenberg spin Hamiltonian

is represented by a bosonic Hamiltonian as a result, which is truncated to quadratic order in boson

operators by large S expansion to obtain the first quantum corrections to the classical energy of the

system( the Néel state being the classical ground state). For periodic systems since there is a transla-

tional symmetry in the problem, so one can work in the Fourier space to find the spin-wave modes and

calculate the leading order spin wave corrections in nz
↑ and m0 for various models in the large- S limit.

This calculation is pretty standard and routinely done in literature, but the corresponding analysis of

systems with free boundary conditions, with odd numbers of sites is not standard and has been devel-

oped in this part of the thesis. From our spin-wave analysis it turns out that the universality discussed

in the previous section is well captured by spin-wave theory. As discussed in the previous section,

we study two deformations of Heisenberg antiferromagnet which are known as JJ
′

[33] and JJ2 [34]

models[Figure 5.1] in literature. The spin-wave expansion results in the following relationship between

nz
↑ and m0 , which is qualitatively same as the available numerical results

nz
↑ = (1− α− β/S)m0 + (α/S)m2

0 +O(S−2), (1.13)

with α ≈ 0.013 and β ≈ 1.003 for spin-S antiferromagnets[Figure 5.8]. Moreover, by studying the

Fourier transform3 of the ground state spin-texture in the momentum space for various deformations

of the pure antiferromagnet, we found that spin wave expansion predicts that the spin-texture near the

antiferromagnetic wave-vector is an universal(with respect to various deformations of the microscopic

Hamiltonian) function of the wavevector[Figure 5.9].

Sublattice mean-field theory: We explore two other ways to explain this universal function for

antiferromagnets(Equation 1.13) with a spin-S moment at every site. One of them is a simple mean-

field picture in which the system can be described in terms of the dynamics of two giant spins vectors

3This Fourier transform is done numerically on the data to see the weight of the various modes in hte momentum space.

To be specific we are concerned about the weight of the modes near the antiferromagnetic wavevector. For an odd size

antiferromagnet it is convenient to use antiperiodic boundary condition as periodic boundaries induce frustration in this case.
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Figure 1.5: Using finite-size extrapolations to the L → ∞ limit, to obtain Δ(nz
↑ = S−Δ) for various

values of J2/J and J
′
/J , we compare the result with Δ′(m0 = S −Δ′). Specifically, we now ask if

the universality seen in the QMC results [5] is reflected in these semiclassical spin-wave corrections

to nz
↑ and m0. The obtained spin-wave corrections apparently satisfy a universal linear relationship

Δ − Δ′ ≈ 1.003 + 0.013Δ′ as one deforms away from the pure square lattice antiferromagnet for

JJ ′ and JJ2 models(Figure 5.1). This implies that nz
↑(m0) to leading order in 1/S will be

nz
↑

m0
=

1−Δ−Δ′

S +O(S−2). We highlight this point by plotting the figure in way such that it is clear that Δ−Δ′

is almost 1 with a very small slope of 1/S order. Using our numerically established universal result to

relate Δ−Δ′ to Δ′, we obtain the universal relationship nz
↑ = αm0+βm2

0 with α ≈ 0.987−1.003/S

and β ≈ 0.013/S.
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Figure 1.6: Fourier transform (with antiperiodic boundary conditions assumed for convenience) of the

spin-wave data for Φz(r) (assuming S = 3/2 and calculated using L = 75 for JJ2 and JJ ′ model)

along cuts passing through the antiferromagnetic wavevector (π,π). Note the nearly universal nature

of the results in the neighborhood of the antiferromagnetic wavevector, which in any case accounts for

most of the weight of the transformed signal. Note that this are only two cuts of the two dimensional

(qkx , qky) plane, if one considers the entire two dimensional plot, near the point (π,π) there will be

significant overlap to see the universality.

SA and SB , composed of the total spin of the A and B sublattices respectively. When the number of

spins in B sublattice(NB) is one more than that in A sublattice(NA) (or vice versa), one can take the

total spin quantum number of SA as SB + S and the total spin quantum number of SB as SB .

The effective Hamiltonian to describe this mean field picture is given by,

HMF = JMF
SA · SB (1.14)

with SA and SB being coupled antiferromagnetically (JMF > 0). We focus on the |0MF = Stot = S,

Sz
tot = S ground state of this effective Hamiltonian as this corresponds to the Stot = S,Sz = S ground

state considered in the analysis, which can be obtained by the angular momentum addition of SB and

SB + S. In this effective Hamiltonian picture, nz
↑ is 0|(Sz

A − Sz
B)/Ntot|0MF . Similarly, when

NA = NB , one can also calculate m2
0 = (SA − SB)

2J=0/N
2
tot within the same sublattice-spin

approach, with the ground state being in the singlet sector. This allows to extract the ratio nz
↑/m0 the

thermodynamic limit as

nz
↑ =

S

S + 1
m0. (1.15)

This effective mean-field picture is exact for a Hamiltonian of an infinite-range model in which

every A sublattice-spin interacts with every B sublattice-spin via a constant (independent of distance)

antiferromagnetic exchange coupling JMF . So this simple mean field model will become asymptoti-

cally exact in the limit of infinitely long-range unfrustrated couplings in the Heisenberg model. In that

limit, we also expect m0 → S, and thus, our mean field theory predicts that nz
↑ → (S/S +1)m0 when

m0 → S. This is the constraint that we impose into our fit of nz
↑(m0).
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Rotor model: Another way to understand the functional form nz
↑(m0) is in terms of a quantum

rotor picture, where the rotor vector is the Néel vector n of an antiferromagnetic system with an odd

number of sites. As we know that ground state of the SLHAF with nearest neighbor interactions

has Néel order and with that system, one can associate a Néel vector(n) pointing at some definite

direction in space. Even though for a finite size system with singlet ground state there is no real

preferred orientation for this Néel vector, it was shown by Anderson [35] that the Néel state will be

a superposition of practically degenerate states and the Néel vector will slowly precess through those

states. That motion of Néel vector can be modeled as a rigid rotor. In the case of an antiferromagnet

with an even number of S = 1/2 moments, the low-energy effective rotor Hamiltonian of the order

parameter(Néel vector) is

Hrotor =
L · L
2χNtot

. (1.16)

Here L is the angular momentum conjugate to the “quantum rotor” coordinate n̂ ≡ n/|n|, χ is the

uniform susceptibility per spin, and Ntot is the total number of spins.

In the case of antiferromagnets with an odd number of sites, the number of spin-S moments on A-

sublattice is one more than that on B-sublattice(or vice versa), i.e. NA = NB + 1. For this system, we

postulate a rotor Hamiltonian, following the work of Chandrashekharan on quantum rotor descriptions

of insulating antiferromagnets doped with a single mobile charge-carrier [36]. In that description L

of 1.16 is replaced by the angular momentum operator L′ conjugate to a quantum rotor coordinate

n̂, which parametrizes a unit-sphere with a fundamental magnetic monopole at its origin. [37] The

low-energy effective Hamiltonian for this case becomes,

HS
rotor =

L
′ · L′

2χNtot
(1.17)

where the superscript reminds us that the lowest allowed angular momentum quantum number l of

the modified angular momentum operator L
′

is l = S. The angular wavefunction [37] of the |l =

S,ml = S ground state of this modified rotor Hamiltonian is the monopole harmonic Y−S,S,S(θ,φ).

To calculate nz
↑/m0 we calculate nz

↑↑ i.e. the expectation value of n̂z ≡ cos(θ) in this monopole

harmonic wave function on the unit sphere. It leads to

nz
↑↑ =

S

S + 1
m0, (1.18)

which is exactly the same expression we got from sublattice mean-field theory.

Conclusion: The rotor model is a more general phenomenological approach than the sublattice

mean-field theory which doesn’t take into account any nonzero wave vector modes or the amplitude

fluctuations of the Néel order parameter, also the model makes no assumptions about any long range

interactions. It still reproduces the sublattice mean-field theory results which is asymptotically exact in

the limit of infinite-range unfrustrated interactions. Thus, a more general phenomenological approach

that goes beyond sublattice-spin mean-field theory but ignores all non-zero wavevector modes also
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gives

nz
↑ =

m0

3
, (1.19)

for S = 1/2. Since both numerical results and spin-wave results show clear deviations from this

result, we conclude that such non-zero wavevector modes are essential for a correct calculation of the

universal function nz
↑(m0).

To summarize this section, we did approximate analytical studies to understand an interesting uni-

versal relationship between certain aspects of the ground state spin texture, observed from numerical

experiments. In the process we uncovered some interesting features of ground state properties of an

antiferromagnetic system in doublet ground state or in general, any multiplet ground state.

1.3 Vacancies in SU(2) invariant Majorana spin liquid

Due to the effect of weak disorder, in the mean field proposal of SU(2) invariant Majorana QSL

state [10] the magnetic susceptibility goes to a constant value at T → 0. Understanding the effect

of missing sites or strong disorders in such a state can be useful as in experimental conditions often

samples have such kind of disorder. In the third problem we focus on the effects of random site dilution

in an exactly solvable SU(2) symmetric spin model (Yao-Lee model, equation4.2 [13]), which has

a spin liquid(QSL) ground state with gapped or gapless spinfull fermionic excitation in presence of

time-reversal symmetry.

In this context the gapless phase of Kitaev’s spin model is very interesting because it has a spin liquid

ground state with very short range spin correlations but broken rotational symmetry. Kitaev’s spin

model on a honeycomb lattice was exactly solved by mapping it to a free Majorana fermion hopping

problem, Willans et al [38] have shown that such a method also works in presence of randomly located

vacancies (dubbed as “random site dilution”). By that token the problem of random site dilution in the

spin model maps to a problem of random site dilution in a free Majorana fermion hopping problem on a

bipartite (e.g. honeycomb) lattice. And the susceptibility of the spin model maps to the compressibility

or density of states of the corresponding free fermion system as

χ(T → 0) ∼ ρ(T )

T
. (1.20)

Thus computing the density of states of the randomly diluted free fermion problem at very low energy

gives the behavior of magnetic susceptibility at T → 0 limit.

The free Majorana fermion hopping problem corresponding to the gapped phase of Kitaev’s model

with many vacancies was analyzed using perturbative techniques [38] and it was shown that low tem-

perature magnetic susceptibility behaves as χ(T ) ∼ 1
T (log( 1

T
))1.7

. Analyzing the problem in the more

interesting gapless phase by same method is difficult as finite size effects becomes more important
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and the integrals appearing in Green’s function calculation doesn’t converge. On the other hand it can

be shown [13] that by similar mapping the SU(2) symmetric Yao-Lee model (equation4.2 [13]), can

be mapped to very similar free fermion hopping problem as that of Kitaev’s (detailed explanation is

provided in next subsection) with similar gapped and gapless phases, for the same parametric values

of exchange coupling. So in this work, by performing exact calculations of density of states for that

randomly diluted free fermion hopping problem at very low energy on large size systems, we tried to

understand the low temperature magnetic response of Kitaev’s model and Yao-Lee model in presence

of many vacancies in the both gapped and gapless phases.

The spin model to free Majorana fermion hopping map connects the disordered spin problem with

the earlier studies on particle-hole symmetric localization on bipartite random hopping problem [39]

where the spectrum is symmetric about zero energy(E = 0). From numerical works [39] it is known

that in the particle-hole symmetric pure problem introducing random bond disorder generate lots of

new states near E = 0. In an effort to understand the physical mechanism behind generation of such

states, the functional form of density of states in the E → 0 limit is an important quantity to study.

It was shown that random bond disorder in particle-hole symmetric hopping problem has universal

behavior in the functional form of density of states at low energy depending on whether it is defined

on a bipartite or nonbipartite graph and whether the spectrum in absence of disorder is gapped or

gapless [39, 40]. From the work of Motrunich et al [39] on bipartite random hopping problem in two

dimension at the strong disorder limit, the predictions are following:

In the gapless phase the density of states ρ(E) (E being the energy) will have the Gade [40]

functional form

ρ(E) ∼ 1

E
e−c|lnE| 1x . (1.21)

with x=3/2 and c is a constant whose values depends on the disorder concentration and type of disorder.

In the gapped phase the density of states shows the Griffiths [41] form given by

ρ(E) ∼ E−1+d/z, (1.22)

with a variable dynamical exponent z at dimension d (d = 2 here).

In contrast from the perturbative calculation of Willans et al [38] on randomly diluted Kitaev’s

model, the gapped phase density of states follows the Dyson form given by

ρ(E) ∼ 1

E[log[1/E]]1+x
, (1.23)

with x ∼ 0.7. In this work on randomly diluted bipartite hopping problem we tried to resolve this

conflict and we conclude that Motrunich et al’s [39] prediction for the functional form of density of

states is correct in asymptotically low energy limit at both gapped and gapless phases.

There is another interesting aspect of this work. Using real space renormalization group analysis Ma-

Dasgupta-Hu [42] and Fisher [43] have previously shown that one dimensional Heisenberg spin chain

14



with randomly distributed exchange coupling have a stable phase at low energy, in which each spin is

paired with one other spin that may be very far away (dubbed as “random-singlet” phase). Such random

singlet phase has a diverging low temperature susceptibility due to lack of any long range order of the

form χ(T ) ∼ 1
T h(log(1/T )) (h is some decreasing function of its argument that makes this density

states integrable) . As a first example of such kind of Physics in higher dimension, Bhatt-Lee [44]

have shown numerically that three dimensional Heisenberg antiferromagnet doped with non-magnetic

impurities doesn’t show any magnetic order at very low temperature (lower than exchange coupling

energy) due to such random singlet formation. The higher dimensional studies of the system are

numerical and it is not clear whether such random-singlet phase observed there is the stable low energy

phase of such system. From our exact calculation of density of states (or susceptibility , equation 1.20)

we seem to have found that the true low temperature phase of the system is of “random-singlet“ like

on a randomly diluted two dimensional bipartite lattice.

1.3.1 Analysis of SU(2) symmetric extension model with spin liquid ground state

Construction of a SU(2) symmetric Kitaev model requires a lattice with coordination number three and

a tricolourability property for the links of the lattice. The SU(2) invariant spin model [13] we study

is defined on a brickwall lattice (topologically equivalent to honeycomb lattice). In that lattice each

link can be assigned a type-label x, y or z such that every vertex has exactly one link of each type. So

the link Hamiltonian H<jk>λ
on a λ-type link < jk >λ (λ = x, y, z) connecting sites j and k can be

defined as,

Hjkλ = −Jjkλ(τ
λjk

j τ
λjk

k )(σj .σk). (1.24)

The model has two different spin degrees of freedom σα (α = x, y, z) and τα at every site. Which

are represented by SU(2) invariant Majorana fermion representation as σx = −icycz (and all coun-

terclockwise permutations) and τx = −ibybz (and all counterclockwise permutations). Note that any

model with this kind of structure will look like a bilinear in both Majorana operators b and c. Now

that we have two independent Pauli matrices as every site and we are writing each one of them by

SU(2) symmetric representation of three Majorana fermions, we have double counted the single site

Hilbert space. To get back to the original Hilbert space the typical choice [45] is cxcyczbxbybz = i (or

alternatively cxcyczbxbybz = −i). So the Hamiltonian in terms of the Majorana fermions becomes

H = i


<jk>λ

J<jk>λ
u<jk>λ

(


α=x,y,z

cαj c
α
k ). (1.25)

Where the outer sum is over all three types of links < jk >λ (λ = x, y, z). Here the products

ibλ<jk>
j bλ<jk>

k on the λ links < jk >λ (with λ = x, y, z) become static Z2 gauge fields u<jk>λ
and

the Hamiltonian becomes a bilinear in c Majorana fermion operators which are coupled to those static

Z2 gauge fields. Note that the SU(2) symmetry of the original spin model is reflected in equation (4.9)

as a global SO(3) symmetry between the three copies of Majorana fermions. At this stage the only

difference between this model and the original Kitaev’s model is that, this model has three different

flavors of c-fermions which means we have three copies of Kitaev’s original solution with each of
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those fermion flavors being coupled with the same gauge field. Due this resemblance with the original

Kitaev’s model, the properties of this free Majorana fermion hopping problem of our SU(2) symmetric

model, is same as that of Kitaev’s original model.

Free Majorana fermions on a bipartite lattice: Some additional simplification is possible for

the random hopping problem on a bipartite graph, over equation 4.9. Since tjkλ(= ujkλJjkλ)

only connects A-sublattice sites to B-sublattice sites, instead of working with the pure imaginary but

hermitian matrix defined by the original hopping problem, we can work with a real symmetric matrix.

This can be seen by re-writing the Schrodinger equation in the following way,



k

tjkλ(iφ
µ
k) = ǫµφ

µ
j (1.26)



j

tjkλφ
µ
j = ǫµ(iφ

µ
k).

Here, j is a A-sublattice site and k is a B-sublattice site. We note that it is advantageous to study

the matrix H2 (= −t2jkλ) instead of H (= itjkλ) the hopping Hamiltonian. For bipartite lattices

in H2 the two sublatitces are decoupled with same absolute values of eigenvalues (differing in sign),

that reduces the size of the matrix to be considered to half of the original. Moreover, for very small

numbers the H2 is more numerically stable.

Computation of Density of states: At this stage( equation 1.27) we approach the problem of

site dilution in SU(2) symmetric Majorana spin liquid as an eigenvalue problem where finding the

density of states is basically counting number of eigenvalues in a certain interval. To count the number

of eigenvalues below a certain energy value we use the Sturm method. The method suggest an way

to compute the number of eigenvalues above a particular number λ for a real symmetric matrix A,

by calculating the number of sign agreements between the successive leading principal minors of the

matrix (A − λI). That translates to finding the number of eigenvalues below some particular −ǫ for

the matrix A = H2, which has eigenvalues −ǫ2µ.

Here one of our goals is to get as large size as possible in order to reduce finite size corrections in

low energy, so we use some schemes to reduce computational memory cost. We considered semiopen

boundary condition such that the free fermion hopping matrix becomes a banded matrix with a narrow

band, which has a lower memory cost in various operations compared to the full matrix. In order to

ease the process of evaluating the principle minors the matrix (A − λI) is triangularized using stan-

dard Gaussian elimination. We make use of a numerically stable algorithm by Martin and Wilkinson

[46] for such kind of calculations on banded matrices which is also very memory efficient. By that

algorithm, there is no need to store the whole matrix at any stage of the calculation, only a bandwidth

square number of elements is needed to be stored.

Since here we are trying to probe very low energy states of the system due to large number of

impurities, we tried to make our computation as accurate as possible for extremely small numbers. For

that purpose we make use of the GNU Multiple Precision Arithmetic Library [47], which uses efficient
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algorithms [48] to stretch the precision for basic arithmetic operations well beyond the machine pre-

cision. The only limit in the maximum achievable precision is imposed by the virtual memory of the

machine.

Using a combination of the previously mentioned memory efficient algorithms and the high pre-

cision libraries, we managed to reliably calculate integrated density of states of the disordered system

upto size 51200 sites and ∼ 10−150 precision. The cost of such high precision memory efficient al-

gorithm is the computation time. Still we managed to obtain significant statistics4 for our conclusions

and we are working on improving that statistics.

1.3.2 Results

Gapped phase: We calculate the density of states in presence of a finite number of vacancies

upto very low energy(Emin = 10−150) and large size systems(N = 51200). We obtain reliable data

by carefully implementing Lieb’s theorem [49] in all plaquettes of our disordered fermion hopping

problem such that the system under study is always in the energy minimizing ground state flux sector5.

The key point in our observation is that the behavior of integrated density of states(IDOS) goes

through a crossover at a very low energy. Before going in to the detail of the crossover we will introduce

a few notations and express all the DOS forms in that for convenience. Instead of energy we will use

the quantity Γ = log(1/E) and instead of DOS we will plot IDOS, N(Γ). Now with the new notations,

in Figure 1.7 in the left plot plot we have reproduced the result of Willans et al [38] in the energy range

considered by them. Our exact calculation shows same result as their perturbative calculation, which

is the “Dyson” form N(Γ) ∼ Γ−x(look at equation 2.9 for the corresponding ρ(E) expression) with

x ∼ 0.8 (Willan’s et al predicted x ∼ 0.7 [38]).

In figure 1.7 IDOS shows the “Dyson” form upto an energy E ∼ 10−20 . At an energy lower than

E ∼ 10−40 , the behavior of IDOS is better described by either Griffiths form N(Γ) ∼ e−
d
z
Γ(look

equation 2.7 for the corresponding ρ(E) expression) with a very high value of dynamical exponent

(z ∼ 110) or modified Gade form N(Γ) ∼ Γ1− 1
x e−cΓ

1
x (look equation 2.6 for the corresponding ρ(E)

expression) with x = 3/2. From the IDOS data set we have it is really hard to distinguish between

those two forms, as Griffiths is an exponential and Gade is a stretched exponential.

The results obtained here, can be contrasted with the corresponding results from the studies of

strong disorder in bipartite random hopping (BPRH) by Motrunich et al [39], which predicts the Grif-

fiths form, in the gapped phase.

4We calculate the integrated density of states by averaging over a large number of disorder realizations with fixed con-

centration.
5Lieb’s theorem: For a half-filled band of electrons hopping on a planar, bipartite graph the magnetic flux enclosed by a

loop of size 4m is π, whereas the magnetic flux enclosing by a loop of size 4m+2 is 0(where m is an integer). The theorem

can was proved only in presence of certain symmetries. In the disordered fermion hopping problem those symmetries are not

present, but Willans et al [38] have shown with the aid of perturbative and numerical calculation that the theorem holds even

in the absence of those symmetries.
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Figure 1.7: Integrated density of states N(Γ) plotted against Γ(=log(1/E)) for the gapped phase of

Kitaev’s model on a honeycomb lattice with semiopen boundary condition. The parameter values used

here Jx = Jy = 1, Jz = 4(α = Jz/Jx). The results are obtained with 5% impurity concentration,

for sample of 51200 sites, averaged over 1000s of disorder realizations. Left panel: the main plot in

left panel emphasizes the crossover from Dyson form(N(Γ) ∼ Γ−x) to some other form behavior of

low energy IDOS. Inset of left panel shows a zoomed portion in the higher energy range of the plot, to

compare Willans et al [38] result. For comparison the inset plot is made for a sample with 3200 sites

and 5% impurity concentration , same as Willans et al [38]. Right panel: this plot shows a fit for the

crossover from Dyson form to Griffiths(N(Γ) ∼ e−
d
z
Γ) or modified Gade form(N(Γ) ∼ Γ1− 1

x e−cΓ
1
x ,

x = 3/2) in the behavior of low energy IDOS. From this plot it is hard to decide that for high values of

Γ, which of the two forms fits better with the data. The only thins we can say that certainly the IDOS

looks straighter than the Dyson form, so indeed there is a crossover in functional form of IDOS. The

fits made here are within the range of Γ = 40 to 140. The z value fluctuates when we change the range.

For example for the range of Γ = 25 to 80, z is 76.
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Figure 1.8: Integrated density of states N(Γ) plotted against Γ for the gapless phase of Kitaev’s model

on a honeycomb lattice with semiopen, armchair boundary condition. The parameter values used

here Jx = Jy = Jz = 1(α = Jz/Jx). The results are obtained with 5% impurity concentration,

averaged over 1000s of disorder realizations. Left panel: for convenience to fit the data in the form

N(Γ) ∼ Γ1− 1
x e−cΓ

1
x we plot N(Γ)Γ−1+ 1

x to Γ. Here we compare between Gade form(x = 2) and

modified Gade form(x = 3/2). We conclude that modified Gade form is a better fit to the data. Right

panel: here we compare between Gade form and Griffiths form(N(Γ) ∼ e−
d
z
Γ). Again we conclude

that modified Gade form is a better fit to the data.

Gapless phase: We calculate the density of states in presence of finite number of vacancies

upto very low energy(Emin = 10−55) and large size systems(N = 39200) and contrast our result

with the corresponding results of critical delocalized phase in the BPRH universality class [39]. In

the delocalized phase the IDOS at low energy follows the ”Gade” form N(Γ) ∼ Γ1− 1
x e−cΓ

1
x (look

equation 2.6 for the corresponding ρ(E) expression) with x = 3/2(Figure 3.9, dubbed as ”modified

Gade” form to contrast with the original ”Gade“ [40] form with exponent 2.

Conclusion: From this work our conclusion is following: in the gapless phase even upto very

low energy the density of states is of Gade form (equation 2.6), on the other hand in the gapped phase

the Dyson form persists upto a certain energy scale (Figure 1.7) then there is a crossover in the form

and finally the form changes either to Gade form or Griffiths form. It is hard to distinguish between a

power law (equation 2.7) and stretched exponential (equation 2.6) from our current set of data.

So the predictions from Motrunich et al [39], which they provided for random bond disorder also

holds in presence of random dilution. In the gapped phase the prediction of Willans et al [38] on the

form of density of states turns out to be true (equation 2.9, x = 1.7, Figure 1.7)in the higher energy

range(E > 10−20 in J = 1 scale) but at the E → 0 limit the density of states takes either modified

Gade(equation 2.6) or Griffiths form(equation 2.7, Figure 3.9). It is is hard to resolve between these

two forms from our data.

In addition we conclude from the Equations 1.20 and 2.6, 2.7 that susceptibility will behave as
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χ(T → 0) ∼ 1
T h(log(1/T ))(h is some decreasing function of its argument that makes this density

states integrable), this is the signature of random singlet phase and from these results it seems to be

the true low temperature phase of the randomly diluted SU(2) spin model with a Majorana spin liquid

ground state, defined on a two dimensional bipartite lattice.
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Chapter 2

Introduction

Understanding emergent phenomena in many body systems at different levels of complexity is one of

the main goals of physics. Disorder effects in such systems are of special interest not only because they

are ubiquitous in nature but also because the effects of disorder can lead to genuinely different behavior

compared to that of the pure system. Sometimes studying the changed behavior of a complex system

in presence of disorder also improves understanding of the pure system. In this thesis our goal is to

understand effects of disorder in some specific examples of low dimensional many electron systems at

zero temperature.

A class of phases observed in solid state systems (e.g. metals, band insulators, semiconductors,

semi metals, integer quantum hall systems) can be understood from a model of weakly interacting or

non interacting many electron system. It turns out in such a non-interacting system of electrons, a

metallic phase in the clean system can be driven to an insulating phase in the presence of disorder.

This phenomena was discovered by Anderson [50] and is known as Anderson localization. The nature

or existence of such an transition depends strongly on the dimensionality of the problem. Later it

was discovered that the properties (such as susceptibility, specific heat) of this kind of systems in the

metallic and insulating phase varies depending on the nature of the pure system and the kind of disorder

introduced. Different behavior corresponds to different “universality classes” which are determined

by the overall symmetries of the disordered system; such as time reversal symmetry, particle-hole

symmetry and spin rotation symmetry.

Characterizing the metal-insulator insulator transition in these different universality classes of non

interacting disordered many electron systems and understanding the physics of such systems is a sub-

ject of interest as it corresponds to the behavior of various physical systems like dirty graphene, topo-

logical insulators, superconductors etc.

On the other hand there is another class of phases observed in solid state systems (e.g. Mott in-

sulators, magnetic systems, high Tc superconductors, quantum spin liquids, fractional quantum hall

systems) where the role of interaction is not negligible, nor small enough to treat perturbatively. It
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turns out in an interacting electronic system, a metallic phase can be driven to an insulating phase de-

pending on the strength of interaction compared to the bandwidth. This phenomena was discovered by

Mott[51] and is known as Mott localization. The most well studied experimental example where Mott

transition is realized is in the family of cuprates.

A very different kind of metal-insulator transition is observed in doped semiconductors, where the

response of the system in both metal and insulator side is anomalous compared to the previous cases.

This anomaly is believed to be due to the fact that the metal to insulator transition is driven by an inter-

play between Mott and Anderson localization. The phenomenology of such a system can be captured

by a model of disordered Heisenberg quantum antiferromagnet. This model is well understood and

analyzed in one dimension where at low temperature the system stabilizes in a very special interesting

random singlet phase as shown by Dasgupta and Ma [42]. In higher dimension an exact solution of

this model is not known so far; but by approximate RG calculation for certain kind of disorder in three

dimension, Bhatt and Lee [44, 52] have predicted occurrence of a similar phase with no long range

order. However the higher dimensional theoretical calculations doesn’t capture all the experimental

features of the transition, and there are unresolved issues like whether random-singlet like phase is the

true low energy phase in higher dimension.

In a pure Mott insulator where the interaction is much stronger than the kinetic energy of electronic

hopping between atomic orbitals, the system can be modeled in low energy as a spin Hamiltonian

with Heisenberg antiferromagnetic interaction. Such antiferromagnetic phases shows an wide range

of differently ordered phases due to the interplay of competing nature of interaction caused by the

geometry of the system and quantum fluctuation. Often in the experimental realization of such kind of

phases, impurities are unavoidable even in the purest possible samples. Response of such impurities

can actually serve as a local probe to the system. By NMR and STM experiments one can scan the local

response of system near those point defects; for example such measurements performed on the cuprates

shows that near a non-magnetic impurity the staggered magnetization enhances locally. Similarly a

single spinless impurity in an one dimensional S = 1 antiferromagnet induces staggered magnetization

locally. The decay of the staggered magnetization from the impurity gives valuable information about

the spin correlations in the ground state of the pure system and manifests the presence of a finite

spin-gap (Haldane gap).

With this brief overview of the few areas relevant to the following discussion of this thesis, we

motivate the need to study disorder in low dimensional many body quantum system.
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2.1 Modeling disorder in correlated many body quantum system

The most general yet simple model of many electron system to capture the physics of both Anderson

transition and Mott transition is the single band Hubbard model:

H =


ij,σ
tij(c

†
i,σcj,σ + h.c.) +

U

2



i,σ

(n2
i,σ − 1) +



i

Vini. (2.1)

This model is defined on a lattice where every site is occupied by an atom and the atomic orbital of

neighboring sites can overlap (the simplest case) to allow conduction of electrons in the outermost

shell of each atom. Electrons are allowed to hop from one atomic orbital to another atomic orbital by

obeying Pauli exclusion principle such that at the atomic orbital of each atom there can be either no

electron or one electron or two electrons of opposite spins at a time.

The single-band assumption is related to the fact that only one band per atomic orbital is consid-

ered; it is a good enough approximation to capture most of the phenomenology. The first term of the

model is a kinetic term describing hopping of electrons between the atomic orbitals located between

sites i and j. In the Hamiltonian written in second quantization language the creation operator c†i,σ rep-

resent creation of an electron at site i, with σ spin-1/2 eigenstate. The hopping probability amplitude

tij in first quantized notation between sites i and j is given by,

tij =


drψi(r)


Δ2

2m
+ Uion


ψj(r). (2.2)

In this equation ψi(r) represents the orbital wavefunction at site i and Uion is the periodic potential

created by the lattice; the bandwidth( denoted by D) in the model is dependent on the Uion part of

this term. The operator ni(=


σ ni,σ) represents the fermion number operator at each site. Thus the

second term is the term representing two electrons with different spins (by Pauli exclusion principle)

occupying same site with effective Coulomb interaction energy U . In first quantization notation it is

given by

U =


dr1dr2|φi(r1)|2

e2

|r1 − r2|
|φi(r1)|2, (2.3)

where we are ignoring the long range Coulomb interaction. The third term in the model denotes a

random on site potential Vi at site i, which can be physically attributed to the presence of random site

impurities.

This simple model turned out to be a very successful model to capture the phenomenology of

Mott insulators. It shows different phases depending on the relative values of tij , Uion, D and U . In

one dimension for arbitrary filling this problem is exactly solvable by Bethe ansatz [14]. But in two

dimensions, no exact solutions is known so far. We will describe two limiting cases for which we will

discuss the theoretical approaches to the problem.

In a many body system the possibilities exist that U > 0 (coulomb repulsion between like charged

electrons), U < 0 (effective attraction can be mediated by electron-phonon interaction as in supercon-

ducting phase), U = 0 (uncorrelated free electron system, can be metal,band insulator, semiconductor,

semi-metal etc. depending on the filling factor). Depending on various values of the ratio U/D one can
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expect other various kind of possibilities. Here, we focus on disorder effect in those specific situations,

all of which are deep in the Mott insulating regime t << U . However, we will see that the low energy

properties of one of them (chapter 4) is essentially determined by the physics of free fermions with a

certain kind of disorder (chapter 3).

2.2 Disorder in U << tij limit

First consider the limit U → 0 in which the disordered Hubbard model reduces to

H =


ij,σ
tiσ,jσ′(c†i,σcj,σ′ + h.c.) +



i

Vini. (2.4)

In absence of any disorder i.e. Vi = V and tiσ,jσ′ = t, this model is the well known single particle

tight binding model. For convenience of the rest of the discussion we can write this Hamiltonian in a

matrix form as

H = C
†
AHA,BCB. (2.5)

The subscripts A ≡ (i,σ), B ≡ (j,σ). The vectors CA = ci,σ and CB = cj,σ. And the matrix

HA,B = tiσ,jσ′ + Viδiσ, jσ
′. Depending on the constraints imposed on symmetry properties on this

first quantized Hamiltonian matrix H, the model captures the behavior of a wide class of physical

system. As mentioned in 2.1 in this U → 0 limit one can explain metal, semiconductor and band-

insulators etc. The model in Eq. (2.4) is a very general one where the only condition imposed on the

Hamiltonian matrix H is that it has to be hermitian. Apart from that when special symmetry properties

are imposed on this general model, it faithfully captures the physics of disordered graphene, topological

insulators, quasiparticles in dirty superconductors etc. As a specific example consider Graphene, which

is described by an Hamiltonian HA,B with bipartite structure, particle-hole symmetry, time-reversal

symmetry and sublattice symmetry.

2.2.1 Symmetry classification in single particle random Hamiltonians

An important quantity characterizing the randomness in a quantum mechanical Hamiltonian is the

density of states. To see why knowing the density of states is important consider the general spectrum

from an ensemble of random valued matrices HA,B . In most general case, one can think that the

spectrum of this ensemble will consist of closed disjoint intervals (called bands); also there can be

open intervals between two such bands (called gaps). Now consider at the energies near the band edges

i.e. eigenstates near the boundary of band energies; for the spectrum to have such eigenstates there has

to be large regions in the system where all the hopping and on site potential is of same energy (near

lower or upper band edge). For a random valued distribution to have all same values near the minima

or maxima is of extremely low probability (dubbed as a rare fluctuation event) and can be shown to be

exponentially suppressed, this is known as Lifshitz tails [53] of the spectrum. The characterization the

spectrum with this kind of rare fluctuations at band edges or band center or divergence at band center

can be done conveniently by looking at the density of states, often it is more convenient to get spectral
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information uniquely from the integrated density of states given the fact it is a monotonic function with

energy of the system.

Considering the physical reasons it is also interesting to understand the behavior of density of states

in random Hamiltonians. As in non-interacting electronic system it determines the measurable ther-

modynamic quantities like specific heat, susceptibility. So while characterizing the properties of dis-

ordered systems described by single particle Hamiltonian, the low energy density of states for such

systems are often studied. As an example of such systems with different symmetries, consider the

BdG equations for spinless and spin-singlet paired superconducting systems; the quasiparticle excita-

tions in the former is described a single particle Hamiltonian which is charge conjugation symmetric

whereas for the later case the same is described by a charge conjugation antisymmetric Hamiltonian.

Observations for density of states in dirty systems with such different symmetries were put together

by Atland and Zirnbauer [54] to show that there only 10 different universal classes of random single

particle Hamiltonians (breaks all those symmetries which commute with the Hamiltonian e.g. transla-

tional, rotational symmetry) are possible. Those 10-classes are characterized by more-internal discrete

symmetries which anticommutes with the Hamiltonian e.g. time-reversal, particle-hole and chirality.

Without going into the entire details of that classification we will discuss the universal character of

density of states in some of the universality classes of the random single particle Hamiltonians relevant

to our work in this thesis.

General single particle system with random-bond disorder The most general class of this 10-fold

classification is the famous Anderson localization class, occurring in a general Hamiltonian which

doesn’t posses any of the time-reversal, particle-hole or chiral symmetry. Thus HA,B for that Hamil-

tonian is represented by a hermitian matrix. Conventionally disorder is introduced in this Hamiltonian

by drawing the entries of the matrix HA,B from a random valued distribution, and the disorder strength

is increased when the distribution is broader. For such kind of disorder in this Hamiltonian the den-

sity of states shows an exponentially suppressed Lifshitz tail at the band edge. Such tails are present

in the spectrum irrespective of the fact whether the Hamiltonian is gapped or gapless. This class of

Hamiltonians shows very different behavior with randomness in different dimensions.

Particle-hole symmetric single particle system with random bond disorder Now consider the

class of random Hamiltonians which is particle-hole symmetric, for such class of Hamiltonians the

spectrum is symmetric with respect to zero energy and even in the presence of randomization this

special zero energy point is protected which leads to different universal behavior from the previous

case. When this Hamiltonian is realized on a bipartite graph in addition to particle-hole symmetry it

also possesses chiral symmetry. That kind of Hamiltonians with random bond disorder was analyzed

by Motrunich et al. [39] and from their work it in known that the density of states is singular near

the special zero energy (E = 0) point, thus randomization generates lots of states near E = 0. It

was observed that random bond disorder in particle-hole symmetric hopping problem has universal
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behavior in the functional form of density of states at low energy depending on the Hamiltonian being

gapped or gapless [39, 40]. For bipartite random hopping problem (BPRH) in two dimension at the

strong disorder limit, the predictions are following:

In the gapless or delocalized phase the density of states ρ(E) (E being the energy) will have the

functional form

ρ(E) ∼ 1

E
e−c|lnE| 1x . (2.6)

Where x = 3/2 and c is a constant whose values depends on the disorder concentration and type

of disorder. This delocalized phase is knowns as a critical Gade [40] phase as such a behavior of

density of states was predicted by Gade by analyzing 2-dimensional Dirac equation with random mass

and random vector potential. The mechanism of generating a large number of low energy states near

E = 0 with such stretched exponential kind of divergences in density of states can be modeled as

the states occurring near the extrema of a 2D random Gaussian surface. But as is evident here, these

states are not like the rare fluctuations described before; instead they are the usual fluctuations in a 2D

random Gaussian surface with the property that disorder strength (width of the random distribution)

renormalizes with the length scale of the problem.

In the gapped or localized phase the density of states shows the form,

ρ(E) ∼ E−1+d/z, (2.7)

with a variable dynamical exponent z at dimension d (d = 2 here). This form is known as Griffiths [41]

form as it is same as that obtained from the Griffith’s effect in disordered quantum system. The gapless

or delocalized phase discussed above can be derived to the gapped or localized phase by making some

special bonds that produce a complete dimer cover of the lattice, stronger than the rest. To visualize

this consider hopping problem on a bipartite honeycomb lattice and to get the gapped phase in this

lattice one can make the bonds along the y direction of the honeycomb lattice stronger than others, so

those are the special bonds in this case. The power-law contributions to the low-energy DOS in such

bipartite gapped phases comes from the low-energy states associated with the end-points of the quasi

one dimensional strings along which the background dimer pattern is broken. When such a situation

occurs often, the density of states shows the Griffiths form.

However the characterization of this this delocalization-localization (or can be said metal-insulator)

transition in two dimension is not completely well understood in the literature. It is believed that the

“Gade” phase is a signature of criticality in this phase transition. In contrast in one dimension and

quasi-one dimension there is a simple picture where the system goes from one localized phase to

another via a critical point with divergent z. In the critical point the low energy density of states takes

the so called “Dyson” form given by

ρ(E) ∼ 1

E[log[1/E]]1+x
, (2.8)

with x ∼ 2. This form is known as Dyson form as such a form for a disordered linear chain was

predicted by Dyson [55] many years ago.
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Particle-hole symmetric single particle system with random dilution In the studies of system

certainly another different kind of random disorder can be considered i.e. instead of taking the elements

of the matrix HA,B = tiσ,jσ′ + Viδiσ, jσ
′ from a random valued distribution one can simply delete

bond hopping parameters at random locations; which is physically equivalent to knocking of atoms

from random locations in the lattice. In other words here this is equivalent to putting zero’s in randomly

selected entries of the matrix H, while maintaining the particle-hole symmetry and bipartite structure

(or chiral symmetry) of the Hamiltonian. The discussions in the previous case of random disorder

doesn’t obviously apply here to intuitively guess the behavior of density of states near zero energy

of random dilution problem, as random dilution is a much more abrupt way of introducing disorder

which changes the spatial structure and symmetries of the lattice. What happens to the density of states

near E = 0 for this class of Hamiltonian( One can name this class as bipartite random dilution class or

BPRD class) in 2D is the main question we tried to answer in the chapter 3 of this thesis. Other relevant

open issues related to this questions can be, characterizing the nature of localization to delocalization

phase transition in presence of random site dilution and providing a physical picture to the density

of states behavior near the band center in both of the phases. In this thesis we provide a complete

characterization of the functional form of density of states near the band center at both localized and

delocalized phases. We also tried to give a partial understanding to the origin of such states. In addition

we tried to understand the nature of the transition mentioned before.

The behavior of density of states near zero energy for this kind of disorder in the gapped phase of

free-fermion hopping problem on a honeycomb lattice was analyzed previously by Willans et al. They

have shown that density of states in that case follows the Dyson form,

ρ(E) ∼ 1

E[log[1/E]]1+x
, (2.9)

with x ∼ 0.7. Over a limited dynamical range in energy, this result is different from that of the gapped

case behavior in the previously discussed random-disorder problem. This poses a puzzle since on

general universality grounds one might expect Griffith’s behavior. This puzzle is resolved in chapter 3

where we show that Eq. 2.9 represents a crossover and the true low energy DOS is indeed of Griffith’s

form in the gapped phase. In addition we also study the delocalization phase and compare our results

as the Gade form of DOS. However from our work we conclude that for random site dilution in free

fermion hopping problem on honeycomb lattice, Motrunich et al’s [39] prediction for the functional

form of density of states holds true in asymptotically low energy limit at both gapped (Eq. 2.7) and

gapless phases (Eq. 2.6). We leave further discussion on the details of this work and our understanding

of the issues discussed above for chapter 3 of the thesis.

2.3 Disorder in U >> tij limit

In the U → ∞ limit the energy cost for a electron hopping from one atomic orbital to another atomic

orbital is very high, thus there is no charge transport across the system; this describes a Mott insulating
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state. However virtual hopping of electrons are still possible due to quantum fluctuations, for which

the spin sector of this system is very much alive and thus in low energy limit the Mott insulating

phase is described by a Heisenberg spin Hamiltonian. The standard way to derive the effective low

energy Hamiltonian is by starting in the atomic limit with a finite U and t = 0, and then perturb that

atomic ground state by turning on a small hopping t. For simplicity consider two sites, for which in

the atomic limit the ground state has four possibilities as one singlet ( 1√
2
(| ↑, ↓ − | ↓, ↑) and three

triplets (| ↑, ↑, | ↓, ↓, 1√
2
(| ↑, ↓+ | ↓, ↑). Now turning on a small hopping t causes virtual hopping

between a singlet and another exited singlet state as follows,

1√
2
(| ↑, ↓ − | ↓, ↑) ⇄ 1√

2
(| ↑↓, 0 − |0, ↓↑) . (2.10)

This is the only allowed virtual process with an energy cost J = 4t2

U , any other process involving

the triplet ground states are not allowed by Pauli exclusion principle. This low energy process can

be captured by a Heisenberg interaction term as (S1.S2) between the two spin states with exchange

interaction J . For N sites similarly the ground state has 2N degenerate spin states and when the

full degenerate perturbation theory is performed with the perturbation parameter t
U , the low energy

effective Hamiltonian of the system with half filling turns out to be

H = J


ij


SiSj −

1

4


. (2.11)

Away from half filling this Hamiltonian contains a hopping term of the excess electrons or holes,

with the creation/annihilation operators of the relevant Hilbert space. In this thesis we will focus on

understanding effect of impurity doping on the spin Hamiltonian, which will be referred as the spin

sector of Mott insulator.

2.3.1 Impurity doping in Quantum Spin liquid

Quantum Spin liquids (QSL) are known as very interesting low energy states of strongly correlated

matter, where at temperatures lower than the scale of exchange coupling, there is no conventional

magnetic order due to interplay between quantum fluctuation and geometric frustration. Several exper-

imental [6, 7, 8, 9] proposals exist where such a state can be realized. In the chapter 4 of this thesis we

will analyze an exactly solvable SU(2) invariant spin model(known as Yao-Lee model) which has a

ground state realizing an SU(2) invariant spin liquid with spinful Majorana fermion excitation. Such

kind of spin liquid states were previously discussed at mean field level by Biswas et al [10] to model

the phenomenology of EtMe3Sb[Pd(dmit)2]2 [11, 12]. Due to the effect of weak disorder, in that mean

field proposal of SU(2) invariant Majorana QSL state [10] the magnetic susceptibility goes to a con-

stant value at T → 0. Understanding the effect of missing sites or strong disorders in such a state can

be useful as in experimental conditions often samples have such kind of disorder. In the chapter 4 of

this thesis we will focus on studying such kind of disorders in the exact spin liquid ground state of the

Yao-Lee model, and this gives one motivation behind that study; the other motivation is described in

2.3.2.
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2.3.2 Impurity doping driven metal-insulator transition in a Mott insulator

A very interesting phenomena to understand in the correlated system is the interplay between Mott

and Anderson localization. Real systems where this kind of physics is realized is the doped semicon-

ductors like Phosphorus or Boron doped silicon ( Si:P and Si:B, [56]). Experiments on such doped

semiconductors shows very unique behavior due to the competition between disorder and interaction.

For example in the zero temperature limit the magnetic susceptibility behaves like a power law as

χ(T → 0) ∼ 1

Tα
, (2.12)

with 0 < α < 1 in both metal and insulator phases. Also the behavior of magnetic susceptibility is

smooth across the metal insulator transition which was believed to be a second order transition. This

phenomenon suggested that the anomalous behavior in the magnetic properties might be due to the spin

sector of Mott insulators. The specific heat measurements also manifests similar anomalous behavior

and similar singularities as that of the magnetic susceptibility, indicating a divergence in the number of

states at low energy.

The power law divergence observed in both magnetic susceptibility and specific heat measurements

can be understood from a model of disordered quantum antiferromagnet with the Hamiltonian

H =


ij
JijSi.Sj , (2.13)

with all Jij > 0. Using real space renormalization group analysis Ma-Dasgupta-Hu [42] and Fisher [43]

have previously shown that in one dimension this model has a stable phase at low energy, in which each

spin is paired with one other spin that may be very far away (dubbed as “random-singlet” phase). Such

a phase was observed for Jij being drawn from a Gaussian distribution and in the strong disorder limit.

This random singlet phase has a diverging low temperature susceptibility due to the presence of a large

density of the form

χ(T ) ∼ 1

T
h(log(1/T )). (2.14)

Where h is some decreasing function of its argument that makes this density of states integrable. This

prediction was confirmed by experiments on one dimensional random bond spin chains [57].

However such exact RG calculation turned out to be difficult in higher dimension; for such systems

Bhatt-Lee [44] have developed an approximate numerical RG technique and studied this model by

assuming Jij as an exponential function of the distance between the two positions of donor atoms. In

two-dimension it was shown that susceptibility is of the form χ(T ) ∼ 1/Tα (with α < 1 depending

on the doping concentration). In three-dimension it was shown that the insulating phase has no long

range magnetic ordering and the susceptibility diverges with a weaker form than in two-dimension. On

the other hand the metallic phase of Si:P cannot be explained by Bhatt-Lee scenario with such itinerant

electrons and local spin moments. In that side the specific heat coefficient is much stronger suggesting

a stronger divergence in the number of degrees of freedoms at low temperature.

29



In this thesis we study random site dilution in the SU(2) invariant Yao-Lee spin model [13](Eq.

4.2), defined on a brickwall lattice (topologically equivalent to honeycomb lattice). This model has a

quantum spin liquid(QSL) ground state with gapped or gapless spinfull fermionic excitation in presence

of time-reversal symmetry, as mentioned in the 2.3.1.

The model is exactly solvable by mapping it into a free lattice gas of Majorana fermions on a

brickwall lattice in the background of a static Z2 gauge field. The random dilution in the spin model can

be shown to be random site dilution of the fermion hopping problem, and the magnetic susceptibility

of the spin model gets mapped to the compressibility of the free-fermion hopping problem. In chapter

4 of this thesis we will discuss the details of this mapping and show that because of this connection the

results obtained in the BPRH problem discussed before can be directly used to calculate the behavior

of the magnetic susceptibility in both gapped and gapless phase of the spin model. This connection

allows one to know the true low behavior of the spin model by exact solution. Our main result by

this exact solution analysis is following: we found that the magnetic susceptibility behavior in both

gapped and gapless phases of Yao-Lee spin model is same as the random-singlet form (Eq. (2.14)).

Thus it seems that the true low temperature phase of the randomly diluted SU(2) spin model with

a Majorana spin liquid ground state, defined on a two dimensional bipartite lattice has a phase with

random singlet like susceptibility in both the metallic and insulator side. However since we do not

know the exact transition point of this metal insulator transition we cannot make a clear statement

whether this random singlet behavior persists deep in the metallic phase. In chapter 4 of this thesis we

will provide our detailed analysis and conclusions about this problem.

2.3.3 Non-magnetic impurity doped 2D Heisenberg antiferromagnet

One of the most well studied Mott insulating compound is La2CuO4 which realizes a two-dimensional

(2D) quantum (spin-1/2) antiferromagnet. Apart from disorder effects mentioned in the previous sec-

tions, non-magnetic impurity doping in such compounds shows another class of phenomena. By con-

trolled doping [2] with randomly distributed non magnetic impurities(Zn or Mg) on the copper-oxygen

planes of La2CuO4, this system goes through a percolation transition which was studied via neutron

scattering and NMR tools. Those studied shows the system La2Cu1−z(Zn,Mg)zO4, is well described

by the Hamiltonian

H = J


ij

pipjSiSj . (2.15)

Where the sum is over nearest-neighbor (NN) sites, J is the antiferromagnetic Cu-O-Cu superex-

change, S is the S = 1/2 operator at site i, pi = 1 on magnetic sites, and pi = 0 on nonmagnetic sites.

The long range antiferromagnetic order survives even at the percolation threshold of doping atoms at

which point the largest connected cluster of copper atoms could be considered as weakly connected.

With a little doping at the percolation threshold (known to be p∗ ∼ 0.40725), the long range order dis-

appears as that macroscopically large connected cluster can break into small isolated finite size clusters

as in Figure 2.1. In those finite size clusters the system can be in both singlet or doublet ground state,

and so it is important to understand the ground state properties of such system.
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Figure 2.1: Schematic of finite-sized sections of the infinite square lattice with random site dilution

levels well below (p∗ ∼ 0.31), just below (p∗ ∼ 0.407), and above (p∗ ∼ 0.45) the percolation

threshold p∗ ∼ 0.40725. The inset is a close-up view for p∗ ∼ 0.407, showing the role that magnetic

Cu and nonmagnetic Zn/Mg ions play in the experimental system. Figure taken from [2].

Studying finite size systems is also interesting from the computational point of view, as computa-

tional studies are inescapably limited to finite size systems. To obtain information about the system in

the thermodynamic limit one needs to know how the physical quantities of interest are dependent on

the size of the system and the thermodynamic limit extrapolation of the same[26, 27] . For example,

consider S = 1/2 SLHAF defined on a rectangular region of a two-dimensional lattice, where the sides

of the rectangle are Lx (Ly) in the x (y) direction in lattice units and periodic boundary conditions are

imposed in both directions. The antiferromagnetic order parameter is defined as the singlet ground

state average of square of staggered magnetization. It is is given by:

m2
0 =

1

Ntot



rr′

ηrηr′ Sr · S
r
′ 0, (2.16)

here Ntot ≡ LxLy. Here ηr is +1 when r ∈ A-sublattice, −1 when r ∈ B-sublattice on a bipar-

tite graph and 0 and subscript 0 denotes expectation values over the singlet ground state. Usually

numerical studies[28, 29] of the finite size properties of the system are done by taking a sequence of

Lx × Ly systems, keeping both Lx and Ly even and imposing periodic boundary conditions(PBC) in

both directions. From the analytical side, the form of finite size dependence of m2 and the leading

effects on low energy spectrum, are derived with even Lx, Ly and PBC[26]. Some numerical studies

[27] use “cylindrical” samples with PBC in one direction and pinning fields on one pair of edges to

keep the spins fixed on the boundaries, focusing on the dependence of ground state properties on the

aspect ratio Ly/Lx in various lattices.

The common thing about all those approaches is that they focus on systems with an even number

of spin-half moments(Ntot). According to the Lieb-Mattis theorem the ground state of such a system
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is a singlet [30] with Stot = 0. Certainly there can be another kind of finite size cluster with a very

different ground state i.e. SLHAF on an L×L square lattice with odd L and open boundary condition

imposed in both of the directions. According to Lieb-Mattis[30] theorem such a system should have

a doublet ground state with total spin Stot = 1/2. A measure of antiferromagnetic ordering in such a

system could be staggered component of this ground state spin texture (defined as Φz(r) ≡ Sz
r ↑),

nz
↑ =

1

Ntot



r

ηrSz
r
↑. (2.17)

Where . . . ↑ and subscript ↑ denotes expectation values calculated in the Sz
tot = +1/2 sector of

the doublet ground state(ηr = +1 on the A sublattice and −1 on the B sublattice). The quantities

nz
↑, calculated in a particular sector of the doublet ground state and m0,calculated in singlet ground

state are different ways of measuring antiferromagnetic order in ground states of different nature. The

functional dependence of nz
↑ on m0 is a property of the spontaneously broken SU(2) symmetry of

the Néel state in the thermodynamic limit. It might be possible to describe the low energy physics

of SLHAF in doublet ground state by some effective theory with a local term to capture the open

boundary, where the effective field theory parameters1 can be extracted from the knowledge of the

microscopic Hamiltonian. Such an effective field theory description is not available since it is not

clear what kind of local terms will capture the effect of open boundaries and how to project out the

Stot = +1/2 sector of the ground state in the field theory description.

The facts known about the functional dependence of nz
↑ and m0 from numerical experiments is that,

there exists universal relationship between nz
↑ and m0 in the thermodynamic limit [17]. By universality

we mean that the relation is a low energy property of the antiferromagnetic phase and doesn’t depend

on the microscopic details of the Hamiltonian. We confirm this by studying several deformations

of Heisenberg antiferromagnet on a square lattice and by noting that for all the deformations, the

functional dependence of nz
↑ on m0 remains the same in the antiferromagnetic phase. An approximate

analytical understanding of the relationship between nz
↑ and m0 will be the topic of detailed discussion

in chapter 5.

2.3.4 Single non-magnetic impurity in one dimensional antiferromagnet

As mentioned before the in one dimension the spin sector of Mott insulating Hubbard model is the

playground of many analytical and numerical methods. Additionally one dimensional Heisenberg

1The effective, long-distance/time and zero temperature description of 2D Heisenberg model is given by non linear sigma

model(NLSM). Such effective low-energy/momentum description of the system is completely determined by two ground

state parameters i.e. spinwave velocity c, spin stiffness constant ρs. The values of those two parameters have to be deter-

mined from the microscopic Hamiltonian. The partition function looks like, Z =
�
Dn̂(x, τ)δ(n̂2 − 1)exp[−SB − Sn̂]

, where SB is the Berry phase term and it is not important in the present context. For d-dimensional antiferromagnets

Sn̂ =
�
dτddx[χ⊥

2
(
−→
▽n̂)2 + ρs

2
(∂τ n̂)

2] and c2 = ρs
χ⊥

. One can choose c = 1 to set the scale and that leaves only one free

parameter ρs. Hence all the physical quantities should be a function of ρs. Like the antiferromagnetic order parameter m2
0(Eq.

2.16) can be calculated from this NLSM description as a function of ρs and can be fitted with the experimental/numerical

results of m2
0 to obtain the value of ρs for a particular microscopic system.
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antiferromangeic chain (1DHAFC) is successful in describing the static and dynamic properties of

several Mott insulating magnetic materials[58, 59, 60]. Studying the effect of non-magnetic impurity

in 1DHAFC is very interesting as such a defect can be doped controllably in an experiment to modify

magnetic properties of the ground state and excited states of such systems.

From the experimental side spin chains can be realized in chemical compounds which have a highly

anisotropic coupling between magnetic ions due to their inherent lattice structure, such that the cou-

pling is significantly stronger in one direction. Such examples of effective 1D spin 1/2 chains are

the compounds Sr2CuO3[58], KCuF3 [59]. Typically a non-magnetic impurity impurity is doped in

such samples by doping Pd in the Cu sites. As it is easy to see that presence of such non-magnetic

impurities (at any amount, like even a single impurity) in one dimensional spin chain breaks the system

into disconnected finite size segments and introduces extra booundaries or edges in the system. The

magnetic response of such system constitutes a finite size “bulk” effect due to the finite sizer segments

and a boundary effect leading to an alternating local magnetization near the edges. These effects can be

calculated theoretically as well as observed in experiments, giving an understanding of the spin texture

modification due to impurities.

Even though for S − 1/2 1DHAFC, the thermodynamic properties can be exactly calculated in

the ground state using Bethe Ansatz[14], such calculations are often too complicated to be useful

in calculating correlation functions[15]. An alternative route to study this kind of problems is the

bosonization approach, which is asymptotically exact in the limit of low energies and long wavelengths.

With this tool it is possible to fully determine the system’s zero temperature critical behavior. Using

bosonization techniques S = 1/2 1DHAFC can be mapped to a 1 + 1 dimensional bosonic field

theory with a ‘sine-Gordon’ action, which has a scale invariant free-field part perturbed by a non-linear

cosine interaction[16]. The renormalization group (RG) analysis of the cosine interaction turns out to

be an example of the treatment of ‘marginally irrelevant’ interactions in the neighborhood of a well-

characterized scale free RG fixed point. It was shown by Eggert, Affleck and Takahashi[61] that the

corrections due to the leading marginally irrelevant operator of the RG, leads to an logarithmically

divergence in the finite temperature susceptibility as the system approaches the zero temperature. The

results of this calculation was used to fit the susceptibility data and extract the effective exchange

coupling constant J for Sr2CuO3 [58].

In chapter 6 of the thesis, we focus on marginally irrelevant interactions that can give rise to viola-

tions of scaling predictions at critical points due to the presence of logarithmic corrections that multiply

the scaling predictions. The physics of the multiplicative correction for a marginal operator is quite

general and applicable in other models like the textbook example of φ4 theory. The importance of

studying the same physics in the context of S−1/2 chain is that we can access the system by a number

of numerical and exact methods. So it represents an ideal testing ground for this important result.

Another interesting example of similar multiplicative logarithmic violations of scaling have been
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argued to exist[62, 17] at the critical point of a continuous quantum phase transition[18, 3] between

the usual Néel ordered antiferromagnetic ground state and a spontaneously dimerized non-magnetic

state with valence-bond order in a two dimensional S = 1/2 SLHAF. The underlying field theory[18]

proposed for this transition predicts a second order critical point between Néel and VBS phases. Some

of the numerical works to verify these field theory predictions support[3, 19] the generic continuous

nature of this Néel-VBS transition. However, some numerical studies[19, 62, 20] find a deviation from

this prediction about continuous nature. Numerical experiments[62, 20] focusing on bulk correlation

functions in microscopic models, where Néel to VBS order transition is driven by the competition

between multi-spin interaction and two spin exchange interaction, found a multiplicative logarithmic

correction to the scaling prediction. In another work[17] which focuses on the impurity spin texture

induced by a missing-spin defect on similar microscopic models, also reach to the same conclusion.

The interpretation of this violation of scaling predictions as logarithmic corrections is not yet resolved

as some other studies[21, 22] interpret the violation as a weak first order phase transition. From the

current set of numerical experiments it is hard to resolve which one of the above scenarios is true.

However in chapter 6 of the thesis, our main goal is to understand the origin of similar multiplicative

logarithmic corrections by studying the Néel ordered phase of an analytically and numerically tractable

model in 1D. As a probe of the critical properties we use the missing site “impurity” induced spin

texture in vicinity of the defect. On the analytical side, we work within the bosonization framework and

use renormalization group (RG) improved perturbation theory to obtain predictions for the alternating

part of the spin texture in this example. These predictions are compared with Quantum Monte-Carlo

(QMC) data[1] for a one-dimensional chain with nearest neighbor Heisenberg exchange J and six-spin

coupling Q = 4qJ ; for q < qc(in the Néel phase). We found a good agreement between the numerical

data and our analytical results where we note that the strength of the log corrections is larger for q

further away from the critical point, and vanishes for q = qc, consistent with the bosonized field theory

results.
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Chapter 3

Random site dilution in particle-hole

symmetric non-interacting fermionic

system

In this chapter, we will discuss the details of our work on random dilution in bipartite fermion hopping

Hamiltonian. In the introduction we have outlined our goal of this work as characterizing the behavior

of density of states near zero energy for a randomly diluted fermion hopping problem defined on a bi-

partite graph with particle-hole symmetry. With this motivation in mind we will outline the plan of this

chapter as follows: in section 3.1 we describe the model Hamiltonian and our scheme of introducing

random dilution. Followed by that in section 3.2 we will describe the symmetries of the problem. In

section 3.3 we will discuss a folk theorem known about the ground state of the BPRH Hamiltonian

with site dilution and we will also discuss our scheme to implement those theorems in our search of

the ground state. In section 3.4 we will discuss the results and in section 3.5 we discuss few possible

direction of future research.

3.1 Models

The bipartite random hopping/dilution model is nothing but the simple tight binding model defined on

a bipartite graph, with only nearest neighbor hopping. The Hamiltonian is given by ,

H =


ij
MijC

†
iCj ≡


c†iAc

†
iB


0 tij

−t†ij 0

  cjA
cjB


(3.1)

where tij can take any non zero value but only if i ∈ A-sublattice and j ∈ B-sublattice, otherwise

it is zero. Also the condition M = M
† has to be satisfied as because of Hermiticity . The model is

defined on a two-dimensional brickwall graph (Fig. 3.2), which is topologically same as the familiar

honeycomb lattice. We consider the simplest case i.e. tij is non zero only when i and j are indices of

nearest neighbor sites; otherwise tij is uniform i.e. tij = t, we set the energy scale by putting tij = 1.
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This simple model has a gapped and gapless phase. From Fig. 3.2 one can see that every lattice

point has three bonds along which we can name the hopping parameter as tx, ty, tz; we choose the

tz in the horizontal direction and tx, ty in the vertical up and down direction respectively. When

tx=ty=tz=t the model is gapless and when tz > tx + ty (and all permutations) it is gapped. We go

from gapless to gapped phase by tuning a parameter as α = tz/tx while keeping tx = ty. By the above

condition α = 1 is the isotropic gapless point and as α is increased beyond 2 the model goes from

gapless to gapped phase.

The random disorder in this model for BPRH (bipartite random hopping) class is introduced by

drawing the values of tij from some random valued distribution. Here we are interested in BPRD

(bipartite random dilution) class, for which we keep the all tij values fixed and randomly select a

nearest neighbor pair ij to put tij = 0.

3.2 Symmetry properties of BPRH Hamiltonian

The bipartite random hopping Hamiltonian in 3.1 has three important symmetries, namely particle-hole

symmetry, time-reversal symmetry and sublattice-symmetry. The particle-hole symmetry transforma-

tion leaves the Hamiltonian invariant under the following operation: dj → (−1)jc†j , d
†
j → (−1)jcj ,

here we dropped the sublattice index from the creation/annihilation operators: when j is even it is

A-sublattice, otherwise it is B-sublattice. With this transformation applied on 3.1, the particle-hole

symmetric Hamiltonian, the eigenvalues come in ±ǫµ pairs.

Since we are interested about the spectrum of this Hamiltonian matrix, just knowing one half of the

eigenvalues ǫµ is enough as the other is half is just −ǫµ. Thus we note that it is advantageous to study

the square of hopping matrix M
2 (=


tijt

†
ij 0

0 −t†ijtij


) instead of the hopping matrix M (=


0 tij

−t†ij 0


) .

For bipartite lattices in M
2 the two sublattices are decoupled with same absolute values of eigenvalues

(differing in sign), that reduces the size of the matrix to be considered to half of the original. Moreover,

for very small numbers the M
2 is more numerically stable.

3.3 Ground state properties of the free fermion problem

3.3.1 Ground state flux configuration

For a half-filled band of electrons hopping on a planar, bipartite graph Lieb’s theorem puts a constraint

on the magnetic flux confinement in each closed loop which minimizes the ground state energy. To

state the theorem let’s first define several notations as follows: For a generic fermion hopping problem

on a lattice the hopping amplitude tij between sites i and j is a complex variable and can be generally

written as tij = |tij |exp(iγij) with γij = γij due to Hermiticity. In zero temperature this theorem

imposes a condition of the fluxes γij which minimizes the total ground state energy. The condition

is on the “magnetic flux” enclosed in a plaquette, defined as the quantity


ij,i,j∈loop γij . With this
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definition, the theorem states that the “magnetic flux” enclosed by a loop of size 4m is π, whereas the

magnetic flux enclosing by a plaquette of size 4m + 2 is 0(where m is an integer). The theorem was

proved by Lieb [49] only for bipartite graphs which has a plane of reflection not overlapping with any

nodes. When sites are removed in random locations (Fig. 3.2) that symmetry doesn’t exist anymore.

However Willans et. al.[38] have shown with the aid of perturbative and numerical calculation that the

same plaquette flux configuration minimizes the energy even in the absence of those symmetries.

So in our calculation of the ground state density of state we use the same flux configuration which

minimizes the ground state energy. Next we will discuss a convenient scheme for our specific problem

to put in fluxes for each defective plaquette such that we always stay in the flux sector that conforms

to expectations from Lieb (we’ve checked that this configuration has lower energy compared to other

configurations even in the multi-impurity case).

Pure system To start with, in the pure sample on a brickwall lattice(topologically equivalent to

the honeycomb lattice) with periodic boundary condition in both direction, the ground state is the one

with zero flux in every closed hexagonal loop. One needs to be a little careful about the choice of

boundary conditions here. To satisfy Lieb’s theorem on a brickwall lattice, if one takes 2p(p is an

integer) unit cells in the closed direction, the boundary condition have to be antiperiodic. To see this

, look at the Fig. 3.2: there are 4 bonds in each unit cell, so for a closed loop with 2p unit cells

there will be a loop of size 8p, which must enclose a flux π. Similarly for 2p + 1 unit cells the

choice of boundary condition must be periodic. Our calculations are all done with semi-open boundary

conditions (for reasons explained in next subsection), for which we carefully implement the correct

boundary condition in the closed direction for the pure system and check that this gives the lowest

energy state.

System with defect When one site is deleted from a pure brickwall lattice, in joins three consec-

utive hexagonal loops to a bigger loop of size 12. We call such closed loops as defective plaquettes.

Infact any closed loop made of more than 6 edges(except the boundary loops) can be called defect

plaquettes. So for a system with multiple vacancies randomly located, it is possible to have all kinds of

closed loops which needs to carry the correct fluxes. In addition the flux binding by a vacancy causes

a flux string as it leaves a flux in the attaching hexagonal plaquette to the defective plaquette. Such a

string can terminate in another such vacancy or to the open boundary.

We came up with a simple way to conveniently put such fluxes in the defective plaquettes, such that

the ground state is always is minimum energy flux configuration. In our way we use open boundaries

in y-direction and periodic (or antiperiodic depending on the number of unit cells) boundaries in the

x-direction. For every impurity we start a flux string and take it to the open boundaries by flipping

sign of a bond parallel to the the open boundary. If another impurity falls on the way of that flux

string we simply flip the sign of bonds under the same scheme towards the open boundary. As a result

the horizontal bonds to the open boundary, which are after the second vacancy gets double flipped in
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Figure 3.1: A sample with 72 sites and 4 vacancies on each of A and B-sublattice. Antiperiodic

boundary condition in X-direction and open boundary condition in X-direction. We demonstrate the

flux configuration consistent with Lieb’s condition which is made by our ground state flux generator.

Here sites are represented as black dots. An impurity is shown as a site with deleted bonds. The red

bonds are the one with real hopping amplitude +1, the blue bonds are the one which have real hopping

amplitude −1. Note that we flip one bond at the boundary usually the bond which links last unit cell

with the first one(not shown in this picture) to satisfy Lieb’s condition as discussed in the main text.
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Figure 3.2: A picture of an unit cell of the brickwall lattice. In this figure the black numbers indicates

site indices, blue numbers are for the bond indices. The red numbers denotes the bond type. For

example take the site with index 0: the 0th neighbor of that site is the site with index 1, the 1st neighbor

is site 2 and the 2nd neighbor is site 1 of another unit cell. Similarly the three bonds attached with the

site 0 are numbered as following: 0th bond is bond number 0, 1st bond is bond number 1 and 2nd bond

is bond number 2. Every bond links between two sites , to index that we take help of the arrows. Every

arrowhead points from a B-sublattice site to an A-sublattice site. So, consider the bond with index 1,

the 0th site connected with that is the site with index 2 and the 1th site connected is 0.

sign and the flux string terminates in the second vacancy. We check that our scheme always correctly

generate the minimum energy flux configuration. As a demonstration in Fig. 3.1 we show a typical

flux configuration in a diluted finite size sample.

3.4 Results

Before discussing the results, we will introduce a few notations and express all quantities in terms of

them for convenience. I instead of energy E we will use the quantity Γ = log(1/E) and instead of

DOS we will plot integrated density of states (IDOS), N(Γ). IDOS, being a monotonic function turns

out to be a better representation of the spectral properties.

3.4.1 Gapped phase

Density of states We calculate the density of states using the methods discussed in Appendix-A. We

observe that the behavior of integrated density of states(IDOS) goes through a crossover at a very low

energy. In the energy range where Willans et. al. [38] studied IDOS, our results match theirs, and fit

the “Dyson” form

N(Γ) ∼ Γ−x (3.2)

with x ∼ 0.8 (Willans et al[38] got a good fit with x ∼ 0.7[38]).
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Figure 3.3: Integrated density of states N(Γ) plotted against Γ(=log(1/E)) for the gapped phase of

Kitaev’s model on a honeycomb lattice with semiopen boundary condition. The parameter values

used here Jx = Jy = 1, Jz = 4(α = Jz/Jx). In this figure we show the results for 5% impurity

concentration, for samples of 51200 sites(L=160 unit cells in either direction) and 64800 sites(L=180

unit cells in either direction), averaged over 1000s of disorder realizations. This plots for size L = 160

and 180 overlaps till a large value of Γ, demonstrating the system size taken will not have finite size

effects, till a large value of Γ(= 100).
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Figure 3.4: Integrated density of states N(Γ) plotted against Γ(=log(1/E)) for the gapped phase of

Kitaev’s model on a honeycomb lattice with semiopen boundary condition. The parameter values

used here Jx = Jy = 1, Jz = 4(α = Jz/Jx). In this figure we show the results for 5% impurity

concentration, for sample of 64800 sites, averaged over 1000s of disorder realizations. The main

plot shows a crossover from “Dyson” form to “Griffiths” or “modified Gade” (difficult to distinguish,

see the figure 3.5 for a closer comparison) form in the behavior of low energy IDOS. Inset shows a

zoomed portion in the higher energy range of the plot, to compare Willan’s et al[38] (WCM) result. For

comparison the inset plot is made for a sample with 3200 sites and 5% impurity concentration , same

as Willans et al[38]. Here we show both log-log(left) and semi-log(right) plots for visual verification,

as Dyson form is a straight line in log-log plot and Griffith’s form is a straight line in semi-log plot.

Here we see the N(Γ) vs Γ plot has a crossover from straight in log-log plot tp straight in semi-log

plot; giving a visual verification of our claim.
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Figure 3.5: Integrated density of states N(Γ) plotted against Γ(=log(1/E)) for the gapped phase of

Kitaev’s model on a honeycomb lattice with semiopen, boundary condition. The parameter values

used here Jx = Jy = 1, Jz = 4(α = Jz/Jx). In this figure we show the results for 5% impurity

concentration, for sample of 64800 sites, averaged over 1000s of disorder realizations. The plot shows

a crossover from “Dyson” form to “Griffiths” or “modified Gade” form in the behavior of low energy

IDOS. This plot demonstrates the fact: it is hard to decide that for high values of Γ, which of the

two forms fits better with the data. The only thing we can say for sure that certainly the IDOS looks

straighter than the “Dyson” form, so indeed there is a transition. The fits made here are within the

range of Γ = 40 to 140. The z value fluctuates when we change the range. For example for the range

of Γ = 25 to 80, z is 76.
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Figure 3.6: Mode of next to lowest non zero energy state plotted against L, for α = 4. As a fit

parameter we used the same values of c for “Gade” form as obtained from the density of states plots.

And same value of z for the “Griffiths” form as obtained from DOS. The range of Γ shown in the plot

indicates the range of Γ used for fitting in the Density of states plot. Here Gd: Modified Gade, and Gr:

Griffith. The fit is made for large length scale above L = 60.

IDOS fits well to the “Dyson” form upto an energy E ∼ 10−20 . At an energy lower than E ∼
10−30 , the behavior of IDOS deviates from “‘Dyson” form as in Figures 3.8 and 3.5 we can see that.

However from the IDOS plots it is almost impossible to say that whether for Γ > 30 the data fits better

to Griffiths form with

N(Γ) ∼ e−
d
z
Γ (3.3)

with a very high value of dynamical exponent (z ∼ 110 when fitted from Γ = 40 to 140), or to

“modified Gade” form with

N(Γ) ∼ Γ1− 1
x e−cΓ

1
x

(3.4)

with x = 3/2.

Lowest gap analysis One can define an energy dependent length scale L(Γ) from the density of states

such that N(Γ) ≡ L−2(Γ), then the “Modified Gade“ form scales as Γ ∼ (logL)3/2 and the Griffith’s

form scales as Γ ∼ logL . To check which scaling behavior works better we look at the scaling

behavior of mode value of lowest non zero gap (Γmax)(over all the samples). However, because of the

presence of zero modes (we discuss details about these modes in the 3.4.4), we look at the scaling of

the next to lowest energy state. We plot Γmax with the sample size(No. of unit cells in a direction,

we call it L, here N = L2) in Fig. 3.7. We show histogram for the distribution of next to lowest
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Figure 3.7: Histogram of next to lowest energy state over 5000 samples, for α = 4

energy state for three representative sizes. And in Fig. 3.6 we show the scaling of the mode of that

distribution. In Fig. 3.6 we can see that clearly ”Griffiths“ form fits better than ”Gade’ form, which is

hard to distinguish from density of states plots.

A special feature in the histogram(Fig. 3.7) to notice is that, below a certain size (L = 100),

the histogram has a single mode and with increase in size the histogram shows a bimodal character.

We presume that such behavior might be a consequence of the the fact that in gapped phase there is

a crossover from “Dyson” form to “Griffiths” form at a certain low energy scale (Γ = 30 − 40), the

change in the number of modes of the histogram beyond a certain length scale (between L = 80−100),

might be reflecting the same crossover behavior.

3.4.2 Gapless phase

We attempt to study the form of the density of states using the same direct calculation scheme described

above. We calculate the integrated density of states in presence of finite number of vacancies upto

very low energy(Emin = 10−55) and large size systems(N = 80000) and contrast our result with the

corresponding results of critical delocalized phase in the bipartite random hopping (BPRH) universality

class[39]. In the delocalized phase the IDOS at low energy follows the ”Gade” form

N(Γ) ∼ Γ1− 1
x e−cΓ

1
x

(3.5)

with x = 3/2(Fig 3.9, dubbed as ”modified Gade” form to contrast with the original ”Gade“[40] form

with exponent 2. In Fig 3.10 we contrast the ”modified Gade“ form with the ”Griffiths“ form and from

that plot we can see clearly the data is a better fit to the ”modified Gade“ form. However in the gapless
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Figure 3.8: Integrated density of states N(Γ) plotted against Γ(=log(1/E)) for the gapped phase of

Kitaev’s model on a honeycomb lattice with semiopen boundary condition. The parameter values

used here Jx = Jy = 1, Jz = 1(α = Jz/Jx). In this figure we show the results for 5% impurity

concentration, for samples of 64800 sites(L=180 unit cells in either direction) and 80000 sites(L=200

unit cells in either direction), averaged over 3000s of disorder realizations. This plots for size L = 180

and 200 overlaps till a large value of Γ, demonstrating the system size taken will not have finite size

effects, till a large value of Γ(= 50).

phase also at the the high energy (smaller Γ) the DOS takes a ”Dyson“ form, but at low energy the the

Dyson form has a crossover to the ”modified Gade“ form 3.4.

Lowest gap analysis The corresponding lowest gap analysis for gapless was done in a similar man-

ner. Here we don’t see any peculiar bimodal character in the histogram and that is probably because

we don’t have a crossover behavior. The gapless phase IDOS is best described by the “modified Gade“

form density of states data. From the scaling behavior of lowest non zero gap we can notice that

whether the gapless phase is best described by ”Griffiths“ form or ”Gade“ form, is hard to decide. Also

it depends a lot on the range of Γ used to fit in the DOS plot. Unfortunately in DOS plot we have clean

data with good statistics only upto Γ = 55.

3.4.3 Tracking the transition

By analyzing the above results one can try to construct the following picture of the delocalization

to localization (or metal-insulator) transition: the gapless phase(α = 1) is a completely delocalized

state, located somewhere near the transition region and is nicely described by the “modified Gade”
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Figure 3.9: Integrated density of states N(Γ) plotted against Γ for the gapless phase of bipartite hop-

ping problem on a brickwall lattice with semiopen boundary condition. The parameter values used

here tx = ty = tz = 1(α = tz/tx). In this figure we show the results for 5% impurity concentration,

of systems with 80000 sites, averaged over 3000s of disorder realizations. Like gapped phase, we also

see here a crossover from ”Dyson“ form in small Γ to a weaker than ”Dyson“ form in large Γ. In

this figure we compare between ”modified Gade” form(x = 3/2) and “Griffiths” form in the large Γ

regime, and the figure above demonstrates that ”modified Gade” form is a better fit to the data.

form at lower energy range. The gapped phase (α = 4) is also located near the transition region from

localized to delocalized phase. As a result one can see the “Dyson” form in the high energy IDOS

as a signature of the critical point, which goes to “Griffiths”/“modified Gade” form as a property of

localized/delocalized phase at lower energy. A schematic diagram of this picture is in Fig 3.13. So if

this picture is true, by tuning the α is should be possible to see that with higher α the IDOS is more

going towards the “Griffiths” form and the lower α is more going towards the “modified Gade” form -

for that exponent “z” of “Griffiths“ form must go higher and higher with increasing value α. To note

here, for pure system the transition point is located at α = 2.

In order to check this picture we did a quick analysis for a smaller size system in Fig. 3.14, 3.15.

And from these figure this picture seems to be true. The supporting evidence for the picture in 3.13 is

not enough with the analysis shown above.

3.4.4 Puzzle with zero modes

In our analysis, we carefully tried to avoid all known reasons of exact zero modes. One important

feature of the bipartite hopping problem is that, it must have “graph zeroes” (zero energy eigenstates

due to the geometry) equal in number to |NA−NB|, where NA (NB) are the number of A(B) sublattice

sites. For each of these, one needs to explicitly keep one Majorana mode. In our calculation, we avoid

such zero modes by choosing NA = NB . Additionally we avoid any edge zero modes by choosing

armchair boundary condition for the honeycomb model. We also carefully avoid any edge zero modes

46



1
0

-5
1
0

-4
1
0

-3
1
0

-2

 10  20  30  40  50

N
(Γ

)

2Γ

L=200 data
Dyson(4:10)

Gade-Wegner, x=3/2(17:45)
Gade-Wegner, x=2(17:45) 

1
0

-5
1
0

-4
1
0

-3
1
0

-2

 10  20  30  40  50

N
(Γ

)

2Γ

L=200 data
Dyson(4:10)

Gade-Wegner, x=3/2(17:45)
Gade-Wegner, x=2(17:45) 

Figure 3.10: Integrated density of states N(Γ) plotted against Γ for the gapless phase of bipartite

hopping problem on a brickwall lattice with semiopen boundary condition. The parameter values used

here tx = ty = tz = 1(α = tz/tx). In this figure we show the results for 5% impurity concentration,

of systems with 80000 sites, averaged over 3000s of disorder realizations. Like gapped phase, we also

see here a crossover from ”Dyson“ form in small Γ to a weaker than ”Dyson“ form in large Γ. In this

figure we compare between ”modified Gade” form(x = 3/2) and “Gade” form(x = 2), and the figure

demonstrates “Gade” is a better fit to the data for small Γ but as we go to the large Γ, namely the low

energy limit modified Gade is a better fit. Thus from figures 3.9 and 3.10 we conclude in the gapless

phase the true low energy behavior of the DOS follows the “modified Gade” form , reminiscent of the

BPRH universality class.
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Figure 3.11: Mode of next to lowest non zero energy state plotted against L, for α = 1. As a fit

parameter we used the same values of c for “Gade” form as obtained from the density of states plots.
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Figure 3.12: Histogram of next to lowest energy state over 5000 samples, for α = 1
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Figure 3.13: Schematic diagram of the conjectured phase transition. For pure system α = 1 is the

gapless phase and α > 2 is the gapped phase. From this Figure one can guess the disordered system

gapped to gapless transition point to be somewhere between α = 2 and 3, provided the conjectured

picture of the phase transition is correct.
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Figure 3.14: Integrated density of states N(Γ) plotted against Γ for various values of α of of bipartite

hopping problem on a brickwall lattice with semiopen boundary conditions. For pure system α = 1 is

the gapless phase and α > 2 is the gapped phase.
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Figure 3.15: Exponent of Griffith’s form 2.7 , by fitting N(Γ) to Γ for various values of α. The trend

in increasing z with α indicates that the system is more into the critical ”Gade“ phase.

due to vacancies sitting on the boundaries of the finite size samples by simply choosing not to put any

vacancies on the boundaries.

Apart from these kind of zero modes, there can be some exact zero modes due to the location of

vacancies on the graph e.g. such modes can occur if their is a disconnected or dangling part in the

lattices. We carefully avoid such cases also in our calculations. This kind of zero modes are entirely

“geometrical“ and has nothing to do with the lattice structure or the phase properties. However in

spite of eliminating all exact zero mode producing configurations of vacancies on the lattice, we find

that in certain realizations of vacancies there are some very low energy modes, which we suspect as

some exact zero modes. Such modes are possibly ”geometric“ in nature, as they do not depend on the

system’s phase properties. In an attempt to understand those zero modes we study the scaling properties

of such zero modes for both α = 4 and α = 1 and note that the probability of a sample having a zero

mode is almost 1 in the thermodynamic limit(Fig. 3.16). Whereas the number of such zero modes per

sample per site also saturates to a constant value in the thermodynamic limit(Fig. 3.16).

As a further attempt to understand the zero modes we have a possible explanation of the origin of

the same from Kasteleyn’s theorem1[63]. We know that the Kasteleyn weighting of a planar bipartite

graph is a choice of sign for each undirected edge with the property that each face with 0mod4 edges

encloses a π flux and each face with 2mod4 edges encloses as ”0“ flux. This condition is same as

1Kasteleyn’s theorem provides provides an way to calculated the number of closed pack dimer covering on any graph.

According to the theorem that number can be evaluated by calculating the Pffaffian of the Kasteleyn’s matrix, which is

nothing but the adjacency matrix of the graph with a weighting scheme known as Kasteleyn’s weight as described in the

main text.
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Figure 3.16: w0 denotes the number of zero modes per sample and f0 denotes the fraction of samples

which have a zero mode. From the scaling of f0 one can see that in thermodynamic limit the probability

of finding a zero mode is almost 1. From the scaling of w0 one can conclude that at thermodynamic

limit the number of zero modes per sample per site almost converges towards a fixed value.
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the Lieb’s theorem [64] which was proven for bipartite graph with certain symmetries. However, with

this Kasteleyn’s weighting prescription one can construct the Kasteleyn’s matrix(same as our hopping

matrix with α = 1) whose Pffaffian gives the number of possible ways of close pack dimer covering

of a graph. So it might be possible to show that in the cases when we encounter a zero mode due to the

presence of disorder, there is no way of finding a closed pack dimer covering of the disordered bipartite

graph.

We show in Fig. 3.17 two configurations of impurity distributions on a small size sample; one of

which has a zero mode and other doesn’t. If we can show the the one with zero modes cannot have a

closed pack dimer covering and in contrast the one without zero mode has a dimer covering, that will

be an example supporting our guess of the origin of zero modes from Kasteleyn’s theorem.

3.5 Discussion

In this work we tried to answer some questions regarding the nature of density of states in the localized

and delocalized phases of randomly site diluted bipartite fermion hopping problem. We performed

our detailed analysis for the gapless phase α = 1 and noted the density of states to be of ”modified

Gade“ form on the other hand in the gapped phase α = 4 we note a crossover of from ”Dyson“

form to ”Griffith’s form“ or ”modified Gade“. In the 3.4.3 we discussed in detail our interpretation of

these observation and the need of more analysis to this unresolved issue. On the other hand another

unresolved issue is these zero modes which we already discussed in the 3.4.4, at the end of that section

we indicated the possible analysis required to fully understand that issue.

Even though random site dilution is a very different kind of disorder from random hopping as pointed

out in the introduction, we see that the low energy DOS behavior of the former is localized and delocal-

ized phases are very similar to that of later [39]. A physical RG type picture explaining the generation

of many low energy states near E = 0 in the strong disorder limit was discussed by Motrunich et al[39]

which we have reviewed briefly in the introduction. There is no reason for such a mechanism to work

in this case of site dilution- in spite of the resemblance. This leaves a future direction of research to

provide such a RG picture which will give the possible mechanism by which large number of states are

generated near E = 0 and also to explain why these two kind of disorders leads to same form of DOS

behavior at low energy.

There are a few more unanswered questions and possible extensions on this work which can be listed

as follows:

• We understood the density of states behavior (Eq. 2.6) in the gapless phase quite unambiguously

but in the gapped phase we don’t have good enough results to distinguish between the Gade

(Eq. 2.6)and Griffiths (Eq. 2.7 behavior. More data is required in this phase to know the correct

behavior of density of states.
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Figure 3.17: Both of the plots are made for samples with 72 sites and 8 impurities, with 4 on each

sublattice. There is antiperiodic boundary condition in the X-direction and open boundaries in the

Y-direction. The top one shows a configuration which has a zero mode and the bottom one shows a

configuration which has no zero modes.
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• We have empirical evidence supporting our conjecture about the origin of zero modes by lack of

dimer covering. A proof or some sort of more detailed numerical analysis is required to be sure

that is always the case.

• An extension of this work is possible by analyzing the same hopping problem on a non-bipartite

graph. As it is known such a problem belongs to a different universality class; so it will be

interesting to understand the behavior of such class of systems.
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Chapter 4

Random site dilution in an SU(2)

symmetric interacting spin system

This chapter is about the effects of site dilution in the SU(2) symmetric Yao-Lee spin model. In the

introduction we have mentioned that this spin model can be mapped to a free lattice gas of fermions

in the background of a static Z2 gauge field, and thus the magnetic susceptibility of the spin system

can be mapped to the compressibility of that Fermi gas. Using this connection we will analyze the

susceptibility of the randomly diluted Yao-Lee spin model by the result of the density of states analysis

of randomly diluted bipartite hopping problem of the last chapter. With this main agenda, this chapter

is organized as follows: in section 4.1 we will discuss the relevant models to this chapter i.e. Kitaev’s

spin model and SU(2) symmetric Yao-Lee model. Even though our main goal in this chapter is to

study the later model, we will describe the Kitaev’s model as it gets mapped to a very similar free

fermion hopping problem as that of Yao-Lee’s model and has same phase digram. In the section 4.2

of this chapter we will discuss this map in detail for the the Yao-Lee model and at the end we will

briefly mention the similarities and difference of this model with Kitaev’s model. Section 4.3 of this

chapter will contain discussion about choice of basis to construct Fock space in the free fermion model

such that it faithfully represents the spin model. In addition we will discuss the subtleties in mapping

randomly site diluted spin model to the randomly diluted fermion hopping problem. In section 4.4

we will recall the results of the previous chapter on random dilution in free fermion hopping problem

to characterize the magnetic susceptibility behavior of the metallic and insulator phases of Yao-Lee

model, which is our main result of this chapter. In section 4.5 we end the chapter with a discussion on

our interpretation of these results and some possible future direction of research.

4.1 Models

4.1.1 Kitaev’s model

Kitaev’s spin model is a very special kind of spin model which has anisotropic nearest neighbor spin

interaction depending on the direction of the bonds in real space. Before defining the original model
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Figure 4.1: Phase diagram of Kitaev’s model

on a honeycomb lattice let us introduce few notations as follows: a bond on the lattice (as in Fig. 4.1)

between the nearest neighbor sites with labels j and k can be in one of the three orientations in physical

space - labeled using the variable λ(= x, y or z). A spin degree of freedom with moment 1/2 at site

j is represented by the Pauli matrices σλ
j , where the superscript is the spin component. The exchange

strength between spins at sites j and k in λ direction is denoted as Jjkλ . With this notations defined,

the Hamiltonian is given by

HK = −


jkλ

Jjkλσ
λ
j σ

λ
k . (4.1)

Ground state of Kitaev’s honeycomb model has both gapped and gapless phases. In the parameter

space with all Jλ > 0 there are three gapped phases (Jz > Jx + Jy and its permutations) and one

gapless phase around the point Jx=Jy=Jz=J , as shown in Fig. 4.1.

The ground state of Kitaev’s spin model has quantum spin liquid like behavior in both gapped and

gapless phase, as the two spin correlation function vanish identically beyond nearest neighbor sites for

all values of the coupling constants.

4.1.2 Yao-Lee’s model

Construction of an SU(2) symmetric extension of Kitaev’s model requires a lattice with coordination

number three and a tricolourability property for the links of the lattice. On such a lattice, each link can

be assigned a type-label x, y or z such that every vertex has exactly one link of each type. Again our

brickwall lattice in Fig. 3.2. satisfy those conditions. The Hamiltonian with same notations as before

can be defined as,

HY L = −


jkλ

Jjkλ(τ
λ
j τ

λ
k )(σj .σk). (4.2)

The model has two different sets of spin degrees of freedom (τ and σ) at every site for SU(2) invariance.

The phase diagram of this model is same as that of Kitaev’s model. In next section we will point out

the similarities of this model with Kitaev’s model.
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However one important difference of this model from Kitaev’s one comes in the behavior of cor-

relation functions. The gapped phase has exponentially decaying spin-spin correlation; but the gapless

phase of this model has power law correlation with exponent four. As the model is SU(2) spin rotation

invariant, it has spinfull fermionic excitations.

4.2 Solving spin Hamiltonian by Majorana fermionization

Representing a spin degrees of freedom in terms of a fermionic or bosonic is often useful as it allows

one to apply the powerful techniques developed to solve fermionic or bosonic system in obtaining a so-

lution for the spin system. Such mappings doesn’t always ease the solution as in most of the cases, like

Jordan-Wigner fermionization of Heisenberg spin chain maps it to a interacting fermionic model. Sim-

ilarly Schwinger bosonization [65] maps Heisenberg spin model into a non-linear interacting bosonic

system which can be only solved perturbatively. On the other hand the well used Schwinger fermion

representation comes with an additional, difficult to deal with, constraint equation to satisfy; such that

the fermionic Hilbert space is a faithful representation of the spin model Hilbert space. There are

attempts in literature to get rid of this constraint, such as “drone-fermion” representation: where one

represents a spin operator in terms of a canonical complex fermionic operator and a Majorana fermion1

operator.

Kitaev first time introduced a complete Majorana fermion representation of fermionic spins to

map a two dimensional interacting spin model (known as Kitaev’s model and described in Models

section) into a non-interacting Majorana fermion system which is exactly solvable. In Kitaev’s scheme

every spin at a site is represented by four independent flavors of Majorana fermions. Given that two

Majorana fermions are required to represent a canonical complex fermion and each Majorana fermion

has a Hilbert space dimension
√
2, this doubles the Hilbert space dimension per spin from two to four.

To project back in the physical Hilbert space Kitaev introduced a projection operator which commutes

with the Hamiltonian.

Kitaev’s model is not spin rotation symmetric and to explain some physical system (as discussed

in 2.3.1) one requires a model with such symmetries. Yao-Lee extended Kitaev’s scheme in solving an

SU(2) invariant spin (model described in models section) which has a spin liquid ground state. The

Majorana fermionization of Kitaev is not spin-rotation symmetric and was simply extended to such

a symmetric case by introducing another Majorana fermion representation similar to one introduced

by Shastry-Sen [45] for one dimensional spin models. In this section we will discuss this Majorana

fermionization in detail and we will also discuss the subtleties in extending the same in presence of site

1In 1937 Majorana [66] discovered that a modification of Dirac’s equation in possible which includes a charge conjugated

Dirac spinor and is completely written in terms of real numbers. This “real” Dirac equation has two solutions known as

Majorana fermions, one being a charge neutral particle and the other being a charge neutral antiparticle with the special

property of the particle being it’s own antiparticle. Since then there are debates on whether there is a physical example of

this mathematical solution.

However apart from that debate Majorana fermions are proven to be a useful mathematical tool in fermionizing interacting

spin models, we discuss in detail such an use of Majorana fermion in this chapter.
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dilution.

4.2.1 Mapping Yao-Lee’s model to free Majorana fermions

As mentioned in the Models section, this model has two different sets of spin degrees of freedom at

every site for SU(2) invariance. One set of spin degrees of freedom are expressed by the Pauli spin

matrices (σλ,λ = x, y, z) which are represented by SU(2) invariant Majorana fermion representation

as

σx = −icycz (4.3)

σy = −iczcx

σz = −icxcy,

where cλ (λ = x, y, z) are Majorana fermions operators. The other spin degrees of freedom is repre-

sented by another set of Pauli spin operators (τλ,λ = x, y, z) at every site, which can be written by

another set of Majorana operators bλ(λ = x, y, z) in a SU(2) invariant way as

τx = −ibybz (4.4)

τy = −ibzbx

τ z = −ibxby.

The Majorana fermion operators obey the commutation relation

{cλi , cλ
′

j } = 2δλλ′δij (4.5)

{bλi , bλ
′

j } = 2δλλ′δij , (4.6)

and all other commutations being zero. Note that any model with this kind of structure will look like

a bilinear in both b and c. And now that we have two independent Pauli matrices as every site and we

are writing each one of them by SU(2) symmetric representation of three Majorana fermions, we have

double counted the single site Hilbert space, leading to 8-dimensional Hilbert space at each site. To

get back to the original Hilbert space the typical choice[45] is

cxcyczbxbybz = i, (4.7)

(or alternatively cxcyczbxbybz = −i). This allows us to write

σατβ = icαbβ (4.8)

(or alternatively σατβ = −icαbβ), where α and β runs over x,y and z. Each of this basically represents

a copy of the physical subspace, once a choice is made by choosing a constraint condition (as in Eqn.
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4.7) the other copy becomes the ”unphysical” sector. This is an interesting point about this model and

Majorana representation, here the “unphysical sector” is not unphysical in true sense (SU(2) algebra

is satisfied in that sector as well) as it an equally faithful copy of the physical states and one can work

with either copies [45].

The hopping Hamiltonian Using the Majorana mapping described above, the Hamiltonian in terms

of the Majorana fermions is

HY L = i


jk
Jjkλujkλ




α=x,y,z

cαj c
α
k


. (4.9)

Where the outer sum is over all three types of links jk (λ = x, y, z). The products ibλj b
λ
k on

the λ type jk bonds become static Z2 gauge fields ujkλ as ujkλ satisfy

H,ujkλ


= 0 and


uj′k′λ , ujkλ


= 0; making ujkλ a good quantum number with eigenvalues ±1. The Hamiltonian

becomes a bilinear in c Majorana fermion operators which are coupled to static Z2 gauge fields.

At this stage it will be useful to mention the difference between the hopping Hamiltonian of Yao-

Lee model (Eq. 4.2) and that of the Kitaev’s model (Eq. 4.1) as following: the Yao-Lee hopping

Hamiltonian has three different flavors of c-fermions which means this has three copies of Kitaev’s

original solution with each of those fermion flavors being coupled with the same gauge field-which

means all of this three copies have exactly the same spectrum. This Eq. 4 has a global SO(3) rotational

symmetry which rotate among the three flavour of Majorana fermions as a consequence of the SU(2)

symmetry of the Yao-Lee spin model it represents. Due this resemblance with the original Kitaev’s

model, the properties of this free Majorana fermion hopping problem of this SU(2) symmetric Yao-

Lee model, is same as that of Kitaev’s original model.

4.3 Choice of basis for constructing Fock space of fermion operator

To make physical sense with Majorana fermions we need to construct the Hilbert space as the Fock

space of pairs of Majorana fermions, combined to make the canonical complex fermion. We will do

this first for a bipartite graph with equal number of A and B sublattice sites, then we will discuss the

modifications when one and then many sites are removed from this system. Finally we will see the

physical meaning of coupling a magnetic field with the spins of the original spin model in terms of

those canonical fermions.

Pure system with even number of sites Consider a bipartite honeycomb lattice with even number

of sites and let’s choose a convenient pairing of two of the three Majorana fermions at each site to a

complex canonical fermion as

zj = (cxj + icyj )/2. (4.10)
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This leads to

σj/2 = −(z†jzj −
1

2
), (4.11)

where the z-fermions carry the conserved Sz quantum number. The other fermions can be paired in a

convenient was as

fp = (czp,A + iczp,B)/2, (4.12)

where A and B are sublattice sites for an unit cell p. One can think this as pair formation between sites

coupled by a vertical bond in the honeycomb or horizontal bond in brickwall lattice, as in Fig (3.2).

Similarly for the Z2 gauge field ujk the pairing can be symmetric as ,

ζij =
b
ij
i + ib

ij
j

2
. (4.13)

Thus the full Hamiltonian in terms of these complex fermions and the Z2 gauge field is given by

HY L =


jkλ

Jjkλ


2ζ†jkλζjkλ − 1


2i

z†jzk − zkj

†zj

+ iczjc

z
k



=


jkλ

Jjkλ


2nζjkλ

− 1


2i

z†jzk − z†kzj


+ iczjc

z
k


.

=


jkλ

Jjkλujkλ


2i

z†jzk − z†kzj


+



jkλ

Jjkλuζjkλ ic
z
jc

z
k.

=


jkλ

itjkλ


z†jzk − z†kzj


+



jkλ

Jjkλuζjkλ ic
z
jc

z
k. (4.14)

On a bipartite graph with sublattice A and B , Mij = tjkλ and MS = 1
2(M

T + M), MA =
1
2(M

T −M).

HY L = i

z†Az

†
B


0 M

−MT 0


( zAzB ) +


f †f


MA MS

−MS −MA


f†

f


(4.15)

Note that all this canonical fermions doesn’t reside on the sites of the lattice, the f fermions reside

on the ’z’ bonds of the lattice and z-fermions resides on the sites of the lattice. The Z2 static gauge

field also resides on the bonds of the lattice, whose Z2 character is clear from this equation as the bond

fermion number on the bonds nζjkλ
can be either zero or one. On the other hand we have a free

canonical fermion (z-fermions) hopping Hamiltonian with hopping amplitude tjkλ(= ujkλJjkλ)

between nearest neighbor sites j and k. In addition we have another set of canonical fermion hopping

(f -fermions) Hamiltonian which can be physically interpreted as following: fp fermions resides on the

z bonds connecting two sites of an unit cell and when p ≡ p′ the f -fermion part of the Hamiltonian

represents an on site potential term, otherwise it represents a superconductor Hamiltonian with a gap

term (fpfp′ + f †
pfp′) of gap magnitude tjkλ .

The SU(2) invariance of the original problem is in the fact that the free fermion hopping problem

and superconductor problem has exactly identical spectra.

60



Nature of Projection operators The nature of projection (4.7) is simpler to understand by writing

in terms of the original Kitaev’s projection (Dj) as follows:


2nz

j − 1

Dj = 1 (4.16)

where

Dj = bxj b
y
j b

z
jc

z
j . (4.17)

So the full projection operator becomes

P
Y L =



j



1 +


2nz

j − 1

Dj

2


 . (4.18)

The nz
j operator only increase or decrease the number of z-fermions and that number is conserved in

the system. Thus the PY L operator should work very similar to the Kitaev’s projection

P
K =



j


1 +Dj

2


. (4.19)

Removing one site from the pure system To construct the Hilbert space when one site is removed

from the pure system with even number of site needs some regularization scheme, as it is not obvious

that in presence of such an abrupt disorder one can consistently carry out the calculation in the canon-

ical fermion Hilbert space while keeping the faithful representation of the spins intact. A sensible way

to do this regulation is by putting back the removed site by re-introducing three infinitesimal couplings

δ to the bulk system.

For the z fermion part of the Fock space, this has a trivial effect i.e. to leading order, δ simply

mixes the zero mode wavefunction of the diluted hopping problem with the trivial zero mode that lives

on the single site that has been removed from the system. This splits these two zero modes to give two

canonical fermion modes at energies ∼ ±δ.

For the ζ fermion part of the Fock space, keeping this removed site in our description allows us to

construct the Fock space exactly as in the pure system.

And for the f fermion part of the Fock space, putting the removed site back in is essential for

making sense of the Majorana zero mode: To leading order, δ leads to a single canonical fermion

eigenstate at energy ∼ |δ| obtained by mixing the zero mode of the diluted hopping problem with the

trivial zero mode on the site that is removed. In the δ → 0 limit, this becomes a genuine Majorana

excitation.

Removing many sites from the pure system In a similar fashion one can argue removal of many

sites from the system. As we have seen for removing each sites by the above regulated scheme, there

will be a genuine zero energy Majorana mode localized at the removed site. The rest of the eigenstates

of the hopping problem can be obtained by solving the single particle hopping problem (Eq. 4.15).
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So the hopping problem is same as in Eq.1.27 of chapter 3 with tjkλ(= ujkλJjkλ). The ground

state or energy minimizing flux sector of the hopping problem will be decided by the Lieb’s theorem

as discussed in the 3.3.

Thus the spectral properties obtained in the 3.4 for the bipartite hopping problem essentially repre-

sents the energy eigenstates of the fermionic hopping problem of Hamiltonian in Eqn. 4.9.

4.3.1 Coupling to external magnetic field and measuring susceptibility

After finding the spectrum of the fermion hopping problem now our task is to calculate the magnetic

response of the system from those exact eigenvalues. For that consider a simple physical way to think

about the two different spin degrees of freedom at every site in Yao-Lee’s model can be interpreting

the σs as spins and τs as orbital degrees of freedom. In that picture it is easy to add a Zeeman field B

in the z direction as,

−B


j

σz
j

2
=

iB

2



j

cxj c
y
j = +B



j


z†jzj −

1

2


. (4.20)

Since this is a bilinear in c, this keeps the model exactly solvable. In our choice of basis in the fermionic

Fock space, B maps to a chemical potential for non-interacting canonical (complex) fermions z cou-

pled to a static gauge field, and susceptibility therefore maps to the compressibility of this fermion

problem, since in presence of the magnetic field the hopping Hamiltonian becomes

HY L = i

z†Az

†
B


B M

−MT B


( zAzB ) +


f †f


MA MS

−MS −MA


f†

f


(4.21)

Thus, the z-fermions carry the Sz quantum number which is conserved in the presence of the field Bz.

As a result we have

Sz
tot =



µ


1

2
− 1

e(ǫµ+B)/T+1


(4.22)

and correspondingly the uniform linear susceptibility

χtot(T ) =


µ

e
ǫµ

T

T

e

ǫµ

T + 1
2 . (4.23)

A physical picture of magnetization can be the following: As we already know that the DOS is going

to diverge at low energy, the spins with energy E < B will be completely polarized and the one with

E > B will be completely unpolarized. Thus as one turn on the temperature T , the leading order

terms in susceptibility dominated by canonical fermions with energy E < T will be free and will give

a Curie response. Rest of the fermions with E > T will have a very small response and will give a sub

leading contribution. So the susceptibility at finite T for finite density of diluted sites can be expressed

as,

χ(T ) ∼
 T

0

e
ǫµ

T

T

e

ǫµ

T + 1
2 ρ(ǫ)dǫ. (4.24)
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4.4 Site dilution effects

With that physical connection clear, let us look at the effects of site dilution on the magnetic suscepti-

bility of the spin problem.

Contribution of single zero mode Consider a situation in which there is a single zero mode (corre-

sponding to a missing site) in an otherwise gapped spectrum, then susceptibility acquires a Curie tail

in the low temperature limit as (expanding Eqn. 4.23)

χtot(T ) =
1

4T
+ ... (4.25)

So, the zero mode corresponds to a free spin-half object. In the case where the pure spectrum is

gapped, the regular terms are exponentially small at low temperature, as is the susceptibility of the

pure problem. Thus, the impurity susceptibility (conventionally defined to be the difference in the

susceptibility of the system with defect and the pure system) is given in the low temperature limit as

χimp(T ) =
1

4T
+ ... (4.26)

Thus, the missing site gives rise to an impurity spin-half i.e an orphan spin and the zero mode wave-

function essentially defines the orphan spin texture in these problems since this Curie tail is associated

with a magnetization pattern Sz
j  controlled by |Φµ0

j |2 where µ0 is the zero mode.

Mixing of zero modes Two zero modes mix with each other and develop non- zero energies in the

bipartite hopping problems only if they correspond to vacancies on opposite sublattices. As a result, if

sites of one sublattice are preferentially diluted in the bipartite problems, one can end up in a situation

with n = |NA −NB| zero modes that survive this mixing between zero modes. In this case, we would

obtain

χimp(T ) =
n

4T
+ ... (4.27)

However for finite vacancy density we always consider NA = NB , so we never encounter this contri-

bution in our case.

Finite vacancy density As discussed before, we can appeal to the density of states results for random

site dilution in bipartite hopping problem (Eq. 2.6,2.72.9) to obtain the magnetic susceptibility in the

randomly diluted Yao-Lee Hamiltonian using Eq. 4.24. Notice that in both gapped and gapless phases

the low temperature susceptibility behaves as

χ(T ) ∼
 T

0

e
ǫµ

T

T

e

ǫµ

T + 1
2 ρ(ǫ)dǫ. (4.28)

∼ ρ(T )

∼ 1

T
h(log(1/T ))
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induced by a finite density of vacancies (equal in number in opposite sublattices) where h is some

decreasing function of its argument that makes this density states integrable. This is the form of the

susceptibility in a Random-Singlet or Bhatt-Lee type phase as we have seen in the introduction. So it

seems from the behavior of low temperature susceptibility that the nature of delocalization-localization

transition is very similar in nature as that one obtained for randomly disordered Heisenberg antiferro-

magnet (Eq. 2.14).

4.5 Discussion

Let us summarize the conclusion and point out some immediate questions which are not answered with

some possible extensions of this work.

• We have shown an example of SU(2) symmetric spin model in two dimension where in presence

of random dilution the susceptibility shows the “random-singlet” phase like behavior in both of

the gapped and gapless phase. We reached at this conclusion by exact numerical solution of the

model at very low energy i.e. E ∼ 10−150 (setting exchange coupling J = 1) and since we see

such a “random singlet” like behavior at this low energy we conclude that probably this phase is

the true low energy phase of the system.

• A physical way to connect the random dilution effects with the random singlet physics can be as

follows: The mixing between two zero modes with index, say 1 and 2 kills the Curie terms asso-

ciated with each and gives rise to a susceptibility which falls of exponentially below an energy

scale Δ12 . Δ12 can therefore be thought of as a renormalized exchange constant which is antifer-

romagnetic in sign. This is very similar to the real space decimation RG picture of Dasgupta-Ma

[42] and it is presumable, since there is a close relationship between the strong disorder RG

picture of Ref [39] for low energy states of such bipartite and pure-imaginary random hopping

problems, and the strong disorder RG ideas, which is the motivation of the random-singlet de-

scription of Bhatt-Lee [44, 52]. However in spite of this connection we don’t have a complete

physical understanding of the mechanism behind generation of the low energy states. So one

need to develop some strong disorder RG picture of the model we study for the same.

• Even though we see the “random singlet” like magnetic susceptibility in both metal and insu-

lator phase, the exact functional form of the same is not clear from this work and the nature of

ambiguity is discussed in details in last 3.5. In addition also the precise tracking of the transition

point is lacking from this work.

• In this thesis we have only considered the randomly diluted spin model on a bipartite lattice, a

very interesting extension of this study could be on a non-bipartite lattice. Random dilution on

a non-bipartite lattice is completely different universality class (Discussed in 3.5). So it will be

interesting to know the true low temperature behavior for such a system by similar analysis.
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Chapter 5

Ground state properties of randomly

diluted 2D Heisenberg antiferromagnets

In this chapter, we will discuss our work on the doublet ground state properties of two dimensional

Néel ordered Heisenberg antiferromagnet. In the introduction we have briefly mentioned that in this

work we characterized an universal relation between the staggered component of doublet ground state

magnetization (≡ nz
↑ , Eq. 2.17) with the standard magnetization density of a singlet ground state (≡ m

, Eq. 2.16). The universal relation was obtained empirically from numerical experiments on various

deformations of S = 1/2 SLHAF. Here we provide a detailed characterization of the relationship

between nz
↑ and m using spin wave analysis. We also provide two effective low energy models for the

understanding of the same namely the sublattice spin mean filed model and quantum rotor model.

Here we will give the details of our study in subsequent sections with the following plan: In first

Section 5.1 we define four deformations of the square lattice S = 1/2 Heisenberg antiferromagnet

relevant to our study. In Section 5.2 we review the empirical results obtained from available numerical

data for nz
↑ as well as the full spin texture Φz(r), focusing on the universal properties alluded to

earlier. In Section 5.4, we outline the analytical approaches to the relationship between nz
↑ and m.

The first is a large-S spinwave expansion, within which we calculate the ground state spin texture

Φz(r) and its antiferromagnetic Fourier component nz
↑ to leading O(1/S) order, and demonstrate that

such a calculation also yields the universality properties summarized earlier, but does not provide a

quantitatively accurate account of the numerical results for Φz(r) or nz
↑(m). The second is a mean-

field theory formulated in terms of the total spin of each sublattice. And the third approach is in terms

of a quantum rotor Hamiltonian which is expected to correctly describe the low-energy tower of states

for odd Ntot. In Section 5.5, we conclude with some speculations about a possible effective field theory

approach to the calculation of Φz(r), as a possible future direction of research.
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Figure 5.1: An illustration of the interactions present in the JJ ′ (left panel) and JJ2 (right panel)

model Hamiltonians. In this illustration, black bonds denote exchange interaction strength of J , while

a red bond represents exchange strength of J ′ (J2) in the left (right) panel
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Figure 5.2: Bond and plaquette operators in JQ model Hamiltonians. A thick bond denotes a bipartite

projector acting on that bond. All possible orientations of these bond and plaquette operators are

allowed.

5.1 Models

Apart from the standard Heisenberg model with nearest neighbor antiferromagnetic interactions, we

consider two deformations of the S = 1/2 SLHAF in our spin wave analysis study, namely the JJ ′

and JJ2 model. The numerical data with which we compare our results considers JJ2 and two other

models called JQ2 and JQ3 model. In this section we will explain all four models in detail. However,

all of them retain the full SU(2) spin rotation symmetry of the original model.

Heisenberg model with nearest-neighbor interaction We first study the standard Heisenberg model

on a square lattice with nearest neighbor interaction,

H = J


i,j
Si.Sj . (5.1)

JJ ′ model The first of these deformed Heisenberg models is the coupled-dimer antiferromagnet,

in which there are two kinds of nearest neighbor interactions J and J ′, as shown in Fig. 5.1 (left

panel), where the ratio α = J ′/J can be tuned from α = 1 to α = αc ≈ 1.90 at which collinear
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antiferromagnetic order is lost.[34] The Hamiltonian for this system reads:

HJJ ′ = J


ij
Si · Sj + J ′

ij′
Si · Sj , (5.2)

where ij (ij′) denotes a pair of nearest neighbor sites connected by a black (red) bond (see

Fig. 5.1).

JJ2 model Another deformation of the Heisenberg model, the JJ2 model, has additional next nearest

neighbor Heisenberg exchange interactions J2, as shown in Fig. 5.1 (right panel). The Hamiltonian

reads

HJJ2 = J


ij
Si · Sj + J2



ij
Si · Sj , (5.3)

where ij denotes a pair of next nearest neighbor sites. Both these are amenable to straightfor-

ward spin-wave theory analyses, and the coupled dimer model can also be studied numerically to obtain

numerically exact results even for very large sizes due to the absence of any sign problems in Quan-

tum Monte Carlo studies. However, exact numerical results on the JJ2 model are restricted to small

sizes since Quantum Monte Carlo methods encounter a sign problem when dealing with next-nearest

neighbor interactions on the square lattice.

JQ-models In addition to the JJ2 model the numerical observations were studied on two more

deformations that involve additional multispin interactions; the “JQ” models.[62, 67] Of these, the

JQ2 model has 4-spin interactions in addition to the usual Heisenberg exchange terms, and is defined

by the Hamiltonian

HJQ2 = −J


ij
Pij −Q2



ij,kl
PijPkl, (5.4)

where the plaquette interaction Q2 involves two adjacent parallel bonds on the square lattice as shown

in Fig. 5.2 (middle panel) and

Pij =
1

4
− Si · Sj (5.5)

is a bipartite singlet projector. The first term in Eq. 5.4 is just the standard Heisenberg exchange.

Similarly, the JQ3 model has 6-spin interactions and is defined by the Hamiltonian

HJQ3 = −J


ij
Pij −Q3



ij,kl,nm
PijPklPnm, (5.6)

where the plaquette interactions now involve three adjacent parallel bonds on the square lattice, as

shown in Fig. 5.2 (right panel). The products of singlet projectors making up the Q2 and Q3 terms

tend to reduce the Néel order of the ground state, and, when sufficiently strong, lead to a quantum

phase transition into a valence-bond-solid state.[62, 67] The numerical results were obtained by staying

within the Néel state in both models, and the universal aspects of this state was studied as the Néel order

is weakened.
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Figure 5.3: An illustrative example of finite size corrections of nz
↑ and m2, observed in the antiferro-

magnetic phase of the JJ ′ model(J ′ = 1.8). Note the non-monotonic behavior of finite size corrections

for nz
↑, which is fitted to a cubic polynomial. In contrast, finite size data for m2 is well described by a

linear dependence on 1/L.

5.2 Review of numerical results

The available numerical results for this systems were obtained by total spin-1/2 sector version [68]

of the valence-bond basis projector QMC method [69, 70] to study L × L samples with L odd and

free boundary conditions. By that method Φz(r) and nz
↑ were computed in such samples for the JJ ′

model and JQ models in their antiferromagnetic phase. On the other hand the same models on L× L

lattices with L even and periodic boundary conditions, were studied using the original singlet sector

valence bond projector QMC method. In next two paragraphs we will highlight the two main features

observed from numerical experiments i.e. non monotonicity in finite size scaling, the universality

relation between nz
↑ and m described before and the spin texture.

Finite size scaling : The finite size scaling data for nz
↑ from a sequence of L×L systems with L odd,

shows that nz
↑ extrapolates to a finite value in the L → ∞ limit as long as the system is in the antifer-

romagnetic phase. However, we noted from the numerical data that the approach of this observable to

the thermodynamic limit has a non-monotonic behavior. To obtain accurate extrapolations to infinite

size, it is therefore necessary to fit the finite size data to a third-order polynomial in 1/L. We find

that the coefficient for the leading 1/L term in this polynomial is rather small; this is true for all the

models studied here, as long as they remain in the antiferromagnetic phase. In Fig. 5.3 and Fig. 5.4, we

show examples of this behavior of the finite size corrections in nz
↑. In these figures, we also show the

approach to the thermodynamic limit for m, as measured in a sequence of periodic L×L systems with

L even. We find that in complete contrast to the behavior of nz
↑, m extrapolates monotonically to the

thermodynamic limit, with a dominant 1/L dependence—this is consistent with previous studies of the
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Figure 5.4: Another illustrative example of finite size corrections of nz
↑ and m2, observed in the anti-

ferromagnetic phase of JQ2 model at Q2 = 1.0. Again, note the non-monotonic behavior of finite size

corrections for nz
↑, which is fitted to a cubic polynomial (only L > 20 data used in the fit). In contrast,

finite size data for m2 is well described by a linear dependence on 1/L.

structure factor in square lattice antiferromagnets [70] (however, with spatially anisotropic couplings,

one can also observe strong non-monotonicity in m[71]). In section 5.4 on our spin wave analysis of

this problem, we will provide a more detailed characterization of this non-monotonic behavior of finite

size scaling.

Universal relation between nz
↑ and m : The non-zero value of nz

↑ in the thermodynamic limit clearly

reflects the long-range antiferromagnetic order present in the system and a partial breaking of the SU(2)

symmetry (due to the fact that we study only one member of the doublet ground state). For periodic

systems, the same long range antiferromagnetic order is captured by the non-zero value of m in the

large L limit—and a calculation of m (through m2) for the odd-L systems with periodic boundaries

would of course lead to the same value. However, since m0 = nz
↑, the full staggered magnetization is

not forced to lie along the z spin axis, so it could be interesting to understand the relationship between

these two measures of antiferromagnetic order.

To empirically characterize this relation, the numerical data is plotted as nz
↑ versus m in the ther-

modynamic limit of the JJ ′, JQ2 and JQ3 models in Fig. 5.5. In that figure, each point represents the

result of a careful extrapolation similar to the examples shown in Fig. 5.3 and Fig. 5.4, and provides

an accurate estimate of the corresponding thermodynamic limits for nz
↑ and m. So from this figure

the conclusion is that nz
↑ is a universal function of m0 independent of the microscopic structure of the

Hamiltonian. To model this universal function, we use a polynomial fit that is constrained to ensure

that nz
↑ → m0

3 when m0 → 1
2 ; the rationale for this constraint will become clear in Sec. 5.4. We find
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(Fig. 5.5) that the QMC results for nz
↑(m0) are fit well by the following functional form:

nz
↑(m) = (

1

3
− a

2
− b

4
)m0 + am2

0 + bm3
0 , (5.7)

with a ≈ 0.288 and b ≈ −0.306.

Spin texture : As discussed in the introduction, one can think this universal relationship as being

a property of the underlying low energy effective field theory of the antiferromagnetic phase, one is

led to expect that the full spatial structure of the spin texture Φz(r) should also be universal. More

precisely, one is led to expect Φz(q), the Fourier transformation of Φz(r) should be peaked at the

antiferromagnetic vector Q = (π,π), with a universal shape near the peak.

To test this, we compare the spin texture in the JJ ′ model and the JQ3 model, choosing the

strengths of the J ′ interaction and the Q3 interaction so that both have the same value of m0, and

therefore the same value of nz
↑. This is shown in Fig. 5.6, which shows that these very different

microscopic Hamiltonians have spin-textures whose Fourier transform falls on top of each other at and

around the antiferromagnetic wavevector.

5.3 Analytical approach to the problem

We now present three distinct analytical approaches to understanding these numerical results presented

in the previous section: First, we develop a spin-wave expansion that becomes asymptotically exact

for large S[35]. Second, we explore a mean-field theory written in terms of the total spin of each sub-

lattice. Third, we describe an alternative approach in which the low-energy antiferromagnetic tower of

states of a spin-1/2 antiferromagnet is described by a phenomenological rotor model[36] adapted to

the case of a system with odd Ntot.

5.4 Spin-wave expansion

In this subsection we will first set up the general framework for spin wave calculations, followed by

that we will discuss the subtleties of the spin-wave calculation with open boundaries in a odd sized

sample, next we will describe the method of our calculation and finally the results. The standard spin

wave calculations for systems with even size and periodic boundaries are presented in appendix-3.

The leading order spin-wave calculation proceeds as usual by using an approximate representation of

spin operators in terms of Holstein-Primakoff bosons. The resulting bosonic Hamiltonian is truncated

to leading (quadratic) order in boson operators to obtain the first quantum corrections to the classical

energy of the system.

General framework of spin-wave theory As is standard in the spin wave theory of Néel ordered

states, we start with the classical Néel ordered configuration with the Néel vector pointing along the

ẑ axis, which corresponds to Sz
r = ηrS(as before, ηr is +1 for sites belonging to the A sublattice,
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Figure 5.5: Extrapolated thermodynamic values of nz
↑ for three different models of antiferromagnets

on an open lattice, plotted as function of staggered magnetization m0 for the same models on periodic

lattices. The former is clearly an universal function of the later. This universal function can be well

approximated by a polynomial fit constrained to ensure that nz
↑(m0) → m0/3 in the limit of m0 → 1

2 :

nz
↑ ≈ (1/3− a/2− b/4)m0 + am2

0 + bm3
0, with a ≈ 0.288 and b ≈ −0.306.

and −1 for sites belonging to the B sublattice). We then represent the spin operators at a site r of the

square lattice in terms of canonical bosons to leading order in S as follows: For sites r belonging to

the A sublattice we write

S+
r =

√
2Sbr ; Sz

r = S − b†rbr , (5.8)

while on sites r belonging to the B sublattice we write

S−
r =

√
2Sbr ; Sz

r = −S + b†rbr . (5.9)

The number of bosons at each site thus represents the effect of quantum fluctuations away from the

classical Néel ordered configuration.

To quadratic order in the boson operators, this expansion yields the following spin wave Hamilto-

nian in the general case (with arbitrary two-spin exchange couplings):

Hsw = ǫclS
2 +

S

2
b
†Mb , with

Mrr′ =


Arr′ Brr′

Brr′ Arr′



br =


br
b†
r


. (5.10)

Here ǫclS
2 is the classical energy of the Néel state, M in the first line is a 2Ntot dimensional matrix

specified in terms of Ntot dimensional blocks A and B, and b is a 2Ntot dimensional column vector

as indicated above. Elements of A and B can be written explicitly as

Arr′ = (ZU
r − ZF

r )δrr′ + JF
rr′ , (5.11)

Brr′ = JU
rr′ . (5.12)
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Figure 5.6: Fourier transform (with antiperiodic boundary conditions assumed for convenience) of the

numerically computed (for JJ ′ and JQ3 model with L = 65, S = 1/2 ) Φz(r) along cuts passing

through the antiferromagnetic wavevector (π,π). Note the universality of the results in the neighbor-

hood of the antiferromagnetic wavevector, which in any case accounts for most of the weight in Fourier

space.

In the above, JF
rr′ are Heisenberg exchange couplings between two sites r and r′ belonging to the same

sub-lattice, JU
rr′ are the Heisenberg exchange couplings between sites belonging to different sublattices,

and

ZU
r =



r′

JU
rr′ , (5.13)

ZF
r =



r′

JF
rr′ . (5.14)

The effects of quantum fluctuations on the classical Néel state can now be calculated by diagonaliz-

ing this Hamiltonian by a canonical Bogoliuov transformation S which relates the Holstein-Primakoff

bosons b to the bosonic operators γ corresponding to spin-wave eigenstates

b = SΓ, Γµ =


γµ

γ†µ


, (5.15)

where S is a 2Ntot dimensional matrix that transforms from b which creates and destroys bosons at

specific lattice sites r to Γ which creates and destroys spin-wave quanta in specific spin-wave modes

µ. We want Hsw be diagonal in this new basis. We represent this diagonal form as

Hsw = ǫclS
2 +

S

2
Γ†DΓ , (5.16)

where

D =


Λ 0

0 Λ


, (5.17)

with Λ denoting the diagonal matrix with the Ntot positive spin wave frequencies λµ on its diagonal.
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To construct a S that diagonalizes Hsw in the Γ basis, we look for 2Ntot dimensional column

vectors

yµ =


uµ

vµ


, (5.18)

which satisfy the equation

Myµ = ǫµIyµ (5.19)

with positive values of ǫµ equal to the positive spin-wave frequencies λµ for µ = 1, 2, 3 . . . Ntot. Here

uµ and vµ are Ntot dimensional vectors,

I =


1 0

0 −1


, (5.20)

and 1 is the Ntot × Ntot identity matrix. With these yµ in hand, one may obtain Ntot additional

solutions to Eq. 5.19, this time with negative ǫNtot+µ = −λµ by interchanging the roles of the Ntot

dimensional vectors uµ and vµ in this construction. In other words, we have

yNtot+µ =


vµ

uµ


, (5.21)

with µ = 1, 2, 3 . . . Ntot.

We now construct S by using these yµ (with µ = 1, 2, 3 . . . 2Ntot) as its 2Ntot columns:

S =

y1, y2, y3 . . . y2Ntot


. (5.22)

Clearly, this choice of S satisfies the equation

MS = ISID (5.23)

Furthermore, the requirement that the Bogoliuov transformed operators γ obey the same canonical

bosonic commutation relations as the b operators implies that S must satisfy

S
†IS = I , (5.24)

This constraint is equivalent to “symplectic” orthonormalization conditions:

(uµ)†uν − (vµ)†vν = δµν , (5.25)

(uµ)†vν − (vµ)†uν = 0 ,

for µ, ν = 1, 2, 3 . . . Ntot. It is now easy to see that Eq. 5.23 and Eq. 5.24 guarantee that Hsw is indeed

diagonal in the new basis, since

b
†Mb = Γ†

S
†MSΓ = Γ†

S
†ISIDΓ = Γ†DΓ . (5.26)
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For periodic samples, it is possible to exploit the translational invariance of the problem and work

in Fourier space to obtain these spin-wave modes and their wavefunctions and calculate m0 = S −Δ
′

correct to leading order in the spin-wave expansion—these results are standard[33], they are provided

in details on Appendix-2. On the other hand, the corresponding results for L × L samples with free

boundary conditions and NA = NB+1 do not seem to be available in the literature, and our discussion

below focuses on this case.

Odd sized samples with free boundary We begin by noting that the non-zero entries in A only

connect two sites belonging to the same sublattice, while those in B always connect sites belonging to

opposite sublattices. As a result of this, the solutions to the equation for yµ can also be expressed in

terms of a single function fµ(r) defined on sites of the lattice.

To demonstrate this, we consider an auxiliary problem of finding ǫ̃µ such that the operator A−B−
ǫ̃µηr has a zero mode fµ(r). This auxiliary problem has Ntot solutions corresponding to the Ntot roots

ǫ̃µ of the polynomial equation det(A − B − ǫ̃µηr) = 0; these ǫ̃µ can be of either sign. To make the

correspondence with the positive ǫµ solutions (uµ, vµ) (with µ = 1, 2...Ntot) of the original equation

Myµ = ǫµIyµ, we now note that

fµ|A−B|fµ = ǫ̃µNµ (5.27)

where

Nµ ≡


rA

|fµ(rA)|2 −


rB

|fµ(rB)|2. (5.28)

Since A−B is a positive (but not positive definite) operator, this implies that ǫ̃µ has the same sign as Nµ

for all non-zero ǫ̃µ. To make the correspondence with the positive ǫµ ≡ λµ solutions (µ = 1, 2 . . . Ntot)

of the original problem, we can therefore make the ansatz

uµrA = fµ(rA)/

Nµ, u

µ
rB

= 0 (5.29)

vµrB = −fµ(rB)/

Nµ, v

µ
rA

= 0

if Nµ > 0, or the alternative ansatz

uµrB = −fµ(rB)/


−Nµ, u
µ
rA

= 0 (5.30)

vµrA = fµ(rA)/

−Nµ, v

µ
rB

= 0

if Nµ < 0. Here, rA (rB) denotes sites belonging to the A (B) sublattice of the square lattice. This

ansatz clearly ensures that the yµ (with µ = 1, 2..Ntot) obtained in this manner satisfy the original

equation with positive ǫµ ≡ λµ and are appropriately normalized.

Treatment of zero modes The above approach we took for demonstration purpose is not the one

we use in our actual computations (see below), but it provides a useful framework within which we

may discuss possible zero frequency spin-wave modes, i.e λµ0 = 0 for some µ0: A mode µ0 with

λµ0 = 0 clearly corresponds to a putative zero eigenvalue of the operator A − B. From the specific
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form of A−B in our problem, it is clear that such a zero eigenvalue does indeed exist, and fµ0(r), the

corresponding eigenvector of A−B, can be written down explicitly as

fµ0(r) = 1 (5.31)

Since this corresponds to the root ǫ̃µ0 = 0 of the auxiliary problem, it can in principle be used to obtain

a pair of zero frequency modes ǫµ0 and ǫµ0+Ntot for the original problem of finding ǫµ and yµ that

satisfy Myµ = ǫµIyµ.

However, we need to ensure that the symplectic orthonormalization conditions (Eq. 5.26) are sat-

isfied by our construction of the corresponding yµ0 and yµ0+Ntot . This is where the restriction to a

Ntot = L× L lattice with NA = NB + 1 enters our discussion. For this case, Nµ0 = NA −NB = 1,

and we are thus in a position to write down properly normalized zero-mode wavefunctions:

uµ0

rA
= fµ0(rA), u

µ0
rB

= 0 (5.32)

vµ0
rB

= −fµ0(rB), v
µ0
rA

= 0 ,

and

uNtot+µ0
r = vµ0

r , (5.33)

vNtot+µ0
r = uµ0

r .

[Parenthetically, we note that the question of zero frequency spinwave modes for the more familiar

case with NA = NB and periodic boundary conditions has been discussed earlier in the literature[35]

and will not be considered here.]

Thus, the equation Myµ = ǫµIyµ has a pair of zero modes related to each other by interchange

of the u and v components of the mode, and it becomes necessary to regulate intermediate steps of

the calculation with a staggered magnetic field ẑǫhηr with infinitesimal magnitude ǫh > 0 in the ẑ

direction. Denoting the corresponding A by Aǫh , we see that Aǫh−B is now a positive definite operator

and does not have a zero eigenvalue. Indeed, it is easy to see from the foregoing that the corresponding

eigenvalue now becomes non-zero, yielding a positive spin-wave frequency λǫh
µ0

= Ntotǫh. One can

also calculate the O(ǫh) term of f ǫh
µ0
(r) and check that f ǫh

µ0
tends to fµ0(r) in a non-singular way as

ǫh → 0, from which one can obtain the corresponding yµ0(ǫh) analytically in this limit. Thus, the

contribution of the zero mode to all physical quantities can be obtained in the presence of a small

ǫh > 0, and the ǫh → 0 limit of this contribution can then be taken smoothly and analytically at the

end of the calculation.

Treatment of non-zero modes In our actual calculations, we use this analytical understanding of

the zero frequency spin wave mode to analytically obtain the properly regularized zero mode contri-

bution to various physical quantities, while using a computationally convenient approach to numeri-

cally calculate the contribution of the non-zero spin wave modes. To do this, we rewrite Eq. 5.19 for
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µ = 1, 2, 3 . . . Ntot as

(A+B)φµ = λµψ
µ (5.34)

(A−B)ψµ = λµφ
µ

where

φµ = uµ + vµ (5.35)

ψµ = uµ − vµ.

This implies

(A−B)(A+B)φµ = λµ(A−B)ψµ = λ2
µφ

µ (5.36)

(A+B)(A−B)ψµ = λµ(A+B)φµ = λ2
µψµ (5.37)

We now decompose

A−B = K†K. (5.38)

where

K =
√
ωU. (5.39)

with ω the diagonal matrix with diagonal entries given by eigenvalues of the real symmetric matrix

A−B, and U the matrix whose rows are made up of the corresponding eigenvectors.

With this decomposition, we multiply Eq 5.37 by K from the left to obtain

K(A+B)K†χµ = λ2
µχ

µ. (5.40)

with χµ = Kψµ. From the solution to this equation, we may obtain the φ as

φµ = (K†)χµ/λµ. (5.41)

and thence obtain ψµ using Eq. 5.35. In order to ensure the correct normalization of the resulting

uµ, vµ, we impose the normalization condition

(χµ)†χµ = λµ. (5.42)

Thus our computational strategy consists of obtaining eigenvalues of the symmetric operator K(A+

B)K†, and using this information to calculate the yµ and thence the Bogoliuov transform matrix S.

Notwithstanding the normalization used in Eq. 5.42, the zero mode with λµ0 = 0 causes no difficulties

in this approach, since we work in practice with the projection of K(A+B)K† in the space orthogonal

to the zero mode. This is possible because we already have an analytic expression correct to O(ǫh)

for yµ0(ǫh) and yNtot+µ0(ǫh) corresponding to this zero mode, and do not need to determine these two

columns of S by this computational method.
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Putting all modes together, to the final expression of nz
↑ We use this procedure to calculate the

zero temperature boson density as

b†rbr = lim
ǫh→0

Ntot

µ=1


vµr (ǫh)

2
. (5.43)

In this expression, one may use the numerical procedure outlined above to obtain the contribution of

all µ = µ0 directly at ǫh = 0, while being careful to use our analytical results for vµ0(ǫh) to obtain the

limiting value of the contribution from µ = µ0. This gives

b†rAbrA =


µ=µ0

(vµrA)
2 (5.44)

b†iBbiB = 1 +


µ=µ0

(vµrB )
2 (5.45)

Here, the distinction between sites on the A and B sublattices arises in this final result because

limǫh→0 v
µ0

r (ǫh) = −1 for r belonging to the B sublattice, while limǫh→0 v
µ0

r (ǫh) = 0 for r belonging

to the A sublattice.

Knowing the average boson number at each site gives us the first quantum corrections to the ground

state expectation value Sz(r):
Sz(r) = ηr(S − b†rbr) (5.46)

This result for the spin-wave corrections to the ground state spin texture then allows us to write nz
↑ =

limL→∞(


r ηrSz(r))/Ntot as

nz
↑ = S −Δ (5.47)

where Δ represents the leading spin-wave correction to the classical value for nz
↑.

Finite size scaling from spin wave theory

In order to obtain nz
↑ reliably in this manner, it is important to understand the finite size scaling proper-

ties of Δ for various values of J
′
/J in the striped interaction model and J2/J in the model with next-

nearest neighbor interactions. In addition we also want to understand the surprising non-monotonicity

in scaling behavior from the spin-wave theory. In Fig. 5.7, we show a typical example of this size

dependence. As is clear, we find that Δ has a non monotonic dependence on L: Δ initially increases

rapidly with size, and, after a certain crossover size L∗, it starts decreasing slowly to finally saturate

to its asymptotic value. This non-monotonic behavior is qualitatively similar to that observed in the

finite size extrapolations of nz
↑ from our QMC data earlier. To explore this unusual size dependence

further and reliably extrapolate to the thermodynamic limit, we analyze the contributions to Δ from

the spin-wave spectrum in the following way: We note that there is always a monotonically and rapidly

convergent O(1) contribution to Δ from the lowest frequency spin-wave mode, whose spin-wave fre-

quency scales to zero as 1/Ntot (for any finite Ntot, this is not an exact zero mode of the system). We

dub this the ‘delta-function contribution’ and its thermodynamic limit is easy to reliably extrapolate
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Figure 5.7: A typical example of the finite size scaling of the delta-function and continuum contri-

butions to Δ. Note the monotonically increasing size dependence of the delta-function contribution,

and the non-monotonic and more slowly converging nature of the continuum contribution. Due to

this difference in their behavior, we find it more accurate to separately fit each of these contribu-

tions to a polynomial in 1/L and use this to obtain the thermodynamic limit of the total Δ. Here

Fδ/c(L) = bδ/c + cδ/c/L− aδ/c/L
2 + dδ/c/L

3.
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to. In addition, there is a ‘continuum contribution’ coming from all the other spin-wave modes, each

of which contributes an amount of order O(1/Ntot). This contribution converges less rapidly to the

thermodynamic limit, and also happens to be non-monotonic: it first increases quickly with increasing

size, and then starts decreasing slowly to finally saturate to the thermodynamic limit.

The delta-function contribution can be fit best to a functional form

Fδ(L) = bδ +
cδ
L

− aδ
L2

+
dδ
L3

, (5.48)

with the dominant 1/L2 term accounting for the monotonic increase with L, while the continuum

contribution is fit to

Fc(L) = bc +
cc
L

− ac
L2

+
dc
L3

, (5.49)

whereby the size dependence is predominantly determined by the competition between the term pro-

portional to 1/L which decreases with increasing L, and the term proportional to 1/L2 which increases

with increasing L. This gives rise to non-monotonic behavior whereby the continuum contribution first

increases rapidly and then decreases slowly beyond a crossover length L∗ to finally saturate to its infi-

nite volume limit. We also find that the length L∗ gets larger as we deform away from the pure square

lattice antiferromagnet, making it harder to obtain reliable extrapolations to the thermodynamic limit.

5.4.1 Universality from spin wave theory

Using such careful finite-size extrapolations to obtain Δ for various values of J2/J and J
′
/J , we

compare the result with Δ′ calculated analytically. Specifically, we now ask if the universality seen in

our QMC results is reflected in these semiclassical spin-wave corrections to nz
↑ and m0. The answer

is provided by Fig. 5.8, which shows that the numerically obtained spin-wave corrections apparently

satisfy a universal linear relationship

Δ−Δ′ ≈ 1.003 + 0.013Δ′ (5.50)

as one deforms away from the pure square lattice antiferromagnet in various ways.

What does this imply for nz
↑(m0) to leading order in 1/S? To answer this, we note that

nz
↑

m0
= 1− Δ−Δ′

S
+O(S−2) (5.51)

Using our numerically established universal result to relate Δ −Δ′ to Δ′ and thence to m0 itself, we

obtain the universal relationship (upto leading order in 1/S),

nz
↑ = αm0 + βm2

0 (5.52)

with α ≈ 0.987− 1.003/S and β ≈ 0.013/S. However, being a large-S expansion, spin-wave theory

is unable to give a quantitatively correct prediction for nz
↑(m0) for the S = 1/2 case.
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Spin texture from spin-wave theory Finally, we use our spin-wave predictions for the ground-

state spin texture to look at the Fourier transform of the spin-texture for various deformations of the

pure antiferromagnet. The results are shown in Fig. 5.9, which demonstrates that spin-wave theory

also predicts that the Fourier transform of the spin-texture near the antiferromagnetic wave-vector is a

universal function of the wavevector; this provides some rationalization for the observed universality

of the Fourier transformed spin texture seen in our QMC numerics.

5.4.2 Sublattice-spin mean-field theory

We now turn to a simple mean-field picture in terms of the dynamics of the total spins LA and LB

of the A and B sublattices respectively, for an antiferromagnet composed of spin-S moments at every

site. The idea of this mean-field theory is to approximately model the true low-energy spectrum of the

spin-S antiferromagnet by that of a model in which the NA, A-sublattice spins form a giant moment

LA, coupling antiferromagnetically with a similar giant moment LB formed by the NB , B-sublattice

spins. At the end of this section, we will see the limitations and scopes of such a simple picture.

Now in our case with NA = NB + 1, it is clearly appropriate to assume that the total spin quantum

number of LB as SB ≡ SNB while the total spin quantum number of LA should be taken to be

SA ≡ SNA = SB + S. In this mean-field treatment, we assume the following low-energy effective

Hamiltonian describes the dynamics of LA and LA,

HMF = JMF
SA · SB (5.53)

with JMF > 0. Within this mean-field treatment, the Stot = S ground-state multiplate expected from

the Lieb-Mattis theorem for an odd sized sample is thus modeled by the Stot = S multiplate obtained

by the quantum mechanical addition of angular momenta SB ≡ SNB and SA = SB + 1/2. Within
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this mean-field theory, nz
↑ is modeled as the expectation value of (Lz

A − Lz
B) in the Sz

tot = S state of

this multiplate.

nz
↑ = lim

NB→∞
1

Ntot
Stot = S, Sz

tot = S;SB;SA| (Lz
A − Lz

B) |Stot = S, Sz
tot = S;SB;SA (5.54)

Which can be readily obtained in closed form using the following standard result for the minimum

angular momentum state |J = j1 − j2,mJ state obtained by the addition of angular momenta j1 and

j2 (with j1 ≥ j2):

j1,m1; j2,m2|J,mJ = ρJc
J,mJ
m1,m2

(5.55)

with

ρJ =


(2J + 1)!(2j2)!

(2j1 + 1)!
(5.56)

and

cJ,mJ
m1,m2

= (−1)j2+m2 [(j1 +m1)!((j1 −m1)!]
1/2 [(j2 +m2)!(j2 −m2)!(J +mJ)!(J −mJ)!]

−1/2
(5.57)

for m1 +m2 = mJ and cJ,mJ
m1,m2 = 0 otherwise. In our case, j1 = SB + S, j2 = SB , J = S, mJ = S,

and nz
↑ = m1 −m2J,mJ

/Ntot can therefore be readily calculated to obtain,

nz
↑ = lim

NB→∞
2S + 1

2NB + 1
×

SA

m=−(SB−S)

(2m− S)Γ(2SB + 1)Γ(SA +m+ 1)

Γ(2SA + 2)Γ(SB +m+ 1− S)
, (5.58)

using Γ(n) = (n− 1)!, where n is an integer. Surprisingly this sum can be carried out to the following

closed form expression

nz
↑ = lim

NB→∞
1

2NB + 1


S +

2S

S + 1
SB


. (5.59)

On the other hand, we may also calculate m2
0 defined as

m2
0 = (LA − LB)

2J=0/N
2
tot, (5.60)

where the average is taken in the Stot = 0 singlet state (note the suffix). Like before this is obtained

by quantum-mechanics addition of LA and LB where the two sublattice angular momenta are equal:

SB = SA = SNtot/2 for sample with even number of sites Ntot. This leads to,

m2
0 = lim

Ntot→∞
1

Ntot
2


SB(SB + 1) . (5.61)

This allows us to compute the ratio nz
↑/m0 in the thermodynamic limit:

nz
↑/m0 = lim

Ntot→∞


S

S + 1
m0 +O


1

Ntot


(5.62)

Is there a limit in which this sublattice-spin mean-field theory is expected to give exact results?

The sublattice-spin model represents the Hamiltonian of an infinite-range model in which every A

sublattice-spin interacts with every B sublattice-spin via a constant (independent of distance) antifer-

romagnetic exchange coupling JMF . In this limit, we also expect m0 → 1/2, and thus, our mean field

theory predicts that nz
↑ → m0/3 when m0 → 1/2. This is the constraint that we built into our choice

of polynomial fit for nz
↑(m0) in section. 5.2.
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Figure 5.9: Fourier transform (with antiperiodic boundary conditions assumed for convenience) of the

spin-wave result for Φz(r) (assuming S = 3/2 and calculated using L = 75 for JJ2 and JJ ′ model)

along cuts passing through the antiferromagnetic wavevector (π,π). Note the nearly universal nature

of the results in the neighborhood of the antiferromagnetic wavevector, which in any case accounts for

most of the weight of the transformed signal.

For further understanding of this sublattice-spin model as a low energy effective model, consider

Heisenberg model on a square lattice with nearest neighbor interaction (Eq. 5.1). We go to the recip-

rocal space by Fourier transforming the spin operators as,

SQ =
1√
Ntot



i

Siexp(−iQ.ri). (5.63)

In the last expression ri is the coordinate of spin i and Q runs on the reciprocal space points in first

Brillouin zone (BZ). On a lattice with Ntot sites and periodic boundary condition this leads to the

following expression of Hamiltonian in reciprocal space,

H = J


Q∈BZ

ζQSQ.S-Q (5.64)

The lattice structure factor is denoted as ζQ, for a square lattice that reads,

ζQ =
1

2



i=1,2

cos(Q.ai), (5.65)

with ai (i = 1, 2), the unit vectors of a square lattice. On this lattice the Néel state is invariant

by translations associated to wavevectors Q0 ≡ (0, 0) and QN = (π,π). One can breakdown the

Hamiltonian H in two components, H0 containing the Q0 and QN momentum terms and H1 containing

all other momentum terms.

H = H0 +H1 (5.66)

where

H0 = J(S2
0 − SQN

S−QN
) (5.67)
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and

H1 = J


Q∈BZ−{Q0,QN}
ζQSQS-Q. (5.68)

From the expression 5.63 one can easily show

H0 =
2J

Ntot


S2
tot − S2

A − S2
B


, (5.69)

H0 =
4J

Ntot
(SA.SB) , (5.70)

where Stot ≡ SNtot is the total spin of the system and SB ≡ SNB ,SB ≡ SNA are respectively the

total spin of A and B sublattices. This is the model we-called sublattice mean-field model(Eq. 5.53)

by writing JMF = 4J
Ntot

. The model is exactly solvable as H0 is an SU(2) invariant Hamiltonian

commuting with S2
tot,S

z
tot and S2

A(B). Also from the above discussion we can see that it is the true

low energy description (in the thermodynamic limit) of the ’classical’ Néel ordered antiferromagnetic

phase, when only the wavevectors corresponding to Néel order(Q0 and QN ) is contributing. In such a

limit the nz
↑/m0 ratio in Eq. 5.62 will be exact. Since numerical and spin wave results both show clear

deviations from this results(Eq. 5.7 and Eq.5.52), we conclude the other such non-zero wavevector

modes are essential for a correct calculation of the universal function nz
↑(m0); as is evident from Fig.

5.6.

5.4.3 Quantum rotor Hamiltonian

The other approach we take in understanding effective low energy behavior of antiferromagnetic phase

is in terms of a quantum rotor picture. Consider SLHAF, which is a bipartite system with Ntot(even)

number of sites; the ground state of the same is a Néel ordered state (|ψN ) with quantum fluctuations.

As we know the classical Néel state (|ψN ) is not an eigenstate of the spin operator and explicitly

breaks the SU(2) symmetry of the Heisenberg Hamiltonian. However, for a finite size system with

NA = NB , the ground state is always singlet(Stot = 0) by Lieb-Mattis [30] theorem, which means

that the true ground state has no preferred direction in spin space, restoring the SU(2) symmetry. The

solution of this apparent puzzle was suggested by Anderson by noticing that the |ψN  can be thought of

quantum superposition of all possible eigenstates of the Heisenberg spin model(Eq. 5.1). As shown by

Anderson, those eigenstates are characterized by finite total angular momentum sectors from Ltot = 0

to Ltot = SNtot(as the Hamiltonian is SU(2) symmetric) and the rotational symmetry can be restored

by the precession of the Néel state vector in all those spin sectors. Anderson also argued, the Néel state

is a superposition of many effectively degenerate states, they are truly degenerate in the thermodynamic

limit. These states for finite size system is knowns as “Anderson’s tower of states“, which collapses

to the degenerate state in thermodynamic limit. The vector representing Néel order(Néel vector n)

precesses between those angular momentum sectors due to the quantum fluctuations, but the rate of

precessing is O


1
Ntot


, so in the thermodynamic limit one can think of it as a stationary or infinitely

heavy degrees of freedom. This idea is in par with the concept of “spontaneous symmetry breaking”,

as we know when any continuous symmetry is broken, the corresponding order parameter variable
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becomes very “heavy” in a well-defined sense.[35] The long-time, slow dynamics of this heavy nearly

classical variable is controlled by an effective “mass” that diverges in the thermodynamic limit.

Neuberger and Ziman [26] approached to model the low energy spectrum of a finite system (the

“tower of states”) by constructing an effective Hamiltonian which respects the SU(2) symmetry of

the original Heisenberg Hamiltonian. By the discussion above the Néel vector can be thought of as a

angular momentum degree of freedom, which is made by quantum addition of spin angular moments

of the system. The angular momentum variable is precessing very slowly about some axis for some

large value of Ntot, and thus it can be mapped to a model for a rigid rotor. In the usual case of an

antiferromagnet with an even number of spin-S moments, the low-energy effective Hamiltonian that

controls the orientation dynamics of the Néel vector n is

Hrotor =
Ltot · Ltot

2χNtot
(5.71)

where Ltot is the angular momentum conjugate to the “quantum rotor” coordinate n̂ ≡ n/|n|, χ is the

uniform susceptibility per spin, and Ntot is the total number of spins. The effective moment of inertia

of the rotor being an extensive quantity is given by I = Ntotχ (intuitively the rotor is heavier as the

Ntot and χ increases). The eigenstates of Hrotor will be

Erotor =
Ltot(Ltot + 1)

2χNtot
. (5.72)

Now we generalize this to our case of NA = NB + 1 and an odd number of spins Ntot = 2NB + 1.

Following earlier work on quantum rotor descriptions of insulating antiferromagnets doped with a

single mobile charge-carrier[36], we postulate that the correct rotor description of our problem is in

terms of a rotor Hamiltonian in which L is replaced by the angular momentum operator L′ conjugate

to a quantum rotor coordinate n̂ that now parametrizes a unit-sphere with a fundamental magnetic

monopole at its origin.[37] In other words, we postulate a low-energy effective Hamiltonian

HS
rotor =

L
′

tot · L
′

tot

2χNtot
(5.73)

where the superscript reminds us that the lowest allowed angular momentum quantum number l

of the modified angular momentum operator L
′

tot is l = S. The angular wavefunction[37] of the |l =
S,ml = S ground state of this modified rotor Hamiltonian is the monopole harmonic Y−S,S,S(θ,φ).

To calculate nz
↑/m0 we calculate nz

↑↑ i.e. the expectation value of n̂z ≡ cos(θ) in this monopole

harmonic wave function on the unit sphere. Since |Y−S,S,±S(θ,φ)|2 ∝ (1± cos θ)2S , it leads to

nz
↑↑ =

S

S + 1
m0, (5.74)

which is exactly the same expression we got from sublattice mean-field theory.

Connection between two-sublattice mean field theory and quantum rotor model The question

one can ask here is: why do we get the same relation (Eq. 5.62 and Eq. 5.74 ) from two apparently
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different low energy approximations of the antiferromagnetic phase ? The rotor model is a more general

phenomenological approach than the sublattice mean-field theory which doesn’t take into account any

nonzero wave vector modes or the amplitude fluctuations of the Néel order parameter, also the model

makes no assumptions about any long range interactions. It still reproduces the sublattice mean-field

theory results which is asymptotically exact in the limit of innite-range unfrustrated interactions. This

seems to be consistent with Andersons analysis of the low-energy tower of states in an antiferromagnet

which used a picture in terms of the total spin of each sublattice to arrive at a rotor description. To

illustrate that statement let us look at the Eq. (5.69), the eigenvalues of H0, will be

E =
4J

Ntot
[Stot(Stot + 1)− SA(SA + 1)− SB(SB + 1)] . (5.75)

Where both SA and SB can span over the values 0, 1, ..., NtotS
2 and for a given SA, SB , Stot can span

0, 1, ..., NtotS. Which leads to the ground state energy in each Stot sector as,

EG(Stot) = −J

2
(Ntot + 4) +

4J

Ntot
[S(S + 1)] . (5.76)

As by Lieb-Mattis theorem, for even Ntot and classical Néel state, SA = SB = NtotS/2. This

corresponds to the rotor spectrum in Eq. 5.72 and that tower of states in finite size also collapse to the

ground state as O(1/Ntot). This gives us a reason why we should expect same result from this two

apparently different effective low energy models.

Thus, a more general phenomenological approach that goes beyond sublattice-spin mean-field theory

but ignores all non-zero wavevector modes also gives

nz
↑ =

m0

3
, (5.77)

for S = 1/2. Since our QMC data show clear deviations from this result[Fig 5.6], like before we

conclude that such non-zero wavevector modes are essential for a correct calculation of the universal

function nz
↑(m0).

5.5 Discussion

We conclude this chapter with some questions not answered in this work. A natural question that

arises from our results is whether the universal ground state spin texture we have found here can be

successfully described using an effective field theory approach of the type used recently by Eggert and

collaborators for studying universal aspects of the alternating order induced by missing spins in two

dimensional S = 1/2 antiferromagnets[72]. This approach uses a non-linear sigma-model description

of the local antiferromagnetic order parameter, with lattice scale physics only entering via the values of

the stiffness constant ρs and the transverse susceptibility χ⊥, and the presence of the vacancy captured

by a local term in the action. An analogous treatment for our situation would need two things—one is a

way of restricting attention to averages in the Stot = 1/2 component |G↑ of the ground state doublet,
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and the other is an understanding of the right boundary conditions or boundary terms in the action, so

as to correctly reflect that fact that our finite sample has open boundaries. This can be an interesting

direction for future work, which may shed some light on the role of non-zero wavevector modes that

were left out of the rotor description of the earlier section.
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Chapter 6

Single impurity in one dimensional

antiferromagnetic spin chain

In this chapter we will focus on understanding the origin of multiplicative logarithmic corrections on

the impurity spin texture in Néel ordered phase of an one dimensional Heisenberg antiferromagnet.

With the motivation as outlined in introduction, the plan of the chapter is as follows: in the section

6.1, we will describe the models studied in this problem. In section 6.2, we will briefly review some

facts known from the numerical studies on the spin texture around the impurity in this system. In

section 6.3 we will show with the help of bosonization that the low energy theory of one dimensional

Heisenberg antigerromagnet is a “sine-Gordan” model, which has a bosonic free Gaussian term and a

cosine interaction term; we will also discuss the effect of vacancy in spin chain on the “sine-Gordan”

model. In section 6.4 we will use renormalization group (RG) improved perturbation theory from the

bosonization framework to obtain predictions for the alternating part of the spin texture in this example;

at the end of this section we will write down our field theory prediction for the same in a closed form. In

the section 6.5 we will compare the numerical results to our field theory results, keeping careful track of

the effects of the marginal cosine interaction term using one loop RG improved perturbation theory. In

section 6.6 we will end the chapter with a discussion on the possible future research directions relevant

to this work.

6.1 Models

For analytical studies, we consider simple Heisenberg antiferromagnet with nearest neighbor interac-

tion in one dimension. The numerical data with which we compare our analytical results are obtained

from a model called JQ3 model.
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6.1.1 Model studied in analytical work

The pure Heisenberg model (Eq.6.1) on an one dimensional ring with N + 1 spins (indexed 0 to N ,

with periodic boundary condition) is given by,

H = J

N

i=0

Si.Si+1. (6.1)

To treat this interacting spin model perturbatively, we introduce an exchange anisotropy in the z di-

rection, the model with such anisotropy is called an XXZ Heisenberg spin chain (Eq.6.3). For per-

turbative treatment we will consider Jz as the small parameter, later we will show how to restore the

effective low energy theory of usual isotropic Heisenberg model with SU(2) symmetry from the low

energy theory of XXZ model.

H = Hxx +Hz (6.2)

=

N

i=0

J

2


S+
i S

−
i+1 + S−

i S
+
i+1


+ JzS

z
i S

z
i+1,

here J is positive, Si s represent the usual spin operators.

6.1.2 Model studied in numerical work

The microscopic model here is an one-dimensional spin chain with nearest neighbor Heisenberg ex-

change J and six-spin coupling Q = 4qJ . The Hamiltonian for this model (known as ‘JQ3 model’)

is:

H = −J

N

i=0

Pi,i+1 −Q


i

Pi,i+1Pi+2,i+3Pi+4,i+5 (6.3)

where Pij ≡ (14 − Si · Sj) is the projector to the singlet state of the two spin-half variables at sites i and

j. Both J and Q are positive, and periodic boundary conditions were imposed by placing the system

on a ring so that site N +1+k is identified with site k (the total number of spins N +1 is taken even).

6.2 Review on relevant numerical studies

The JQ3 model was studied previously using the singlet sector valence-bond projection method[70],

which shows that the Q term (in Eq.) drives a transition to a valence-bond solid phase at qc ≈ 0.04; so

that the system is power-law Neel ordered for q < qc and VBS ordered for q > qc. Such a transition

is more well studied in the case where the transition is driven by next-nearest neighbor Heisenberg

antiferromagnetic exchange couplings. But the JQ3 model is more interesting to study because unlike

the former it does not have a sign problem in standard non-zero temperature QMC calculations (as well

as in the ground state projector QMC approach), and can therefore be studied at larger length scales

and greater precision.

Now to introduce a vacancy in the JQ3 spin chain, one can remove the spin at site 0 by deleting all

interactions that involve the site 0 from the Hamiltonian (Eq.6.2). Since N is odd, the ground state of
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the chain with a missing spin becomes a doublet with Stot = 1/2. Focusing on |G↑, the Sz
tot = 1/2

component of this doublet, the spin texture Φ(r) = Sz(r)↑ can be obtained in this ground state for

various values of q. This spin texture can be decomposed as Φ(r) = Φu(r) + (−1)r/aNz(r), where

alternating part Nz(r) and a uniform part Φu(r) can be obtained from the numerical data [17] by a

suitable coarse-graining procedure. That calculation of spin-texture was performed by Banerjee et

al [17], using a recently developed spin-half sector generalization [68] of the valence-bond projector

QMC algorithm.[70]

We postpone further discussion on those numerical results for Nz(r) till the Section (6.5), where

we compare the numerical results with our field theory results.

6.3 Effective low energy theory of spin 1/2 chain

A spin 1/2 antiferromagnetic chain can be modeled as a collection of bosonic harmonic oscillators

in the low energy limit by the bosonization technique. In this Section we will review the details of

that procedure. Then we will take care of a single site removal in the spin chain in the bosonization

framework and represent the spin operators in terms of bosonic degrees of freedoms.

6.3.1 Spin chain to Harmonic oscillators

Fermionization of the spin chain

The first step of bosonizing a spin 1/2 chain is: mapping the spin chain to a system of spin-less

fermions(≡ ψ). That is performed by the standard Jordon-Wigner transformation which faithfully

represents spin degrees of freedom to spin-less fermionic degrees of freedom in one dimension. The

transformation is given by,

Sz
i = ψ†

iψi −
1

2
(6.4)

S+
i = ψi exp


iπ

N

j=0

ψ†
jψj


.

Using Eq.(6.5), the spin Hamiltonian (6.3) is mapped into the fermionic Hamiltonian as

HXX =
N

i=0


J

2


ψ†
iψi+1 + ψ†

i+1ψi


(6.5)

and

HZ =

N

i=0

Jz


ψ†
iψi −

1

2


ψ†
i+1ψi+1 −

1

2


(6.6)

The lattice fermionic operators satisfying the standard fermionic anitcommutation relations {ψi,ψ
†
i } =

δij and {ψi,ψi} = 0. XXZ model recovers the full SU(2) symmetry of Heisenberg model in the limit

Jz = ±J . In the limit Jz = 0 this Hamiltonian is exactly solvable as the problem reduces to a problem
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of free spin-less fermion hopping problem. In that limit, the dispersion relation is cos(ak) (setting

lattice units as a), with Fermi level at kF = ±π/2a. So the ground state is a half-filled band filled upto

the Fermi level. Now the problem can be approached for small Jz by perturbative expansion around

this ground state. Thus considering only very low energy fermionic excitations around this ground

state, i.e. |k ± kF | ≤ Λ ( Λ ≪ kF is an UV cutoff), the fermionic operator can be written as:

ψ(x) ≈
√
a

e−ikF xψR(x) + eikF xψL(x)


. (6.7)

Where ψL and ψR are left propagating and right propagating modes respectively, containing only

slowly varying (compared to lattice scale a) Fourier modes. Now taking the continuum limit for HXX ,

HXX = v


dx


: ψ†

R


i
dψR

dx


: +ψ†

L


−i

dψL

dx


:


(6.8)

with v = Ja , the Fermi velocity.

Next we consider the HZ term of the Hamiltonian (Eq.6.6). Note that near the Fermi level,

e−2ikF x ≈ e−iπx = (−1)j/a . (6.9)

With this one can see that Sz
j will have one smooth part and one rapidly oscillating part as

Sz
i = : ψ†

iψi : (6.10)

≡ : ψ†
R(x)ψR(x) + ψ†

L(x)ψL(x) : +e−2ikF xψ†
R(x)ψL(x) + h.c.

= : ψ†
R(x)ψR(x) + ψ†

L(x)ψL(x) : + (−1)j/a ψ†
R(x)ψL(x) + h.c.

The HZ term contains four different low energy processes near the Fermi level, we will discuss them

one by one. Re-writing the four fermion interaction term with Jz interaction in terms of fermionic

current operators as JL =: ψ†
LψL : JR =: ψ†

RψR :, the Jz interaction term in the continuum limit

becomes

HZ ≈ Jz

N

i=0

Sz
i S

z
i+1 =

N

i=0

: ψ†
iψi :: ψ

†
i+1ψi+1 : (6.11)

= Jz :

JL + JR + (−1)j/a ψ†

RψL + h.c.

::

JL + JR + (−1)j+1/a ψ†

RψL + h.c.

:

= Jz


dx


: J2

L : + : J2
R : +4 : JLJR : −{(: ψ†

LψR :)2 + h.c.}

.

The First two terms in this expression represents a low energy process which breaks Lorentz invariance.

Applying Wick’s formula upto first order (restoring the Lorentz symmetry) on those two terms leads

to a free fermion Hamiltonian as follows:

JL(x)JL(x) = lim
a→0

JL(x)JL(x+ a) (6.12)

≈ : JL(x)JL(x) : +
i

2πa


ψ†
L(x+ a)ψL(x)− ψ†

L(x)ψL(x+ a)

+ constant

≈ − i

π
ψ†
L

d

dx
ψL + constant.
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Similarly,

JR(x)JR(x) ≈
i

π
ψ†
R

d

dx
ψR + constant. (6.13)

Thus the only effect of this Lorenz symmetry breaking terms in Eq.(6.12) is to renormalizes the Fermi

velocity as u = a(J + Jz
π ) (Eq.6.8,6.13,6.13).

The third interaction term in Eq.(6.12) represents a Lorentz symmetry preserving process and we

will keep that term as it is. The fourth term represents a process called “Umklapp” process and that is

the only term which can generate a gap as we will see in the following discussion. We will call that

term as H1 (Eq.6.14) and the combination of all other massless terms as H0. So H0 expressed in terms

of spin-less Fermion current with renormalized Fermi velocity is :

H0 = uπ


dx


J2
R + J2

L +
4Jz
πu

JLJR


. (6.14)

And the “Umklapp” part of the Hamiltonian is given by

H1 = −Jz


dx{(: ψ†

LψR :)2 + h.c.}. (6.15)

Bosonization of the spin-less fermionic Hamiltonian Next we appeal to the standard bosonization

dictionary (see Appendix-A for a brief review on bosonization) to convert the fermionic fields(ψ) to

bosonic fields (φ) as follows:

JL =
1√
4πa

(Π− ∂xφ) (6.16)

JR = − 1√
4πa

(Π+ ∂xφ)

ψL =
1√
2πa

exp(−i
√
4πφL)

ψR = − 1√
2πa

exp(i
√
4πφR),

the prefactors depend on the UV cut-off (lattice constant a) and here Π is conjugate momentum to the

bosonic field φ. We first take on H0 (Eq.6.14) and then H1 (Eq.6.15). Bosonized H0 is given by

H0 =
u

2


1− 2Jz

u


(∂xφ)

2 +


1 +

2Jz
u


(∂xΠ)

2


. (6.17)

Where φL and φR are respectively left and right propagating parts of the φ which can be rewritten

as

φL(x) =
1

2


φ(x)−

 x

−∞
dyΠ(y)


(6.18)

φR(x) =
1

2


φ(x) +

 x

−∞
dyΠ(y)


.

Introducing a dual field φ = −
 x
−∞ dyΠ(y) the Hamiltonian (Eq.6.17) can be rewritten as

H =
u

2


1− 2Jz

u


(∂xφ)

2 +


1 +

2Jz
u


∂xφ

2


(6.19)
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For convenience one can define a rescaling factor

R2 =
1

4π


1 + 2Jz

u

1− 2Jz
u

 1
2

≈ 1

4π


1 +

2Jz
πv


, (6.20)

to rescale φ and φ in an opposite way such that the canonical commutation relations are preserved.

φ → φ√
4πR

(6.21)

φ →
√
4πRφ.

This gives the free boson Hamiltonian

H0 =
u

2

 L

0
dx




dφ

dx

2

+


dφ
dx

2

 (6.22)

Now let’s turn to H1 (Eq.6.15); one can expand it using the bosonization dictionary,

(: ψL(x)
†ψR(x) :)

2 = lim
a→0

: ψL(x)
†ψR(x)ψL(x+ a)†ψR(x+ a) : (6.23)

=
1

4π2a2
lim
a→0

: e
iφL(x)†

R e
iφR(x)

R e
iφL(x+a)†

R e
iφR(x+a)

R :

=
1

4π2a2
lim
a→0


: e

iφ(x)
R :: e

2iφ(x+a)
R : +...


.

Here “...” represents the derivative terms. In the weak-coupling limit Jz → 0 , where R ≈ 1√
4π

, the

operator e
2iφ(x)

R is irrelevant and can be dropped. With increasing R it becomes more relevant and the

term H1 takes the form

H1 = −Jz


dx{(: ψ†

LψR :)2 + h.c.} (6.24)

= − Jz
2π2a2


dx cos


2φ(x)

R


.

For convenience we choose to represent the coefficient in a dimensionless form as ǫ0 = Jz
2π2u

, leading

to

H1 = −uǫ0
a2

 L

0
dx cos


2φ(x)

R


. (6.25)

Thus the full continuum Hamiltonian is of the form,

H = H0 +H1 (6.26)

=
u

2

 L

0
dx




dφ

dx

2

+


dφ
dx

2

− uǫ0

r20

 L

0
dx cos


2φ(x)

R


.

For generalization let us write the UV regulator as r0, here we have always chosen r0 = a. This

Hamiltonian (Eq.6.27) is well known in the literature as the “sine-Gordan” model.

Note that all physical operators if this Bosonic theory are symmetric under a transformation

φ ≡ φ+ 2πR (6.27)

φ ≡ φ+
1

R
.

This leads to an interpretation of the boson field φ as a periodic variable measuring the arc length on a

circle of radius R, which was introduced as a scaling parameter for the fields φ and φ.
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Comparing bosonization parameters with exact results

As mentioned in the introduction, the advantage of analyzing this spin-1/2 model in 1-dimension is

that the field theory results can be compared with exact results. The scaling introduced via parameter R

so far is valid only for small values of Jz and by this token it is not possible to know the true relations

of the scale parameter R and the renormalized velocity u. By exact calculation using Bethe ansatz that

can be determined analytically and it provides useful checks for the field theory results. With a new

variable cos θ ≡ Jz
J those quantities from Bethe ansatz calculations are known as

u =
Jπ sin θ

2θ
(6.28)

and

R =


1

2π
− θ

2π2


. (6.29)

Thus at small Jz , R ∼ 1√
4π


1 + Jz

πJ


as we have seen previously from the perturbation theory in Eq.

6.20. And at the isotropic point (Jz = J) R = 1√
2π

, as expected from the SU(2) symmetry at this

value of R from Eq. 6.28.

6.3.2 Removing a site from the spin chain

Finally we impose the condition that we have a vacancy at the site at location zero i.e. the spin at

site with index “0” is missing and the system is made of spins at sites indexed from 1 to N . This is

equivalent to imposing an open boundary condition between sites with index 1 and N . To impose open

boundaries assume two ghost sites with index 0 and N + 1 and demand S(0) = S(N + 1) = 0. That

translates to following conditions for bosonic fields φ(r),

φ(0) = 0 (6.30)

φ(N + 1) = 2πRSz
tot.

Where Sz
tot =

N
i=1 S

z
i is the total magnetization in z direction and the boundary condition is in par

with the symmetry condition in Eq.6.28. With this boundary condition the mode expansion is given by,

φ(r) = πR+
πR

L
r +

∞

n=1

sin

nπr
L


(an + a†n)√
πn

(6.31)

φ(r) = φ0 + i

∞

n=1

cos

nπr
L


(an − a†n)√
πn

.

Here πR is actually eigenvalue of the zero mode represented by vacuum of bosons q0. Such that

q0|gnd ≡ q0|0 ≡ πR|0 (actually 2πRSz
tot, but here Sz

tot = 1/2). The non zero commutation

relations are

φ(0), q0


= i,


am, an† = δmn.

The spin operators represented in terms of this bosonic operators with this open boundary condi-

tions are given by,
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Sz(r) =
a

2πR

dφ

dr
+

A√
r0
(−1)

r
a sin


φ(r)

R


(6.32)

S−(r) = e−i2πR�φ

B(−1)

r
a + C sin


φ(r)

R



Where A,B,C are coefficients dependent on the microscopic details of the Hamiltonian, from the

effective theory standpoint they are determined as free parameters of the theory by fitting with the

experimental or numerical data.

So all the quantities for spin chain with a vacancy will be evaluated with these expressions of mode

expansion(Eq.6.32) and magnetization(Eq.6.33).

6.3.3 RG analysis of sine-Gordon model

The “sine-Gordon” model is analyzed in various context as it is related to a variety of other models

like the spin-1/2 XY Z chain, One dimensional fermionic system with backward scattering, two-

dimensional Coulomb gas problem etc. Now we will briefly review the low energy behavior of “sine-

Gordon” model from RG point view.

The three free parameters in this model given by u,ǫ and R, this effectively reduces to two as u

is just an overall factor. The other two ǫ(L) and R(L) can be thought of as dependent on the the

energy/length scale. We want to know the stable low energy fixed point(or collection of points i.e. a

fixed line) of the system in terms of RG flow, given a starting point (ǫ(L0), R(L0)). The flow equation

in the ǫ − R plane is determined by splitting the fields as fast(above momentum cutoff ΛeL) and

slow(between momentum cutoff ΛeL and UV cutoff Λ) and then by generating the effective coupling

of the slow field terms for H1 in first two orders of ǫ and ǫ2, obtained by integrating out the fast modes.

This leads to the following flow equations,

dǫ(L)

dL
= 2ǫ(L)


1

2πR2(L)
− 1


+

π2ǫ3

2R2(L)
(6.33)

dR(L)

dL
= −πǫ2(L).

The solution of this coupled first order differential equation upto second order in ǫ will give us the

flow-trajectory as the hyperbolic equation,


1− 1

2πR2

2

− π2ǫ2 = Const. (6.34)

The phase diagram of the “sine-Gordan “model is given by all possible paths (ǫ(L), R(L)) satisfying

Eq.6.34 in the ǫ − R plane. Each of those paths with an arrow direction denotes the flow of an initial

point (ǫ(L0), R(L0)) where the observable start at L = L0 and flows towards the arrow direction at

lower L (as in Fig ”to be made”). The three different phases in this flow-trajectory diagrams are as

follows,
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• Asymptotic freedom region

In the regime where R ≤ 1√
2π

and ǫ ≥ 1√
π


1

2πR2 − 1


, the flow is towards the fixed line

ǫ = 0, R ≤ 1√
2π

. This line is described as free Gaussian theory. In the corresponding spin

problem the corresponding parameter range is −1 < Jz
J ≤ +1. In this critical regime the

ground state is singlet with Sz = 0 with power law correlations. This phase is known as the

“Tomonaga-Luttinger liquid” (TLL) phase.

• Strong coupling

In the regime where R ≤ 1√
2π
, ǫ < 0 and R > 1√

2π
, ǫ > 1√

π


1

2πR2 − 1


, the flow is towards

ǫ → −∞ .

In the regime where R ≤ 1√
2π
, ǫ > 0 and R > 1√

2π
, ǫ < 1√

π


1

2πR2 − 1


, the flow is towards

ǫ → ∞ .

As it is evident, in both of these two cases the cosine term in the Hamiltonian becomes very

significant. The corresponding parameter regime in the spin chain for the first case can show

staggered two point correlations as the signature of “spin Pierl’s order”. For the second case the

spin problem shows Neel order with staggered magnetization.

• crossover

The special line marking crossover from asymptotic freedom region to strong coupling region at

ǫ = 1√
π


1

2πR2 − 1

. This line is in the TLL phase with Jz = J and is of our interest here as it

retains the SU(2) symmetry of Eq.6.1, with symmetric two point correlators in all directions of

same spin components. We discuss further about this regime below.

6.3.4 Low energy theory of isotropic Heisenberg model

The original model we want to study is the Heisenberg spin model with isotropic exchange interaction

i.e. J = Jz in Eq.6.1, but to handle interaction perturbatively we introduced an anisotropy in z

direction by making Jz ≪ J . This means our bosonic Hamiltonian doesn’t have any SU(2) symmetric

phase representing the isotropic Heisenberg model. Nevertheless the effective low energy theory of the

SU(2) symmetric Heisenberg model can be recovered at the point (ǫ = 0, R = 1√
2π

). To see how is

that possible, one can calculate1 the correlators Sz(x)Sz(x
′) ,S+(x)S−(x′) from equations (6.32,

6.33) and notice that at leading order those two correlators decay with same power law exponent

at the point (ǫ = 0, R = 1√
2π

), manifesting SU(2) symmetry. The renormalization group should

always respect the symmetry of the Hamiltonian, so all the points flowing into and out from the SU(2)

symmetric point should posses SU(2) symmetry. From the renormalization flow Eq. 6.34 and the

1For that calculation see Reference [73].
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relations 6.34, 6.20 one can therefore conclude that on the line

1

2πR2
= 1− πǫ0, (6.35)

the low energy theory is SU(2) symmetric in a RG sense. Thus on that critical line(Eq. 6.36), at low

energy the SU(2) symmetry appears by the renormalization which does not exist in the original micro-

scopic Hamiltonian corresponding this low energy theory(Eq. 6.1). So one can say the “sine-Gordan“

model is the correct low energy model of the SU(2) symmetric isotropic Heisenberg model (Eq. 6.1)

on the critical line[23]. The well-known Kosterlitz-Thouless renormalization group theory[74] is ap-

plicable on the SU(2) symmetric line yielding the flow equation (using Eq.(6.36) on Eq.(6.34)),

dǫ

d lnL
= βǫ(ǫ(L)) (6.36)

with the one loop expression for the beta function being given by[25]

βǫ(ǫ(L)) = 2πǫ2(L)− 1

2
(2π)2)ǫ3(L) . (6.37)

This equation can be solved to obtain the running coupling constant ǫ(L) at scale L as[25]

1

ǫ(L)
− 1

ǫ0
= −2π


log


L

r0


+

1

2
log


log


L

r0


+O(1). (6.38)

Note that ǫ0 is negative in the power-law ordered antiferromagnetic phase in the present sign conven-

tion.

Obtaining alternating part of the spin texture from bosonization framework

Within this bosonized formulation, the magnetization or spin-texture operator Sz(r) at site r =

ja is represented as in Eq.(6.33). The alternating part of the spin texture is given by the operator

1√
r0

sin

φ(r)
R


. The expectation value of that i.e. the one-point function S =  1√

r0
sin


φ(r)
R


↑ can

be thought of as a function of L and the running coupling ǫ(L) for fixed bare coupling ǫ0 and fixed

r/L (S = S (L, ǫ(L)/ ǫ0,
r
L)). So it will be useful to recall that one-point function must obey the

Callan-Symanzik type RG flow equation[25]


∂

∂ lnL
+ βǫ(ǫ)

∂

∂ǫ
+ γ(ǫ)


S (L, ǫ(L)/ ǫ0,

r

L
) = 0. (6.39)

with the anomalous dimension having the expansion

γ(ǫ) =
1

2
+
π
2


ǫ(L) (6.40)

in terms of the running coupling ǫ. As is well-known, this can be solved to leading order in ǫ(L) to

give the following scaling law for S

S (L, ǫ(L)/ ǫ0,
r

L
) ∼= F0√

L


ǫ0

ǫ(L)

 1
4

(1 + ǫ(L)R) , (6.41)

where F0


r
L


and R


r
L


are some functions of the ratio r

L and the key point about this formal expres-

sion for S is that all dependence on the ultraviolet regulator r0 has been traded in for a dependence on

ǫ(L), the running coupling at scale L for a flow that starts with bare coupling ǫ0 at scale r0.
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6.4 Results for alternating part of spin-texture

With these preliminaries out of the way, we now outline the strategy we took to calculate the alternating

part of Sz(r)↑ (we defined it as Nz(r)). The basic idea is to begin by calculating the result for this

alternating part using the bosonized part of the alternating spin density and bare perturbation theory to

first order in ǫ0 for a finite system of length L. As we shall see below, this bare perturbation theory

result will turn out to depend logarithmically on the value of the ultraviolet cutoff r0 via a logarith-

mic ultraviolet divergence arising from a first order perturbation theory contribution proportional to

ǫ0 log
L
r0

. This logarithmic divergence makes bare perturbation theory suspect, since a notionally small

O(ǫ0) correction turns out to have a logarithmically diverging coefficient.

To extract useful information from the bare perturbation theory, it is therefore necessary to appeal

to the Callan-Symanzik equation for the one point function S, and use the fact that S is expected to

have the general form as in Eq.6.41. In order to make contact with our bare perturbation theory result

(for details of that calculation go to Appendix-B), we expand this renormalization group prediction to

first order in the bare coupling constant:

S =
F0


r
L


√
L


1− π

2
ǫ0 log

L

r0
+ ....


1 + ǫ0R(

r

L
) + ....



∼=
F0(

r
L)√
L


1− π

2
ǫ0 log

L

r0
+ ǫ0R(

r

L
) + ....


. (6.42)

By comparing with the result of our first order perturbation theory in ǫ0, it becomes possible to fix the

functions F0 and R. This strategy gives us the one-loop RG improved result for the alternating part of

Sz(r)↑

Nz(r) = c
√
a
F0√
L


ǫ0

ǫ(L)

 1
4

(1 + ǫ(L)R) , (6.43)

with

F0(
r

L
) = −


π sin θr

2
, (6.44)

and

R(
r

L
) =

π

2
log

2π

sin θr
+ 2

 θr

0
+

 π−θr

0


φ cotφdφ , (6.45)

with θr ≡ πr
L .

In order to cast this expression into an explicitly useful form for comparison with numerical results

on a chain of N sites with lattice spacing a, we rewrite the prefactor as


ǫ0

ǫ(L)

 1
4

≈

1 + 2π|ǫ0|


log


L

r0


+

1

2
log


log


L

r0

1/4

.

Express ǫ(L) as

ǫ(L) = − |ǫ0|
1 + 2π|ǫ0|


log


L
r0


+ 1

2 log

log


L
r0

 . (6.46)

As mentioned before, we choose the short-distance cutoff as r0 = a and set the length L to L = (N +

1)a (see Appendix B). Eqns (6.43),(6.44), (6.45) with these inputs constitutes a theoretical prediction
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with two free parameters (the overall amplitude c, and the bare coupling ǫ0 at the lattice scale), and we

find (Section 6.5) that this provides an extremely good two-parameter fit of our numerical data in the

power-law ordered antiferromagnetic phase of the one dimensional JQ3 model. In addition, the spin

texture at q = qc, the critical end-point of this power-law ordered Neel phase, fits extremely well to the

scaling function F0, to which the more general prediction reduces when ǫ0 = 0.

6.5 Comparing numerical results with field theory results

In Fig (6.3), we have shown our data for the alternating part of the spin texture and compared it with

the scaling prediction at the critical point q = qc for two of our largest system sizes. As can be

seen from these two figures, the scaling prediction fits extremely well to all the data at both sizes.

Also, a two-parameter fit using the RG-improved perturbation theory result yields a best-fit value of ǫ0

indistinguishable from ǫ0 = 0. This confirms the location of the critical point, as the bare coefficient

of the marginally irrelevant cosine interaction is expected to be zero at this quantum phase transition.

This almost perfect fit to the scaling prediction is contrasted with the results shown in Figs (6.2)

and (6.1); which show numerical results at two representative points in the power-law Néel phase

compared with the one-parameter fit obtained from the scaling prediction. As shown in these two

figures, the scaling prediction cannot predict well the numerical results for q < qc. Additionally we

note that the misfit of scaling predictions with numerical results increases as we go further from the

critical point(i.e. smaller q).

In the same figures, we also show the best two-parameter fit obtained by using our RG improved

perturbation theory results. We show here that the best-fit values of |ǫ0| increase as one goes further

away from q = qc, which is consistent with the expectation that the bare coefficient of the cosine

interaction vanishes as q approaches qc. Also we show that the RG improved perturbation theory

provides a much better fit at q = 0.02 than at the Heisenberg point q = 0, consistent with the fact

that our calculation is perturbative in the renormalized coupling ǫ(L), and is supposed to be a better

approximation when the bare value of |ǫ0| is smaller to begin with.

6.6 Discussion

The question one might ask, what can we conclude from these results about the possible origins of

multiplicative logarithmic corrections to spin textures at other critical points ? To explore this, let us

consider the same calculation of the spin texture, but at a different critical point with an irrelevant

coupling g and a small scaling dimension α. In other words, we assume that β(g) = −αg + . . . with

α small and positive, and γ(g) = δ0 + δ1g + . . . . In this case, the Callan-Symanzik equation would

predict that Nz satisfy the scaling law

Nz(r) = exp


−
 g(L)

g0

γ(g)

β(g)
dg


F


r

L
, g(L)


(6.47)
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Figure 6.1: L1/2Nz(r) plotted versus r/L in the power-law ordered Néel phase at q = 0.0 (where

L = N + 1 for chains with N = 959 and N = 479 spins and open boundary conditions) and

compared with the scaling prediction with a common best-fit prefactor csc. Note that the deviation of

the data from the scaling prediction cannot be simply ascribed to an overall multiplicative factor that

grows with N , since the shape of the curves is slightly different. Data at both sizes is also fit to the best

two-parameter fit corresponding to our RG improved perturbation theory result, and the agreement is

seen to be quite reasonable, but not perfect, for the best fit values of cRG and |ǫ0| listed in the legend.
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Figure 6.2: L1/2Nz(r) plotted versus r/L in the power-law ordered Néel phase at q = 0.02 (where

L = N+1 for chains with N = 959 and N = 479 spins and open boundary conditions) and compared

with the scaling prediction with a common best fit prefactor csc. Note that the deviation of the data

from the scaling prediction cannot be simply ascribed to an overall multiplicative factor that grows

with N , since the shape of the curves is slightly different. Data at both sizes is also fit to the best

two-parameter fit corresponding to our RG improved perturbation theory result, and the agreement is

seen to be excellent for the best fit values of cRG and |ǫ0| listed in the legend.
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Figure 6.3: L1/2Nz(r) plotted versus r/L (where L = N + 1 for chains with N = 959 and N = 479

spins and open boundary conditions) and compared with the scaling prediction F0 for q = 0.04,

the approximate location of the quantum critical point separating the power-law Néel phase from the

VBS ordered phase in the one dimensional JQ3 model. Note the data at both sizes fits essentially

perfectly to the scaling prediction with the same prefactor csc. Also note that the best two-parameter

fit corresponding to our RG improved perturbation theory result also gives |ǫ0| = 0, and thus coincides

with the scaling answer.

for some function F (that needs a more detailed analysis to determine). Using the postulated form of

the β and γ functions, one can therefore conclude

Nz(r) =
C
Lδ0

F


r

L
, g0/L

α


(6.48)

Thus, if the critical point in question has no marginal operators, the spin texture will quite generally

obey scaling as long as the scaling function F (x, y) does not diverge as y → 0. Conversely, if the

critical point in question has a marginal operator, scaling will always be violated by multiplicative

logarithmic factors even if the scaling function F (x, y) is perfectly analytic and well-defined in the y →
0 limit. Indeed, in this marginal case, the only way of evading a multiplicative logarithmic correction

would be to “arrange” for the y → 0 limit of the scaling function F (x, y) to have exactly the “right”

kind of singularity needed to cancel the effects of the multiplicative logarithmic correction coming

from the exponential prefactor. One may therefore conclude that unless the scaling function has a

particularly “fine-tuned” form, scaling predictions for Nz will be generically violated by multiplicative

logarithmic corrections in the presence of a marginal operator. Conversely, irrelevant operators can

lead to violations of scaling only if the scaling function has a divergence as this operator renormalizes

to zero.
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Appendix A

Evaluating Density of states for randomly

diluted bipartite hopping Hamiltonian

In this appendix we will discuss in detail our methods of calculating the density of states for the

randomly diluted bipartite hopping Hamiltonian. As it was discussed before (section 3.2), our need in

calculating density of states boils down to obtaining the spectrum of a very large matrix at very high

precision. It turns out that calculation is possible without actually diagonalizing the matrix or storing

the matrix. In this appendix first we will discuss the schemes we took for reduction of memory cost

of the computation and then we will briefly review the tools we use to fetch reliable results at high

precision. Finally we will discuss about the Sturm’s method of calculating the spectral density without

diagonalizing the matrix.

A.1 Reducing the matrix size

We already discussed (section 3.2) that for bipartite hopping Hamiltonian analyzing only half sized

matrix M
2 is enough. A further not so significant reduction in the matrix dimension is possible, by

removing the array elements for deleted sites. So there is no need to analyze the N2
A(B)(Number of site

in A or B sublattices) size matrix, we can now analyze the compressed dim2
A(B) (dimA(B) = NA(B)−

IA(B),IA(B) being number of vacancies in A or B sublattices and N = NA+NB is the total number of

sites ) size matrix. However while doing this contraction we keep track of the correspondence between

the compressed matrix elements and original full matrix elements. Here one of our goals is to get as

large size of NA(B) as possible in order to reduce finite size corrections in low energy. In addition,

as discussed in the introduction (section 2.2.1) that we are trying to see rare fluctuation events is very

narrow energy range; so here we need to probe very low energy states of the system due to large number

of impurities. So our another goal is to make our computation as accurate as possible for extremely

small numbers.
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A.2 Calculation of Density of states

The simplest way to calculate density of states is to diagonalize the matrix M
2 by any standard proce-

dure (like Gaussian elimination) and count the number of eigenvalues (we will call it λr) in all intervals

[λ,λ + Δ]. But the time-complexity of that process will be O(NA(B)3), and the memory cost will

be O(NA(B)2). So one possible way to reduce that cost such that the problem fits into a standard

computer capacity at large values of NA(B), is to use sparse matrix algorithms. For that we will use

semi-open boundaries; which means in the N × N matrix M a site with index i can have the farthest

connection to a site with index i + 2L, so the matrix will be a banded matrix with 2L leading diago-

nals. Similarly, for the NA(B) ×NA(B) matrix M
2 a site with index i can have the farthest connection

to a site with index i + 4L. That reduces the memory cost to O(4LN2
A(B)) and time-complexity to

O(4LN2
A(B)). Moreover, since M

2 is a symmetric matrix, one can use standard Gaussian elimination

type algorithms for symmetric band matrices to calculate the eigenvalues. There are available rou-

tines (like LAPACK [75]) which performs that task reliably using the standard computer floating point

arithmetic.

Calculating with high precession It turns out that due to using the standard floating point arithmetic

such routines are numerically unstable when the eigenvalues are very small. For instance the machine-

ǫ1 for double precision in IEEE 754 floating-point formats is given by 1.11×10−16. So obviously when

there are many eigenvalues that small, an instability is expected in determining those numbers. Since

we are interested in the very low energy properties of the system induced by impurities, it is important

for us to know the number of eigenvalues in an interval which is well below the standard machine-

ǫ. For that purpose we make use of the GNU Multiple Precision Arithmetic Library[47], which uses

numerically stable and efficient algorithms [48] to stretch the precision for basic arithmetic operations

well beyond the machine precision. That task is accomplished by breaking down the asthmatic calcula-

tion into units which fits (known as limbs) withing the memory of a machine and then after performing

calculation in each units they are recombined; depending on the required precision and the arithmetic

operation different algorithms are used [48, 47]. However, the only limit in the maximum achievable

precision by this is imposed by the virtual memory of the machine.

Calculating density of states without diagonalizing the matrix M We took an alternate approach

here to calculate density of states. Since our main interest is knowing the number of eigenvalues in a

certain interval of specified values, we make use of the Sturm sequence method. In brief the method

gives a prescription to count the number of eigenvalues above a particular number λ, for any real

symmetric matrix A by calculating the number of sign agreements between the successive leading

principal minors of the matrix (A − λI). The ease the process of evaluating the principal minors the

matrix (A−λI) can be first triangularized using Gaussian elimination process[46]. Even though there

are several methods for triangularization, Gaussian elimination process is favored because it doesn’t

1the smallest number ǫ for which the machine returns 1 + ǫ > 1
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spoil the banded form of the matrix.

Sturm sequence The method of Sturm sequence is obtained as a corollary from a well-known theo-

rem for hermitian matrices, which is states as:

Theorem 1. (Separation Theorem) Consider an N × N Hermitian matrix A, with eigenvalues λ1 ≥
λ2 ≥ ... > λN . Suppose Ak denotes the principal submatrix of A obtained by deleting the kth row

and kth column of H , where Ak has the eigenvalues α1 ≥ α2 ≥ ... > αN−1,

then λ1 ≥ α1 ≥ λ2 ≥ α2 ≥ ... ≥ αN−1 ≥ λN .

Corrolary 2. From the Separation theorem it follows that if Ak is a principal submatrix of A of order

k with eigenvalues α1 ≥ α2 ≥ ... > αk, then λi ≥ αi ≥ λN−k+i for i = 1, .., k.

The method of Sturm sequence follows from this corollary just by noticing the fact that the eigen-

values of the (k − 1)-th leading principle minor, say Ak−1, of a symmetric matrix separates the eigen-

values of the k-th leading principle minors Ak, for k = 1, .., N . From here one can proof by in-

duction that if one calculates the leading principle minors of the matrix (A − λI) i.e. the quantities

(A − λI)0, (A − λI)1, ..., (A − λI)N - at a given λ, the number of agreements in the sign of con-

secutive principle minors will be the number of eigenvalues greater than λ( For details of the proof

see Ref. [46]). In order to make this statement meaningful for all values of k, one can assume that

(A−λI)0 = 0 and we associate (A−λI)k a sign opposite to (A−λI)k−1 when (A−λI)k = 0 (also

note the two consecutive (A− λI)k cannot be zero).

In our calculation A = M
2 , so all eigenvalues above λ in A will be eigenvalues below λ for M2

and that gives us the integrated density of states N(λ).
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Appendix B

Spin wave theory calculations in closed

systems

This appendix is complementary to 5.4. Here we show the details calculation to find the eigenvalues

and eigenstates for the spin-wave Hamiltonian Hsw in periodic samples. As mentioned in chapter

2.3.3, we will exploit the translational invariance in periodic samples and work in Fourier space to

obtain the spin-wave modes and their wavefunctions to calculate m0 = S−Δ
′

correct to leading order

in the spin-wave expansion. We will discuss that calculation for all the models we study under spin

wave theory, as described in the 5.1.

B.1 Nearest neighbor interaction model

Our nearest neighbor model Hamiltonian reads as follows:

H = J


i,j
Si.Sj . (B.1)

After Holstein Primakoff transformation (Eq. 5.8, 5.9) and linear spin wave expansion it comes to Eq.

5.10, which for Heisenberg model with nearest neighbor interaction reads,

Hsw = JSz


i

b†ibi +
JS

2



ij
(bibj + b†ib

†
j). (B.2)

The Fourier transformation of the bosonic operators into reciprocal k-space is given by,

bk =
1

L



j

e−ikjbj (B.3)

Applying the Fourier transformation (B.3) and using the delta function identity 1
L2


j e

ij(k−k
′
) = δ

k,k
′

on Eq.B.2, we will get the Hamiltonian in the k-space as,

Hsw(k) = −JS2L2z

2
+H0(k) +H1(k) +O(

1

S
). (B.4)
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Where Hsw(k) is the quadratic Hamiltonian containing usual b†b type term and bb or b†b† type terms.

H1(k) contains terms of the order (1/S)0. We keep only terms upto lowest order in 1/S approximation,

so the only term we want to deal with is the quadratic term H0(k),

Hsw(k) = JSz


k

[b†kbk +
ηk

2
(bkb−k + b†kb

†
−k)]. (B.5)

where ηk = 1
z


a e

ik.a(a being the lattice vector). For the diagonalization we have to perform a

Bogoliuov transformation(equivalent to finding a transformation S of Eq. 5.15 in k-space) as follows,

γk = Pkbk −Qkb
†
−k (B.6)

To determine Pk and Qk (in other words to know the matrix S in k-space) we apply the following facts

• the Bogoliuov quasi particle i.e. γ is bosonic i.e. [γk, γ
†
k
′ ] = δ

kk
′ ,[γk, γk

′ ] = [γ†k, γ
†
k
′ ] = 0, this

is equivalent to condition (25) of real space on Pk, Qk.

It turns out from this condition that we can take Pk = cosh θk,Qk = sinh θk, where θk is real

and even in k −→ −k. Now in terms of the spin wave excitations i.e. Bogoliuov quasiparticles

γ, the Hamiltonian is given by,

H0(k) = JSz


k

[(cosh 2θk + ηk sinh 2θk)γ
†
kγk (B.7)

+
1

2
(sinh 2θk + ηk cosh 2θk)(γ

†
kγ

†
−k + γkγ−k) + sinh2 θk + ηk sinh 2θk]

• The Bogoliuov transformation diagonalizes the Hamiltonian i.e. H0(k) must come to the diago-

nal form λkγkγ
†
k, equivalent to condition Eq. 5.26 of real space.

Condition (2) tells us to choose the θk such that is satisfies the tanh θk = −ηk in order to

eliminate the unusual terms γγ or γ†γ†. Making that choice, λk =
√
1− ηk and the final

diagonalized Hamiltonian turns out to be

H = E0 +


k

ωk(γ
†
kγk +

1

2
). (B.8)

Where ωk = JSzλk and E0 = −JL2zS
2 . Thus our square lattice with antiferromagnetic inter-

action under the lowest order in 1/S approximation is mapped to a collection of independent

harmonic oscillators with frequency ω.
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Now let us calculate the nz
↑, from the definition of the same in Eq. 2.17 and applying Holstein-

Primakoff transformation (Eq. 5.8, 5.9),

nz
↑ =

1

Ntot



r

ηrSz
r
↑ (B.9)

=
1

L2



i

Sz
iA −



j

Sz
jB

= S − 1

L2



k

(b†kbk)

= S − 1

L2



k

v2k

= S − 1

2L2



k

[
1

1− η2k

− 1]

So for a periodic infinite lattice we can convert this sum into an integral and write,

nz
↑ = S −Δ. (B.10)

Where Δ is the quantum fluctuation which reduces the staggered magnetization nz
↑ from its classical

value. And the integral form of Δ is given by

Δ =
1

2


d2k

4π2
[

1
1− η2k

− 1]. (B.11)

Now another order parameter m2 is given by (Eq. 2.16),

m2
0 =

1

Ntot



rr′

ηrηr′ Sr · S
r
′ 0 (B.12)

=
1

L2
[


ij

SAiSAj + SBiSBj − 2SAiSBj]

Applying the Holstein-Primakoff transformation transformation (Eq. 5.8, 5.9) and doing the lowest

order in 1/S expansion,

m2
0 =

1

L2
[L2S2 + S



ij

bib†j + b†ibj − bibj − b†ib
†
j − 2b†ibi]. (B.13)

Applying the Fourier transform (B.3) and using the delta function identity,

m2
0 =

1

L2
[L2S2 + S



k

b0b†0 + b†0b0 − b0b0 − b†0b
†
0 − 2b†kbk] (B.14)

= [S2 +
S

L2



k

b0b†0 + b†0b0 − b0b0 − b†0b
†
0 − 2b†kbk].

Now using the Bogoliuov transformation (Eq. B.6) and taking the average we get,

m0 = S[1− 2

L2S



k

v2k]
1
2 (B.15)

= S − 1

2L2



k

[
1

1− η2k

− 1],
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keeping terms upto lowest order in 1/S. From the expression of m (B.16) we can see that it is same

as the expression of nz
↑ (B.10) under the spin wave approximation of lowest order of 1/S terms. So

exactly in the same manner we can write this sum as an integral for a periodic infinite lattice i.e.

m0 = S −Δ
′
, (B.16)

where Δ
′
= Δ(Eq.B.11).

B.2 Next nearest neighbor interaction model

The next nearest neighbor model is described by the Hamiltonian HJJ2

HJJ2 = J


ij
Si.Sj + J2



ij
Si.Sj . (B.17)

Where . denotes nearest neighbors bonds and . denotes next nearest neighbors bonds, see the

models section 1.1 for more details. The calculation is same as before, so let us skip some of the steps

and directly write down Hamiltonian in the k space in lowest order spin wave approximation i.e. the

quadratic part,

Hsw
JJ2(k) = 2JSz



k

[(1 + η(γ
′

k − 1))b†kbk +
γk

2
(bkb−k + b†kb

†
−k)]. (B.18)

We can write the Hamiltonian as

Hsw
JJ2(k) = 2JSz



k

Ak[b
†
kbk +

Γk

2
(bkb−k + b†kb

†
−k)]. (B.19)

Where Ak = 1 + η(γ
′

k − 1), Γk = γk

(1+η(γ
′
k
−1))

and η = J2/J . Thus we wrote down the Hamiltonian

in our known form as before,hence the rest of the calculation will just follow as before and the final

results for JJ2 will be,

nz
↑ = S −ΔJJ2 (B.20)

and

m0 = S −Δ
′

JJ2 . (B.21)

Where Δ
′

JJ2
= ΔJJ2 and ΔJJ2 =


d2k
4π2 [

1√
1−Γ2

k

− 1].

B.3 Striped interaction model

The striped model is described by the Hamiltonian Hstriped

HJJ ′ = J


ij
Si.Sj + J ′

ij′
Si.Sj . (B.22)

Where . and .′ denotes the red bonds and the blue dotted bonds in the Fig. 5.1 respectively. For

more details look at 5.1.
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Here the expression for nz
↑ is,

nz
↑ = S −Δstriped. (B.23)

Where

Δstriped =
1

2


λ+
2

λ−
1

+


λ−
1

λ+
2

+


λ−
2

λ+
1

+


λ+
1

λ−
2

− 1


d2k

(4π)2
. (B.24)

λ±
1 = −3

2
− 1

2
α± 1

2


1 + α2 + 2α cos kx + cos ky (B.25)

λ±
2 = −3

2
− 1

2
α± 1

2


1 + α2 + 2α cos kx − cos ky (B.26)

Here α = J ′/J . Point to notice is that the unit cell size is double here, so the normalization factor is

different from before. In a similar manner we can calculate m for JJ
′

model,

m0 = S −Δ
′

striped. (B.27)

Where Δ
′

JJ ′ = ΔJJ ′ .
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Appendix C

Bosonization

Bosonization is a procedure with which one can map quantities in a fermionic theory to quantities

in a bosonic theory. The converse can also be used, which is called fermionization. Bosonization is

often more useful as that can be used to tackle more difficult fermionic calculations with the help of

tools developed for bosonic calculations. In brief, bosonization can be described as following: in one

dimension, it is possible to express a fermion as a coherent state of a Bose field, or conversely, a boson

as a bound state of fermionic theory. Such a connection is possible in one-dimension because in one

dimension the low lying excitations have a linear form (Fig. C.1). So, Fermi surface is a pair of points

about which the particle-hole excitation pair can have nearly the same group velocity and propagate

together; in other words the pair dispersion relation near Fermi surface is narrow and like a coherent

bound state.

In higher dimensions a particle-hole pair with a given momentum can have a continuous spectrum

of energies depending on the shape of Fermi surface(Fig. C.2). Thus, the particle-hole spectrum is a

continuum throughout and it is harder to form such a coherently propagating particle-hole bound state;

in other words the pair-excitations are not bound state like. It is relatively straightforward to understand

the functional form of boson to fermion mapping (dubbed as “bosonization dictionary”) at the level of

correlation functions. So in this appendix we will discuss the correlation functions of a free fermionic

theory and a free bosonic theory; which will lead us to the bosonization dictionary. For a detailed

review of this subject, look at references [76][77].

C.1 Correlation functions for free fermionic theory

Consider a system of free massless non-relativistic fermions(represented by the field ψ) in one dimen-

sion with the Hamiltonian

HF =


dx


ψ†


− i

m
∂2
x


ψ − µψ†ψ


. (C.1)

Here ψ is Fermi field satisfying canonical commutation relations {ψ†(x),ψ(x′)} = δ(x − x′), with

the dispersion relation E = k2

2m − µ. The zero temperature ground state of this system will be all the
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single particle eigenstates filled up upto the Fermi energy ǫF = µ and the Fermi level will be made of

two points at k = ±kF (Fig. C.1). If one is interested in the low energy physics of this system for all

practical purposes it is a good enough approximation to linearize the dispersion relation near the Fermi

levels as E ≈ ±vF (k ± kF ), with vF (= kF /m) being the Fermi velocity. Thus one can express the

low energy excitations about this ground state in the chiral basis as

ψ(x) =
√
a

e−ikF xψR(x) + eikF xψL(x)


. (C.2)

The corresponding low-energy Hamiltonian becomes,

HF = −ivF


dx


ψ†
R

dψR

dx
− ψ†

Li
dψL

dx


. (C.3)

Where ψL and ψR are left propagating and right propagating modes respectively, containing only

slowly varying Fourier modes near the points E = vF (k + kF ) and E = −vF (k − kF ) respectively.

The canonical commutation relations followed here is {ψ†
L(R)(x),ψL(R)(x

′)} = δ(x − x′). Now

this Fermionic fields can be expanded in terms of the physical modes, which can have several kind

of excitations. As mentioned before the ground state for this linearized Hamiltonian is made of all

the negative energy states with respect to the Fermi energy i.e. the right moving negative k modes

and left moving positive k modes. In the right moving sector the possible excitations are following:

particles(holes) of momentum k > 0 with creation operator α†(k)(β†(k)). Similarly for left moving

sector the excitations are: particles(holes) of momentum k < 0 with creation operator γ†(k)(δ†(k)).

Those operators again satisfy all the canonical fermionic commutation relations {α†(k),α(k′)} =

{β†(k),β(k′)} = {γ†(k), γ(k′)} = {δ†(k), δ(k′)} = 2πδ(k − k′), rest other possible commutations

are zero. The fermionic operators expressed in terms of this low energy modes are given by

ψR(z) =



k>0

dk

2π


e−kzα(k) + ekzβ†(k)


(C.4)

ψL(z̄) =



k>0

dk

2π


e−kz̄γ(k) + ekz̄δ†(k)


,

Figure C.1: Left panel: Dispersion relation for one-dimensional fermions. Right panel: electron-hole

pair dispersion relation for one-dimensional fermions. Figure taken from ref [77].
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Figure C.2: Left panel: Dispersion relation for two-dimensional fermions, assuming a circular Fermi

surface. Right panel: electron-hole pair dispersion relation for two-dimensional fermions with a circu-

lar Fermi surface. Figure taken from ref [77].

with the notation vτ − ix = z, vτ + ix = z̄ and τ = it the imaginary time. In terms of this low energy

modes the Hamiltonian is as follows:

HF = vF

 ∞

0

dk

2π
k

α†(k)α(k)− β(k)β†(k) + γ†(k)γ(k)− δ(k)δ†(k)


. (C.5)

The ground state of this Hamiltonian will have infinite negative energy E0 = −vF
∞
0

dk
2πk = −∞.

The way to deal with this infinity is by putting the creation operators to the left of annihilation operators

i.e. working with the normal ordered Hamiltonian, where the E0 is subtracted.

: HF := vF

 ∞

0

dk

2π
k

α†(k)α(k) + β†(k)β(k) + γ†(k)γ(k) + δ†(k)δ(k)


. (C.6)

Thus one can calculate the propagators as follows

ψR(z)ψ
†
R(z

′) = ψ†
R(z)ψR(z

′) (C.7)

=



k>0

dk

2π



q>0

dk′

2π
α(k)β†(k′)e−kz+k′z′

=



k>0

dk

2π



q>0

dk′

2π
2πδ(k − k′)e−kz+k′z′

=



k>0

dk

2π
e−k(z−z′)

=
1

2π(z − z′)
.

Similarly,

ψL(z)ψ
†
L(z

′) = ψ†
L(z)ψL(z

′) = 1

2π(z − z′)
. (C.8)

In the equal time limit,

ψL(x, 0)ψ
†
L(x, 0) = lim

ǫ→0+
ψ†

L(x, ǫ)ψL(x
′, 0) (C.9)

= lim
ǫ→0+

1

2π

1

i(x− x′) + ǫ
,

where time ordering is ensured by taking the limit as limǫ→0+ .
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C.2 Correlation functions for free bosonic theory

Now consider a free Boson Hamiltonian in one dimension as

HB =
vF
2


dx


Π(x)2 + (∂xφ)

2

. (C.10)

If Π(x) is the canonical conjugate momentum to the field φ(x), the equal time canonical conjugate

relationship for bosons will be

φ(x),Π(x′)


= iδ(x− x′). (C.11)

Like the fermionic case the standard modal expansion will be

φR(x) =



k>0

dk

2π

1√
2k


e−kza(k) + ekza(k)†(kz)


(C.12)

φL(x) =



k>0

dk

2π

1√
2k


e−kz̄a(−k) + ekz̄a(−k)†(k)


.

With the usual bosonic commutation relation [a(k), a(k′)†] = 2πδ(k−k′). Here the dispersion relation

E = vF |k| can thought of as two half lines with slope ±vF above E = 0 and here the the infinity in

ground state energy E0(equivalent to “Fermi sea” for Dirac electrons) is due to the sum of the zero

point energy of infinite harmonic oscillators. In terms of the above expansion the Hamiltonian is as

follows:

HB =


dk

2π

vF |k|
2


a(k)†a(k) + a(k)a(k)†


. (C.13)

And the normal ordered form,

: HB :=


dk

2π
vF |k|a(k)†a(k) (C.14)

We can now switch to a convenient notation to work with a new field φ defined as Π = −∂xφ. The

new field follows the commutation relation


φ(x), φ(x′)


= −iθ(x− x′), (C.15)

where θ(x) is the Heaviside step function as θ(x) = 1(x > 0), θ(x) = 0(x < 0). In terms of this new

field φ = −
 x
∞Π(y)dy, one can write the normal ordered Bosonic Hamiltonian as

: HB :=
vF
2


dx


: (∂xφ)2 : + : (∂xφ)

2 :

. (C.16)

Switching to the chiral basis as φ = φR + φL and φ = φR − φL one can re write the Hamiltonian

as

: HB :=
vF
2


dx


: (∂xφL)

2 : + : (∂xφR)
2 :

. (C.17)

Here one can calculate the propagators and correlation functions like before as

φR(z)φR(z
′) = −1

4
ln

µ(z − z′)


. (C.18)

φL(z)φL(z
′) = −1

4
ln

µ(z − z′)


. (C.19)
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The equal time correlation is given by,

φR(x)φR(x
′) = − lim

ǫ→0+

1

4
ln

i(z′ − z) + ǫ


, (C.20)

φL(x)φL(x
′) = − lim

ǫ→0+

1

4
ln

i(z′ − z) + ǫ


, (C.21)

where µ(∼ 1/L, L is the system size) is an IR cutoff, which is needed because the correlators are ill

defined in the massless limit due to appearance of the integrals of type


dk
k eikx. In later applications

we will mostly need either the derivative of φ or eiβφ, for which the role of the IR cut-off is to ensure

vanishing of the correlators when the total sum of β numbers doesn’t vanish. For now we will assume

µ = 1.

C.3 Bosonization dictionary from correlation functions

A convenient way to see the boson-fermion connection could be from the algebra of current oper-

ator. For fermions one can easily calculate the charge density(JF
0 = ψ†

RψR + ψ†
LψL) and current

commutator(JF
1 = ψ†

RψR − ψ†
LψL) at equal times in normal ordered form relative to the “Fermi-sea

vacuum ” ground state as

[JF
0 (z), JF

1 (z′)] = − i

π
∂zδ(z − z′). (C.22)

For free Bose field the corresponding normal ordered charge density and current operators are given by

JB
0 (x) = 1√

π
∂zφ(z) and JB

1 (z) = − 1√
π
Π(z) respectively. Taking a derivative on Eq.(C.11) we can

see


JB
0 (z), JB

1 (z′)


= − i

π
∂zδ(z − z′). (C.23)

Thus from the Eq.(C.22) and Eq.(C.23) one can conclude that for a free massless Dirac fermionic field

in one dimension there exists a free bosonic field whose current coincides with the normal ordered

Fermionic current as follows,

JF
0 (z) =

i√
π
∂zφ(z) (C.24)

JF
1 (z) = − i√

π
∂z φ(z).

To establish the mapping between bosonic and fermionic fields one can compare the field corre-

lation functions and Eqs. C.8,C.8,C.10, C.18,C.19,C.20,C.21 from which a reasonable ansatz of the

bosonic representation of fermionic operators can be following,

ψ(z) = Ae−iBφ(z). (C.25)

The constants A and B can be determined now by attempting to satisfy the fermionic anticommutation

relations, with the help of bosonic commutation relations and the following identity

eiαφ(z)eiβφ(z
′) = eiαφ(z)+iβφ(z′)e−αβφ(z)φ(z′) (C.26)

= eiαφ(z)+iβφ(z′)

z − z′

αβ
4π ,
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which can be proved with the Baker-Campbell-Housdroff formula1.

Thus one can write in terms of the normal ordered expectation values of the fields,

ψR(z)ψ
†
R(z

′) = A2e−iBφR(z)eiBφR(z′) (C.27)

= A2e−iB(φR(z)−φR(z′))

z − z′

−B2

4π

= A2

z − z′

−B2

4π

Comparing Eq.(C.27) and (C.28) one can write down the following identity setting A = 1√
2π

and

B =
√
4π,

ψR(x)ψ
†
R(x

′)F =  1√
2π

: ei
√
4πφR(x) :

1√
2π

: ei
√
4πφR(x′) :B. (C.28)

Where the fermionic and bosonic correlators are evaluated with respect to their own ground states and

Hamiltonians respectively. So the relation between bosonic and fermionic fields is given by

ψR(x) =
1√
2π

: ei
√
4πφR(x) : (C.29)

ψL(x) =
1√
2π

: e−i
√
4πφL(x) :

The bosonization dictionary discussed so far is summarized in the table below.

Fermionic Theory Bosonic Theory

ψR(z)
1√
2π

: ei
√
4πφR(z) :

ψL(z)
1√
2π

: e−i
√
4πφL(z) :

J(z) i√
π
∂zφ(z)

HF =

dx


ψ†i


− 1

m∂2
x


ψ − µψ†ψ


HB = vF

2


dx


Π(x)2 + (∂xφ)

2


1for Bosonic fields A and B , eAeB = eA+Be[A,B]/2
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Appendix D

Bare perturbation theory for one

dimensional open spin system

This appendix is supplementary to 6.4. Here we give the details of bare perturbation theory calculation

leading to the calculation of 6.42, 6.43, 6.44, 6.45. As discussed in 6.3.2, when a spin is removed

from a periodic spin chain of N + 1 sites, the system can be visualized as a spin chain of N spins

obeying open boundary condition. With those boundary conditions as in Eq. 6.31, the bosonic field

φ(r) expanded in terms of bosonic normal modes are as in Eq. 6.32:

φ(r) = πR+
q0
L
r +

∞

n=1

sin

nπr
L


(an + a†n)√
πn

(D.1)

φ(r) = φ0 + i
∞

n=1

cos

nπr
L


(an − a†n)√
πn

.

Here, the non zero bosonic commutation relations are

φ(0), q0


= i,


am, a†n


= δmn, H0 can be

written (apart from an infinite constant u
2

∞
n=1

nπ
L , the sum of zero point energies of all the oscillators)

in the canonical form

H0 =
u

2

q20
L

+
∞

n=1

unπ
L


a†nan . (D.2)

Thus the ground state |G0 of the unperturbed Hamiltonian is the vacuum for all the an operators, and

an eigenstate of the zero mode q0. Indeed, q0|G0 = πR|G0 for the Stot = 1/2, Sz
tot = 1/2 ground

state that we wish to model (more generally |G0 is an eigenstate of q0 with eigenvalue 2πRSz
tot).

Now, the ground state corrected to first order in ǫ0 can be written formally as

|G ∼= |G0 −


k =G0

(
k|H1|G0
E0

k − E0
G0

)|k. (D.3)

Here k ≡ {Nn} with n = 1, 2 . . .∞ and Nn being the number of bosons in mode n. For an arbitrary

excited state, we have the unperturbed energy

E0({Nn}) =
u

2

q20
L

+


n

ωn


Nn +

1

2


(D.4)
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with ωn = unπ
L , which gives us the following expression for the energy denominators:

E0({Nn})− E0
g =



n

ωnNn. (D.5)

As a result, our formal expression for the ground state corrected to first order in ǫ0 now reads

|G = |{Nn = 0}+ uǫ0
r20



{Nn}={0}


{Nn}|

 L
0 cos(2φ(x)R )|{0}

u


n
nπ
L Nn


|{Nn} (D.6)

This gives the following formal expression for the one point function:

S

L,

r

L
, ǫ0


= G| 1√

r0
sin


φ(r)

R


|G (D.7)

∼= {0}| 1√
r0

sin


φ(r)

R


|{0}

+
ǫ0
r20



{Nn}={0}

{0}| 1√
r0

sin

φ(r)
R


|{Nn}{Nn}|

 L
0 cos


2φ(x)
R


|{0}


n

nπ
L Nn

+
ǫ0
r20



{Nn}={0}

{Nn}| 1√
r0

sin(φ(r)R )|{0}{0}|
 L
0 cos


2φ(x)
R


|{Nn}


n

nπ
L Nn

.

where we can set R = 1/
√
2π in the contributions that arise from the O(ǫ0) corrections to |G0,

as long as we are careful to use the full expression R = (2π − 2π2ǫ0)
−1/2 ≈ (1 + πǫ0/2)/

√
2π

when evaluating the first “unperturbed” term in order to obtain the latter correct to O(ǫ0). To evalu-

ate the matrix elements and expectation values, it is useful to write the state |{Nn} in “coordinate”

representation as

{yn}|{Nn} =
∞

n=1


1

π
1
4 2

Nn
2

1√
Nn!

e−
y2n
2 HNn(yn)


(D.8)

where the coordinates yn = an+a†n√
2

are conjugate to “momenta” πn = an−a†n
i
√
2

and Hm(x) is the mth

Hermite polynomial of x.

Now

{0}| 1√
r0

sin


φ(r)

R


|{Nn} =

(−1)√
r0

ℑ


e iπr

L



n





 +∞
−∞ dyne

−y2nHNn(yn)
√
π
√
2
Nn√

Nn!
e
2i

sin(πnr
L )√

2πR2n
yn






 (D.9)

=
(−1)√

r0
ℑ



e

iπr
L



n





 +∞
−∞ dyne

−
�
yn−i

sin(πnr
L )√

2πR2n

�2

HNn(yn)
√
π
√
2
Nn√

Nn!
e−

sin2(πnr
L )

2πR2n
yn







.
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Using the formula
 +∞
−∞ e−(x−y)2HN (x)dx =

√
πyN2N . So

 {0} | 1√
r0

sin


φ(r)

R


|{Nn} (D.10)

= − 1√
r0
ℑ


e iπr

L e−
�∞

n=1

sin2(πnr
L )

2πR2n



n





√
2
Nn

√
Nn!

(i)Nn


sin


πnr
L


√
2πR2n

Nn







= − 1√
r0
e−

�∞
n=1

sin2(πnr
L )

2πR2n



n





√
2 sin(πnrL )√
2πR2n

Nn

1√
Nn!



× ℑ


e

iπr
L (i)(

�
n Nn)



= − 1√
r0
e−

�∞
n=1

sin2(πnr
L )

2πR2n



n





√
2 sin(πnrL )√
2πR2n

Nn

1√
Nn!





×

sin

πr
L


(−1)

� Nn
2


1 + (−1)

�
Nn

2


+ cos

πr
L


(−1)

��
Nn)−1
2

�
1− (−1)

�
Nn

2


.

Thus

{0}|
sin


φ(r)
R



√
r0

|{0} = − 1√
r0

sin
πr
L


e−

�∞
n=0

sin2(πnr
L )

2πR2n . (D.11)

Similarly,

{0}| cos

2φ(x)

R


|{Nn} = ℜ


e 2πix

L



n





 +∞
−∞ dyne

−y2nHNn(yn)
√
π
√
2
Nn√

Nn!
e
4i

sin(πnx
L )√

2πR2n
yn






 (D.12)

= ℜ



e

2πix
L



n





 +∞
−∞ dyne

−
�
yn−2i

sin(πnx
L )√

2πR2n

�2

HNn(yn)
√
π
√
2
Nn√

Nn!
e−4

sin2(πnx
L )

2πR2n
yn







.

 {0} | cos

2φ(x)

R


|{Nn} (D.13)

= e−
�∞

n=1

4 sin2(πnx
L )

2πR2n



n






2
√
2 sin


πnx
L


√
2πR2n

Nn

1√
Nn!



× ℜ


e

2πix
L (i)(

�
n Nn)



= e−
�∞

n=1

4 sin2(πnx
L )

2πR2n



n






2
√
2 sin(πnxL )√
2πR2n

Nn

1√
Nn!





×

cos


2πx

L


(−1)

� Nn
2


1 + (−1)

�
Nn

2


− sin


2πx

L


(−1)

�
Nn−1
2


1− (−1)

�
Nn

2


.
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So,

 {0} | cos(2φ(x)
R

)|{Nn}{Nn}|
sin(φ(r)R )
√
r0

|{0}+ h.c. (D.14)

= − 2√
r0
e
−�∞

n=1

�
4 sin2( 2πnx

L )
2πR2n

+
sin2(πnr

L )
2πR2n

�

×


n






4 sin


πnr
L


sin


πnx
L



2πR2n

Nn

1

Nn!





×

sin

πr
L


cos


2πx

L


1 + (−1)

�
Nn

2



− sin


2πx

L


cos

πr
L

1− (−1)
�

Nn

2



= − 2√
r0
e
−�∞

n=1

�
4 sin2(πnx

L )
2πR2n

+
sin2(πnr

L )
2πR2n

�

×


sin


π(r − 2x)

L



n






4 sin


πnr
L


sin


πnx
L



2πR2n

Nn

1

Nn!





+ sin


π(r + 2x)

L



n






−4 sin


πnr
L


sin


πnx
L



2πR2n

Nn

1

Nn!








Now

{0}| cos(2φ(x)R )|{Nn}{Nn}| sin(
φ(r)
R

)√
r0

|{0}+ h.c.


n
nπ
L Nn

(D.15)

≡
 ∞

0
dT ({0}| cos


2φ(x)

R


|{Nn}{Nn}|

sin

φ(r)
R



√
r0

|{0}+ h.c.)e−T
�

n
nπ
L

Nn

= − 1√
r0
e
−�∞

n=1

�
4 sin2(πnx

L )
2πR2n

+
sin2(πnr

L )
2πR2n

�

×


sin


π(r − 2x)

L

 ∞

0
dT




n






4 sin


πnr
L


sin


πnx
L



2πR2n
e−

nπT
L

Nn

1

Nn!








+ sin


π(r + 2x)

L

 ∞

0
dT




n






−4 sin


πnr
L


sin


πnx
L



2πR2n
e−

nπT
L

Nn

1

Nn!









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So

ǫ0
r20



{Nn}={0}

{0}| cos(2φ(x)R )|{Nn}{Nn}| sin(
φ(r)
R

)√
r0

|{0}+ h.c.


n
nπ
L Nn

(D.16)

= − ǫ0

r
5
2
0

e
−�∞

n=1

�
4 sin2(πnx

L )
2πR2n

+
sin2(πnr

L )
2πR2n

�

×


sin


π(r − 2x)

L

 ∞

0
dT




n






n




4 sin


πnr
L


sin


πnx
L



2πR2n
e−

nπT
L

Nn

1

Nn!





− 1




+ sin


π(r + 2x)

L

 ∞

0
dT




n




n


−4 sin(πnrL ) sin(πnxL )

2πR2n
e−

nπT
L

Nn 1

Nn!


− 1



Therefore we now have to do summations
∞

n=1
sin2

πn()
L

2πR2n
and

∞
n=1

sin
πn()
L

sin
πn�()
L

2πR2n
e−

nπT
L .

It is at this stage the UV regulator of the field theory (r0) comes into our calculation. We calculate

these summations as follows using the formula
∞

n=1
pn cos(nx)

n = log( 1√
1−2p cosx+p2

)(for us p ≡

e−
πr0
L ) , as follows.

∞

n=1

sin2 πnr
L

n
e−

πnr0
L =

1

2

∞

n=1


1− cos 2πnr

L



n
e−

πnr0
L (D.17)

=
1

2
log

1
1− 2e−

πr0
L + e−

2πr0
L

− 1

2
log

1
1− 2e−

πr0
L cos 2πr

L + e−
2πr0
L

=
1

4
log


1− 2e−

πr0
L cos 2πr

L + e−
2πr0
L

1− 2e−
πr0
L + e−

2πr0
L



=
1

4
log


cosh πr0

L − cos 2πr
L

cosh πr0
L − 1



∼= 1

4
log


1 + 1

2


πr0
L

2 − cos 2πr
L

1
2


πr0
L

2



∼= 1

4
log


4 sin2 πr

L

1
2


πr0
L

2



≡ 1

2
log


2L sin


πr
L



πr0


.
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Similarly,

∞
n=1

sin πnr
L sin πnx

L

n
e−

nπT
L (D.18)

=
1

2

∞

n=1


cos πn

L (r − x)− cos πn
L (r + x)



n
e−

nπT
L

=
1

2
log

1
1− 2e−

πT
L cos 2π(r−x)

L + e−
2πT
L

− 1

2
log

1
1− 2e−

πT
L cos 2π(r+x)

L + e−
2πT
L

=
1

4
log


1− 2e−

πT
L cos π(r+x)

L + e−
2πT
L

1− 2e−
πT
L cos π(r−x)

L + e−
2πT
L



=
1

4
log


cosh πT

L − cos 2π(r+x)
L

cosh πT
L − cos 2π(r−x)

L



So,

ǫ0
r20



{Nn}={0}

{0}| cos(2φ(x)R )|{Nn}{Nn}| sin(
φ(r)
R

)√
r0

|{0}+ h.c.


n
nπ
L Nn

(D.19)

= − ǫ0

r
5
2
0


πr0

2L sin πr
L


πr0

2L sin πr
L

2

×

sin

π
L
(r − 2x)

 ∞

0
dT


cosh πT

L − cos 2π(r+x)
L

cosh πT
L − cos π(r−x)

L

− 1



+ sin
π
L
(r + 2x)

 ∞

0
dT


cosh πT

L − cos π(r−x)
L

cosh πT
L − cos π(r+x)

L

− 1



= −ǫ0


π

2L sin πr
L


π

2L sin πr
L

2

×

sin

π
L
(r − 2x)

 ∞

0
dT


cos π(r−x)

L − cos π(r+x)
L

cosh πT
L − cos π(r−x)

L



+ sin
π
L
(r + 2x)

 ∞

0
dT


cos π(r+x)

L − cos π(r−x)
L

cosh πT
L − cos π(r+x)

L


.

And the unperturbed part

{0}|
sin


φ(r)
R



√
r0

|{0} = − 1√
r0

sin
πr
L


e−

�∞
n=0

sin2(πnr
L )

2πR2n . (D.20)

= − 1√
r0

sin
πr
L

 πr0
2L sin πr

L

 1
2

1
2πR2

= − 1√
r0

sin
πr
L

 πr0
2L sin πr

L

 1
2
−πǫ0

2

= − 1√
r0

sin
πr
L

 πr0
2L sin πr

L

 1
2

1− πǫ0

2
log

πr0
2L sin πr

L


.
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So

S

L,

r

L
, ǫ0


= −


π sin πr

L

2L


1− πǫ0

2
log

πr0
2L sin πr

L


(D.21)

− ǫ0


π sin πr

L

2L

π2

4L2

1

sin πr
L

×
 ∞

0

 L

0
dT dx

sin

π
L(r − 2x)



sin2 πx
L


cos π(r−x)

L − cos π(r+x)
L

cosh πT
L − cos π(r−x)

L



+

 ∞

0

 L

0
dT dx

sin

π
L(r + 2x)



sin2 πx
L

 ∞

0
dT


cos π(r+x)

L − cos π(r−x)
L

cosh πT
L − cos π(r+x)

L


.

Variable change

πr

L
= θr (D.22)

πx

L
= φ

πT
L

= s.

In new variables the last expression becomes

S

L,

r

L
, ǫ0


= −


π sin θr
2L


1− πǫ0

2
log

πr0
2L sin θr


(D.23)

− ǫ0


π sin θr
2L

1

4 sin θr

×
 ∞

0

 π

0
dsdφ

sin(θr − 2φ)

sin2 φ


cos(θr − φ)− cos(θr + φ)

cosh s− cos(θr − φ)



+

 ∞

0

 π

0
dsdφ

sin(θr + 2φ)

sin2 φ

 ∞

0
ds


cos(θr + φ)− cos(θr − φ)

cosh s− cos(θr + φ)


.

The ranges of θr + φ and −θr + φ are θr + φǫ0[θr, θr + π] and φ− θrǫ0[−θr,π − θr] respectively. In

order to use the standard integrals let us express

cos(θr + φ) = cos t+, t+ǫ0(0,π) (D.24)

cos(φ− θr) = cos t−, t−ǫ0(0,π). (D.25)

Let us do the s integral as ,

I± =

 ∞

0

1

cosh s− cos t±
(D.26)

So,

I± =

 ∞

0

1

cosh s− cos t±
(D.27)

=

 ∞

0

1

cosh s− cos t±

=
2

1− cos2 t±
tan−1


1− cos2 t±

1− cos2 t±


.
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Now,

I± =
u±

sinu±
(D.28)

where u± = π − t± and t± ∈ (0,π) hence u± ∈ (π, 0) or x ∈ (∓r, (L+ 1)∓ r).

I± =
v±

sin v±
(D.29)

where v± = t± − π and t± ∈ (π, 2π) hence v± ∈ (0,π) or x ∈ ((L+ 1)∓ r, 2(L+ 1)∓ r).

I± =
w±

sinw±
(D.30)

where w± = π + t± and t± ∈ (π, 0) hence w± ∈ (0,π) or x ∈ (−(L+ 1)∓ r,∓r). So

I+ = u+ ∈ [0, (L+ 1)− r] (D.31)

= v+ ∈ [(L+ 1)− r, L].

I− = w− ∈ [0, r] (D.32)

= u− ∈ [r, L].

S

L,

r

L
, ǫ0


= −


π sin θr
2L


1− πǫ0

2
log

πr0
2L sin θr


(D.33)

+
ǫ0
2

 π

2L

 1
2

×
 π−θr

0
dφ

2 sinφ sin θr√
sin θr sin

2 φ
sin (2φ+ θr)

π − (φ+ θr)

sin (π − (φ+ θr))

+

 π

π−θr

dφ
2 sinφ sin θr√
sin θr sin

2 φ
sin (2φ+ θr)

(φ+ θr)− π

sin ((φ+ θr)− π)

+

 θr

0
dφ

2 sinφ sin θr√
sin θr sin

2 φ
sin (2φ− θr)

(φ− θr) + π

sin ((φ− θr) + π)

+

 π

θr

dφ
2 sinφ sin θr√
sin θr sin

2 φ
sin (2φ− θr)

π − (φ− θr)

sin (π − (φ− θr))
] .

Putting cut offs to remove divergences at φ = 0,π, θr,

S

L,

r

L
, ǫ0


= −


π sin θr
2L


1− πǫ0

2
log

πr0
2L sin θr


(D.34)

− ǫ0
4

 π

2L

 1
2

×
 π−θr

α
dφ

2 sinφ sin θr√
sin θr sin

2 φ
sin (2φ+ θr)

−π + (φ+ θr)

sin (φ+ θr)

+

 π−β

π−θr

dφ
2 sinφ sin θr√
sin θr sin

2 φ
sin (2φ+ θr)

(φ+ θr)− π

sin (φ+ θr)

+

 θr−ζ

α
dφ

2 sinφ sin θr√
sin θr sin

2 φ
sin (2φ− θr)

(φ− θr) + π

sin (φ− θr)

+

 π−β

θr+ζ
dφ

2 sinφ sin θr√
sin θr sin

2 φ
sin (2φ− θr)

−π + (φ− θr)

sin (φ− θr)
]
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L,

r

L
, ǫ0


= −


π sin θr
2L


1− πǫ0

2
log

πr0
2L sin θr


(D.35)

− ǫ0
2

 π

2L

 1
2

sin θr

×
 π−θr

α
φ cotφdφ+ θr

 π−θr

α
cotφdφ+

 π−θr

α
(φ+ θr) cot(φ+ θr)dφ

−
 π−θr

α
π cotφdφ−

 π−θr

α
π cot(φ+ θr)dφ+

 π−β

π−θr

φ cotφdφ

+ θr

 π−β

π−θr

cotφdφ+

 π−β

π−θr

(φ+ θr) cot(φ+ θr)dφ−
 π−β

π−θr

π cotφdφ

−
 π−β

π−θr

π cot(φ+ θr)dφ+

 θr−ζ

α
(φ− θr) cot(φ− θr)dφ+

 θr−ζ

α
φ cotφdφ

− θr

 θr−ζ

α
cotφdφ+

 θr−ζ

α
π cot(φ− θr)dφ+

 θr−ζ

α
π cotφdφ

nonumber +

 π−β

θr+ζ
(φ− θr) cot(φ− θr)dφ+

 π−β

θr+ζ
φ cotφdφ− θr

 π−β

θr+ζ
cotφdφ (D.36)

−
 π−β

θr+ζ
π cot(φ− θr)dφ−

 π−β

θr+ζ
π cotφdφ ]

S
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r

L
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= −
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2L


1− πǫ0

2
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πr0
2L sin θr
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 π

2L

 1
2
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×
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α
φ cotφdφ+

 π−θr

α
(φ+ θr) cot(φ+ θr)dφ

+

 θr−ζ

α
π cotφdφ−

 π−θr

α
π cotφdφ−

 π−θr

α
π cot(φ+ θr)dφ+
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π−θr

(φ− 1) cotφdφ

+

 π−β

π−θr

(φ+ θr) cot(φ+ θr)dφ−
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π−θr

π cotφdφ

−
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π−θr

π cot(φ+ θr)dφ+

 θr−ζ

α
(φ− θr) cot(φ− θr)dφ+

 θr−ζ

α
φ cotφdφ

+

 θr−ζ

α
π cot(φ− θr)dφ+

 π−β

θr+ζ
(φ− θr) cot(φ− θr)dφ+

 π−β

θr+ζ
(φ− 1) cotφdφ

−
 π−β

θr+ζ
π cot(φ− θr)dφ ] .
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Now let us assume r > L
2 and remove the cutoffs everywhere except at the divergent integrals ,

S
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r

L
, ǫ0


= −


π sin θr
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1− πǫ0
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log
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Substitute φ+ θr = ξ and φ− θr = ρ.

S

L,

r

L
, ǫ0


= −


π sin θr
2L


1− πǫ0

2
log

πr0
2L sin θr


(D.39)

− ǫ0
2

 π

2L

 1
2

sin θr

×
 π−θr

0
φ cotφdφ+

 π

θr

ξ cot ξdξ

−
 π

θr

π cot ξdξ +

 π+θr

π
ξ cot ξdξ

−
 π+θr

π
π cot ξdξ +

 0

−θr

ρ cot ρdρ+

 θr

0
φ cotφdφ

+

 π−θr

0
ρ cot ρdρ+

 θr

π−θr

π cotφdφ

+

 π

θr

+

 π

π−θr


(φ− 1) cotφdφ+

 −ζ

−θr

−
 π−θr

ζ


π cot ρdρ ] .

Substituting π − τ = τ we have
 π
θr
(τ − 1) cot τdτ =

 π−θr
0 τ cot τdτ . Similarly substituting

124



π+ τ = τ we have
 π+θr
π (τ −1) cot τdτ =

 θr
0 τ cot τdτ . Using the above substitutions we can write
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Write ζ = πr0.

125



S

L,

r

L
, ǫ0


= −


π sin θr
2L


1− πǫ0

2
log

πr0
2L sin θr


(D.41)

− ǫ0


π sin θr
2L

 1
2

2

 θr

0
+

 π−θr

0


φ cotφdφ+ π log

πr0
sin θr



= −


π sin θr
2L


1− πǫ0

2
log

πr0
2L sin θr

+ πǫ0 log
πr0
sin θr

+ 2ǫ0

 θr

0
+

 π−θr

0


φ cotφdφ



= −


π sin θr
2L


1 +

πǫ0
2

log
2πr0

L sin θr
+ 2ǫ0

 θr

0
+

 π−θr

0


φ cotφdφ



= −


π sin θr
2L


1− πǫ0

2
log

L

r0
+

πǫ0
2

log
2π

sin θr
+ 2ǫ0

 θr

0
+

 π−θr

0


φ cotφdφ



Comparing with Eq. 6.42 we can write

F0(
r

L
) = −


π sin θr

2
. (D.42)

and

R(
r

L
) =

π

2
log

2π

sin θr
+ 2

 θr

0
+

 π−θr

0


φ cotφdφ (D.43)

To summarize, we have regulated mode sums
∞

m=1 gm over the harmonic oscillator modes by

replacing them with
∞

m=1 gm exp(−πmr0/L) whenever necessary. And the integral representations

are again regulated with the short distance cut-off r0 by requiring that the φ integrals are to be done by

excluding the region [θr − πr0/L, θr + πr0/L] from the integration range. Somewhat remarkably, it

is possible to obtain explicit expressions for all integrals sensitive to this ultraviolet cutoff, and thereby

reduce this integral representation to the following compact and simple form:

S

L,

r

L
, ǫ0


= −


π sin θr
2L


1− πǫ0

2
log

L

r0
+

πǫ0
2

log
2π

sin θr
+ 2ǫ0

 θr

0
+

 π−θr

0


φ cotφdφ


(D.44)

Comparing with the general expectation from our RG analysis (Eq. 6.42), we therefore obtain

F0(
r

L
) = −


π sin θr

2
. (D.45)

and

R(
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L
) =

π
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+ 2
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φ cotφdφ. (D.46)
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