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Synopsis

Polymers are long chain molecules consisting of a large number of units(monomers), which

are held together by chemical bonds. When the constituting monomers can attach themselves

to at most two other monomers, we get linear polymers(LP). Whereas when some of the

constituting monomers have a functionality of ≥ 3, one gets branched polymers(BP) [1].

Many naturally occurring and artificially synthesized materials contain randomly branched

polymers.

Linear and branched polymer molecules in solution are highly flexible and change their

conformation (often). Prediction of their average conformations can be done using equi-

librium statistical mechanics. The large-scale properties can be captured in simpler lattice

models. They are more amenable to rigorous analysis, and are easier to investigate numeri-

cally using both Monte-Carlo methods and series analysis approach.

The lattice models of self-avoiding walk(SAW) and lattice animals(LA) respectively

model linear and branched polymers in dilute solutions. SAW are random walks which

never visit the same site again, while LAs are the connected cluster of sites on a lattice. LA

are also considered as percolation clusters [2]. Lattice animals are related to many other

models in statistical physics, like the Ising model (Fortuin-Kastelyn clusters) [3].

In this thesis, we studied Monte-Carlo methods for linear and branched polymers. We

also studied two variants of lattice animals known as directed lattice animals(DA) and spiral

trees. DAs use the same geometry as lattice animals but the bonds are directed in this case.

This additional direction leads to many interesting properties like anisotropic scaling and

direction dependent critical properties besides making the system analytically more tractable.

We also study a lattice model of rooted spiral trees. A rooted spiral tree is a acyclic connected

subgraph of a lattice such that the projection of the path joining any site of the tree to the

root on x− y plane contains no left turn.

Directed animals have found correspondence with many other lattice models, which

makes this problem a very interesting problem to study. The exponents of (d + 2) lattice

animals, (d+1) directed animals and d dimensional hard-core lattice gas at negative activity

are related to each other [4]. Besides, the geometrical structure of directed animals describes

qualitatively diverse situations such as trees, river networks and dilute polymers in a flowing
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solvent etc. Directed animals problem is also related to p → 0 limit of directed percolation

problem. And hence a better understanding of it will also help to understand the directed

percolation problem.

In this thesis, we studied the directed lattice animals and obtained relation between

the average number of sites at a given transverse distance x from the origin for (d + 1)-

dimensional directed animals from the density-density correlation function of the lattice gas

in d dimensions [5].

Study of directed animals close to impenetrable and penetrable walls/ lines provides mod-

els for study of phase transition in presence of surface. We study the adsorption-desorption

phase transition of directed branched polymer in (d + 1) dimensions in contact with a line

[6]. We solved the model exactly in (1 + 1) and (2 + 1) dimensions.

For rooted spiral trees, we obtained an exact lower bound on the growth constant on a

square lattice. We study the problem on hyper-cubical lattice in 2, 3 and 4 dimensions using

exact enumeration and Monte-Carlo techniques [7]. This model was earlier conjectured to

show a dimensional reduction by four. We find that our numerical studies do not support this

conjecture.

Monte-Carlo(MC) simulations are a very important tool for studying polymers, as exact

results are hard to come by and are available only for the simplest models. While there are

many good algorithms known for linear polymers [9], Monte-Carlo simulations of branched

polymers have been less successful [10]. Algorithms used for simulating linear polymers

can often be adapted for branched polymers, but they are usually found to be less efficient.

A better understanding of the efficiency of Monte Carlo algorithms for generating branched

polymers seems desirable. We study a particular genetic type Monte-Carlo algorithm called

incomplete enumeration(IE) for linear and branched polymers in this thesis [8]. We found a

qualitative difference in the efficiency of the algorithm for LPs and BPs. The average time

to generate an independent sample of n sites for large n varies as n2 for linear polymers, but

as exp(cnα) for branched (undirected and directed) polymers, where 0 < α < 1.

We will now describe the models and results in more detail.

Directed lattice animals

A directed animal or a directed branched polymer on a lattice, rooted at the origin is a con-

nected cluster such that any site of the animal can be reached from the root by a walk which
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Fig 0.1: A Directed animal (directed branched polymer) of size 50, rooted on the surface, on
a square lattice drawn tiled at 45o.

never goes opposite to the preferred direction. For example, on a square lattice drawn tilted

at 45o in Fig. 1, a directed site animal or a directed branched polymer A rooted at the origin

is a set of occupied sites including origin, such that for each occupied site (x, t) other than

the origin, at least one of the two sites (x− 1, t− 1) and (x+ 1, t− 1) is also occupied. The

number of sites in A will be denoted by s = |A|. We define n(x|A) as the number of sites of

A having the transverse coordinate x, and φ(x, s) as average of n(x|A). We define As as the

number of distinct animals having s sites, with the generating function A(y) =
∑∞

s=1Asy
s.

We also define a generating function Ψ(x, y) as

Ψ(x; y) =
∑

s

φ(x, s)As y
s (0.1)

For large s, As varies as λss−θ, where θ is a critical exponent. The radius of gyration Rs

is expected to vary as sν⊥ , where the exponent ν⊥ is related to the animals number exponent

θ by the hyper-scaling relation θ = dν⊥.

The directed site animal enumeration (DSAE) problem in (d + 1) dimensions is related

to time development of thermal relaxation of a hard core lattice gas (HCLG) with nearest

neighbor exclusion on d dimensional lattice, with the rates which satisfy detailed balance

condition with fugacity z = p/(1 − p) (here p is the probability with which a sites gets

occupied in the HCLG model). Then if ρ(p) is the average density of particles in the steady

state of this system, in [11], it was shown that A(y) = −ρ(p = −y).
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We have generalized the derivation of this result to the case where the value of p at site i

is pi and all pi need not be equal. Then the rates of this process still satisfy detailed balance

condition corresponding to the Hamiltonian

H = +∞
∑

<ij>

ninj −
∑

i

(lnzi)ni (0.2)

where zi = pi/(1− pi). The probability that site i is occupied in the steady state depends on

the pj’s for all sites j, and will be denoted by ρi({pj}). In the corresponding DA problem,

we have to define the weight of an animal A as product of weights of all occupied sites, the

weight corresponding to a site with x-coordinate j being yj. IfAi({yj}) is the sum of weights

of all animals rooted at i, then taking derivative of A({yj}) with respect to yi, we find the

generating function Ψ(x; y) and the density- density correlation function of gas(G(i,k)) to

be related as

Ψ(x; y) = − 1

1 + y
G

(
x; z = − y

1 + y

)
(0.3)

This relation holds in all dimensions. For the special case d = 1, it is a simple exercise

to calculate G(x; z) explicitly and we hence get the explicit expression for Ψ(x; y) on square

lattice to be

Ψ(x; y) =
y

(1 + y)(1 − 3y)

[
1 −

√
1 − 3y

1 + y

]|x| [
1 +

√
1 − 3y

1 + y

]−|x|

(0.4)

This gives φ(x, s) for large s to be

φ(x, s) ∼
√

3πs

4
erfc

(√
3x

2
√
s

)
(0.5)

Hence we find the scaling function of distribution of transverse distances for a (1 + 1)

dimensional directed animal to be an error function.

The case x = 0 is special, in that the density-density correlation function G(0, z) is

always equal to ρ(1 − ρ) for hard-core lattice gas for any d dimensional lattice. Hence, if

one knows ρ as a function of the activity z ( equivalently, in the DA problem, one knows the

animal numbers generating function A(y)), then one can determine Ψ(0; y) in terms of A(y)

alone.
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Directed branched polymer(DBP) near an attractive line

We study the DBP in presence of 1d line parallel to the preferred direction. This is positioned

along the main diagonal of the lattice (Fig. 1). We considered only the case when the polymer

is rooted at the surface.

We assign a fugacity y to all allowed sites of the cluster. Further, if we associate an

additional energy −E with each site on the surface, each site on the surface will have an

additional weight and the fugacity of sites about the diagonal, denoted by y0 is equal to wy

where w = exp(E/kT ). Hence w > 1 would correspond to an attractive surface.

We define A(w, y), the grand partition function of the polymer as

A(w, y) =
∑

A
y|A|wn0 (0.6)

where n0 = n(0|A). If we define, As(w) as the partition function of the polymer made of

exactly s monomers, then A(w, y) =
∑∞

s=1As(w)ys.

There is a critical value wc of wall activity such that for w > wc the polymer tend to stick

to the surface. For w < wc, only a finite number of monomers stick to the surface, and at

w = wc, the critical point of the surface transition, the number of adsorbed monomers as a

function of polymer size in large s limit have a behavior given by φc(0, s) ∼ sα, where α is

known as the crossover exponent of the surface transition.

The fraction of polymer segments at the surface, represented by Cst(w, y), is the order

parameter of the surface phase transition and is zero for w ≤ wc. In general, in the large

polymer limit, near critical value of w, as w → w+
c , Cst(w, y) is expected to have scaling

form

Cst(w, y) = ε1−αh(∆wε−α) (0.7)

where ε = 1 − y/y∞(w) and ∆w = w − wc. y∞(w) is the value of the fugacity y at which

the polymer size diverges for a given w. The scaling function h(u) where u = ∆wε−α,

is a function of w and y which are both intensive thermodynamic variables. As u → ∞,

h(u) ∼ u(1−α)/α.

We find that A(w, y) can be expressed in terms of A(1, y) and this is given by
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A(w, y) =
w(1 + y)A(1, y)

(1 + wy) + A(1, y)(1 − w)
(0.8)

For x = 0, the density density correlation of HCLG is always equal to ρ(ρ − 1) for any

d dimensional case and hence Ψ(0; 1, y) can be completely expressed in terms of A(1, y).

These results hold for all dimensions. Hence, in the presence of 1d surface, a DBP in d + 1

dimensions rooted on the surface can be studied using the mapping to HCLG. The generating

functions A(w, y) and Ψ(0;w, y) can be completely expressed in terms of animal number

generating function when wall is neutral i.e, in terms of A(1, y). We used these results to

study the surface effects for DBP in 2 and 3 dimensions.

Directed Branched Polymer in presence of 1-d penetrable surface

For a penetrable surface, since the configurations spanning through the surface are allowed,

there is no loss of entropy per monomer to take into account (Fig 1). Hence, w = 1 corre-

sponds to a zero gain in free energy per monomer of the surface. This implies that wc = 1

for a DBP in any dimension in presence of a 1d line as long as A(1, y) is divergent at a finite

value of y.

But as we go to higher dimensions even though entropy loss and energy gain balances

each other at w = 1, the polymer might start binding to a line only at wall activity greater

than 1. For directed branched polymers, when A(1, y) has no divergence, w = 1 is not the

critical point of the surface transition. Instead it is given by

wc =
1 + 1/A(1, yc)

1 − yc/A(1, yc)
(0.9)

where yc is the large polymer limit fugacity value of the polymer with neutral wall i.e, when

w = 1. As an example, on a Bethe lattice with co-ordination number 3, AB(1, y) = 1−√
1−4y

2y

and yc = 1/4. At y = 1/4 the function AB(1, y) = 2, and substituting in Eq.3.23 we get

wc = 12/7, which is greater than 1.

In (1+1)-dimensions we have obtained the expressions for A(w, y) and Ψ(x;w, y). The

generating functions A(w, y) and Ψ(x;w, y) have branch cut at y = 1/3. For w = 1, they

also have a pole singularity at y = 1/3. Hence, clearly the phase transition from desorbed

to adsorbed phase occurs at w = 1, i.e wc = 1. The sticking fraction Cst(w, y) can also be

exactly calculated and we get it to be
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Cst(w, y) =


y(1 − w)

1 + y
+

1 + wy√
(1 + y)(1 − 3y)



−1

(0.10)

From this, near the critical point, we get the scaling form of Cst(w, y) to be Cst(w, y) =

A
√
ε h(u) where ε = 1 − y/y∞(w) and u = cε−1/2∆w and we get

h(u) =
[
1 + u2

] 1

2 (0.11)

with constant A =
√

3/2 and c =
√

3/4. This gives the order parameter Cst(w) near the

critical point to be proportional to ∆w.

In (2 + 1) dimensions, a DBP on a simple cubic lattice with nearest and next nearest

neighbor connections gets mapped to the hard hexagon gas model in 2 dimensions at negative

activity in the disordered regime, which was solved by Baxter. He obtained the equation for

the average density of the gas. It was shown by Joyce that there is an algebraic equation in

z (activity of the gas) and ρ (density of the gas). Using his solution we obtained a twelfth-

order polynomial equation in A(w, y), where the coefficients are functions of w and y. In

presence of 1-dimensional line the polymer undergoes a desorption-adsorption transition at

w = 1. For w ≤ 1 the dominant singularity is yc = 2/(9 + 5
√

5) and y∞(w) = yc. For

w > 1, y∞(w) can be obtained by from the fact that the A(w, y) tends to infinity at this point

and the coefficient of highest order term of the polynomial equation must be zero. With,

y = y∞(w)(1−ε) and w = 1+∆w we obtained the scaling function of Cst(w, y) = ε5/6h(u)

to be

h(u) =
6a0

1 + yc
(1 + cu6)

5

6 − 6cu5 (0.12)

where u = ∆wε−1/6. The scaling function h(u) for both (1 + 1) and (2 + 1) is a function of

two thermodynamic variables w and y.

Two dimensional Directed Branched Polymer in presence of 1-d impen-
etrable surface

In the presence of an impenetrable surface, because of loss in entropy per monomer on the

wall, the transition from desorbed to adsorbed phase takes place at a non trivial value of

adsorption activity. We study a DBP in (1 + 1) dimension on a square lattice, in presence

of an impenetrable surface, about the diagonal, by mapping the problem to the HCLG in

1-d with fugacity 0 for all sites along the negative axis. Using the mapping we obtained

the expressions for A(w, y) and Ψ(x;w, y). In this case we find wc = 3. This value is
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greater than the value for (1 + 1) d DBP with a penetrable surface. For w > 3, the closest

singularity to the origin occurs at ys =
√

4w−3−1
2w

. Near the critical point for w = 3 + ∆w

and y = ys(1 − ε), we get the same scaling form for Cst(w, y) = A
√
εh(u), with the same

scaling function h(u) (Eq. 0.11). The constant A = 2/
√

3 and c = 1/3
√

3 in this case.

We also obtained the function φ(x, s) in three regions giving the spread of sites as a

function of distance from the wall. Here we give these results for the impenetrable case only

because the qualitative behavior in both impenetrable and penetrable case is exactly same for

(1 + 1) dimensional system. These are as follows

φde(x, s) =
3

2
x exp

(
−3x2

4s

)
(0.13)

φc(x, s) =

√
3πs

2
erfc

(√
3x

2
√
s

)
(0.14)

φad(x, s) = s exp(−x) (0.15)

(0.16)

where de,c and ad represents desorbed, critical and adsorbed phases respectively.

Hence we found that at w = 3 not just the crossover exponent α is equal to 1/2, but

even the scaling form of φ(x, s) is same as that of a (1 + 1) dimensional DA in bulk [5] and

hence same as that of the penetrable wall at the critical point. This unusual result can be

understood as coming from exact cancellation of decrease in entropy and increase in internal

energy at the critical point. Also note that the value of exponent α = 1/2 for DBP is equal

to the estimates of α for branched polymers and linear polymers in 2 dimensions. In fact for

adsorption of an undirected d dimensional branched polymer to a d− 1 dimensional surface,

the crossover exponent α is conjectured to be 1/2 in all spatial dimensions.

Incomplete enumeration Monte-Carlo algorithm for linear
and branched polymers

In order to study the thermodynamic properties of the polymers, one has to average over all

allowed configurations of the polymer of a given number of monomers, with excluded vol-

ume interactions. The averages are defined with all configurations considered to be equally

likely. Monte-Carlo methods allows us to study much larger sizes, than possible by exact

enumeration techniques [12].
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Fig 0.2: An example of a genealogical tree. The numbers labelling the sites indicate the
order in which they are added (1 represents the root site). The tree shown is for directed
lattice animals on a square lattice.

The IE algorithm is a simple modification of exact enumeration algorithm for generating

polymers. We arrange all configurations in a genealogical tree, whose nodes are the different

configurations of the polymer, such that all polymer configurations of n sites are at level n

and are connected to a unique parent at level (n − 1). Clearly, the tree depends on the rule

used to define parenthood. For example, Fig. 0.2 shows a genealogical tree for directed

lattice animals on a square lattice for n ≤ 4, using one such choice.

The time required to construct the genealogical tree up-to level n in the exact enumeration

algorithm increases exponentially with n. The basic idea of the IE algorithm is to decrease

this time by randomly pruning the genealogical tree.

In IE, any bond in the genealogical tree connecting level r to level (r + 1) is removed

with probability (1 − pr) independent of the other bonds. If a configuration gets discon-

nected from the root node, automatically all its descendants are also removed. We make a

depth first search of the pruned genealogical tree up-to depth n to determine the different

configurations that remain at level n. We run the algorithm several times to generate a large

sample. The probability of enumeration of a particular r site configuration in a given run

Ξr =
∏i=r−1

i=1 pi, is same for all configurations of size r. This ensures that the sample of

configurations obtained is unbiased.

We take unit of CPU time as the time required to add or delete a configuration on the
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Fig 0.3: 1/P (n) of IE as a function of size n for SAW on a 2, 3 and 4 dimensional hyper-
cubic lattice.

genealogical tree. Since time to scan is proportional to the number of nodes on the tree, the

average CPU time per run is given by τn =
∑n

j=1AjΞj, where Aj is the total number of

configurations of size j.

Let Tn be the average CPU time required to obtain one run which generates at least one

configuration of size n. If τn is the average CPU time for one Monte-Carlo run, then we have

Tn =
τn
P (n)

(0.17)

where P (n) is the probability that a single run produces at least one sample of n monomers.

Consider the case in which pi = p for all i. So long as pλ > 1, the average number

of configurations of size n will grow exponentially with n. This implies that Tn increases

exponentially with n. Also, if pλ < 1, then P (n) decreases exponentially and again Tn

increases exponentially with n. Thus a good choice of p is near 1/λ. However, finding the

optimal choice of {pi} for a given problem is non trivial.

The simplest of enumeration problems is the enumeration on a uniform genealogical

tree. On a binary tree (λ = 2), we show that for pi = 1
2
, we get Tn = n2/4 for large n.

From systematic optimisation we saw that there exist a nontrivial optimal value for each pi

which depends on the depth of the genealogical tree to be reached. However even with this

choice for large n we get Tn ≈ n2/4. For a k-node uniform tree, with pi = 1/k ∀i, we get

Tn = (k−1)n2

2k
.
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We consider IE for SAW. The genealogical tree for SAW is not uniform. In this case it is

difficult to determine the probabilities of connection up-to level n analytically but we have

estimated P (n) numerically by simulations. We choose pi, so that on the average we get

order one configurations of size n per run for large n. With this choice of pi our numerical

simulations show that the probability of reaching level n goes down as 1/n in 2,3 and 4

dimensions (Fig. 0.3). This also implies that pc is indeed 1/λ on the SAW genealogical tree.

Hence we conclude that Tn ∼ n2 for SAWs independent of dimension.

Genealogical tree of branched polymers differs in two important ways from genealogical

tree of linear polymers. There are several choices of rules to define parentage, but for simple

rules, the degree of a node is not bounded. The number of possible descendants of a node is

of the order of its perimeter sites and hence the maximum of the degree of nodes at level n

increases with n. We study the IE algorithm, for BPs on a binary tree.

For BPs on binary tree, the genealogical tree is as shown in Fig.0.4. The growth constant

of the tree is 4. If P (k, r) is the probability of a node with k offsprings to be connected to

at-least one node r levels below it, then P (k, r) has a recursion

P (k, r + 1) = 1 −
k+1∏

s=2

(1 − pP (s, r)) , k = 2 to ∞ (0.18)

with initial conditions P (k, 1) = 1∀ k ≥ 2 and p is the probability with which we choose

any edge of the tree. P (2, r) will give the probability of connection of root to level r on the

genealogical tree. Eq. (4.18) is a nonlinear equation. At p = 1/4, from numerical iteration

of Eq.4.18 till O(104), we find P (n) ∼ exp(−cn1/3), with c = 2.47 ± 0.01 and hence,

Tn ∼ exp(cn1/3) to leading order.

We also prove a rigorous lower bound on P (n). We find, P (n) ≥ exp(−cn1/3), where c

is a constant and is equal to 5.04.

Thus our numerical simulations and qualitative arguments show that probability of con-

nection goes down as an stretched exponential at p = 1/4. Similar behaviour for BPs and

DBPs on square lattice was observed in numerical simulations. Hence, for branched poly-

mers, Tn ∼ exp(cnα) for IE algorithm.

This suggest that IE is a rather inefficient algorithm for BPs. However, the causes that

make IE inefficient are also operative in the much larger class of genetic type algorithms.

The high degree of correlations between different samples generated is a common feature of

many of these algorithms which employ pruning and enrichment. Whether our results can
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Fig 0.4: A node at level r − 2 on the genealogical tree of lattice animal enumeration on a
binary tree with k descendants. Here k ≤ (r − 1)

be generalised to a larger class of PERM type algorithms seems to be an interesting question

for further study.

Rooted spiral trees on hyper-cubical lattices

Spiral structures are very common in nature. Some examples of the beautiful spiral structures

in galaxies, shoot arrangement in plants, polymers with spiral structure etc may be found

in the book by Hargittai [13]. In statistical mechanics, lattice models of spiral self avoiding

walks have been studied and can be solved exactly in two dimension [14], though no solution

is known for the self avoiding walks without the spiral constraint. For a model of spiral

trees on the basis of numerical evidence, and guided by the fact that magnetic field acting

perpendicular to motion of a charged particle produces spiralling motion and reduction by

two in effective dimensionality, Bose et. al [15] conjectured that the spiral tree problem

would show a dimensional reduction by four. They conjectured the exponents of the spiral

tree problem follow the relations θ = (d − 4)νpl for d = 2 and θ = (d − 4)ν⊥ for d > 2,

where θ is the entropic exponent and νpl and ν⊥ are the exponents related to the radius of

gyration in the plane in which the tree has a rotational constraint and perpendicular to that

plane respectively.

Since then this problem has not been studied further. We revisited the problem and ob-

tained a significantly longer series for rooted spiral trees. Specifically in two dimensions we

have added twelve terms to the earlier series of 25 terms. In three and four dimensions we

generated a seventeen and a thirteen term series respectively. We also perform MC simu-

lations using the improved incomplete enumeration MC algorithm [8] and generated spiral

trees up to sizes of 1000 in two dimensions.
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Fig 0.5: Randomly generated spiral tree of 1000 sites in 2-dimensions using incomplete-
enumeration MC program

Series expansions give λ = 2.11433± 0.0001, θ = −1.3667± 0.001 and 2ν = 1.3148±
0.001 on a square lattice. With Monte-Carlo simulations we get the estimates as λ =

2.1145 ± 0.0010, θ = −1.364 ± 0.01, and 2ν = 1.312 ± 0.02. Our analysis of exact

series and MC samples do not support the conjectured dimensional reduction by four in this

problem.

Fig. 0.5 shows picture of a typical spiral trees of one thousand sites. Clearly, their struc-

ture is very different from lattice trees without spiral constraint. Because of the constraint

they tend to branch much less. One notes very long one dimensional structures with infre-

quent turns. Hence, simple counting of structures of kind shown in Fig.0.6 should give a

good estimate. We determined the generating function of such graphs and found the growth

constant λ
′

of these trees to be 1.93565. This is a rigorous lower bound on λspiral for spiral

trees on a square lattice. Note that our numerical estimate of λspiral on the square lattice is

λspiral ≈ 2.114.
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Fig 0.6: Schematic picture of a rooted spiral tree defined in the first quadrant with a backbone
with long offshoots
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CHAPTER 1 1

Introduction

1.1 Preliminaries

A linear polymer is a large molecule, consisting of a backbone of atoms or group of atoms

(called monomers) which are joined in a sequence by covalent bonds. If there are side-groups

or side-chains attached to the monomers and if these side chain are also large molecules,

then the molecule is a branched polymer [1]. For example, the most important and versatile

among the hundreds of commercial plastics is polyethylene. Polyethylene is used in a wide

variety of applications because its structure allows it to be produced in many different forms.

The low density polyethylene (LDPE) is a branched polymer (Fig. 1.1). It is characterized by

a large degree of branching, forcing the molecules to be packed rather loosely forming low

density material. LDPE is soft and pliable and has applications ranging from plastic bags,

containers, textiles, and electrical insulation, to coatings for packaging materials. Whereas

the high density polyethylene (HDPE) (see Fig. 1.1) demonstrates little or no branching,

enabling the molecules to be tightly packed. HDPE is much more rigid than LDPE and is

used in applications where rigidity is important like plastic tubing, bottles and bottle caps.

An important feature of polymers is the large number of rotational degrees of freedom

about the covalent bonds between the monomers. These conformational degrees of freedom

make an important entropic contribution to the free energy of the polymer, and have many

effects on the chemical and physical properties of the polymer [2, 3]. Even though real poly-

mer molecules live in continuous space and have complicated monomer-monomer interac-

tion, they can be modeled by lattice models like random walk, self avoiding walks and lattice

animals. The explanation for these simple models being so successful in describing many

of the large scale properties of polymers, lies in the idea of universality [4, 5] which plays

a central role in the modern theory of critical phenomena. Critical statistical mechanical

systems are divided into a small number of universality classes, which are typically charac-

terized by spatial dimensionality, symmetries and other general properties. In the vicinity
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Fig 1.1: Structure of low density and high density polyethylene

of a critical point, the leading asymptotic behaviour is exactly the same for all systems of a

given universality class. The details of chemical structure, interaction energies and so forth

are completely irrelevant (except for setting the non universal scale factors). Moreover, this

universal behaviour is given by simple scaling laws, in which the dependent variables are

generalised homogeneous functions of parameters which measure the deviation from criti-

cality. Hence, if we consider a polymer on length scales above the persistence length (the

length above which one can ignore correlations present on the monomer level), the large

scale properties are independent of molecular details and this universality leads to the hope

that they can be captured in lattice models. These models are attempts at representing, in a

simple manner, the entropic contribution to the free energy made by the conformational de-

grees of freedom in these molecules. For example, a lattice random walk has been used as a

model of a linear polymer [2]. This model takes into account the contributions of the confor-

mational degrees of freedom to entropy, but fails to explain asymptotic properties of a linear

polymer in a good solvent because it ignores the effects of excluded volume, which controls

the asymptotic properties of the polymer. Introducing self avoidance, we get a model of

self avoiding walks (SAW) and this model is very successful in predicting the large scale

structure of linear polymers, it has been studied extensively in the mathematics and physics

literature [6]. Similarly, the model of lattice animals (LA), which consists of clusters of

connected sites on a lattice, is a natural model for randomly branched polymers [1, 7].

Besides being models of linear and branched polymers respectively, the models of SAW

and LA are linked to many other statistical mechanical models as well. The model of SAW
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can also be seen as the n → 0 limit of the n-vector model [8]. Similarly, model of branched

polymer has connections with models like percolation [9], Lee-Yang edge singularity [10]

and hard core lattice gas [11]. Lattice animals are the p→ 0 limit of the percolation models.

Percolation itself is a model of disorder and has very wide applications. It is a special case

(q → 1) of a wider class of models known as q-state Potts models [12].

The models of SAW and LA have been studied vastly in the last many years. Like many

other combinatorial problems, these models are easy to state, but remarkably difficult to

solve. Some universal properties like critical exponents are known for the SAW problem

through conformal invariance in two dimensions [13] and for LA through super-symmetry

arguments [10] in two, three and four dimensions. Still, a complete solution has not been

possible for SAW and LA on any regular lattice for d ≥ 2. In this thesis, we study a variant of

LA known as directed lattice animals (DA) which is analytically more tractable and capture

the essential features of the LA problem. We also study a spiral variant of LA known as

spiral trees. Approximate methods, such as perturbation theory and self consistent field

theory, typically break down in the long polymer limit. Hence, considerable work has been

devoted to developing numerical methods for the study of polymers [14, 15]. We study the

efficiency of a particular Monte-Carlo simulation method for linear and branched polymers.

In this chapter we will review the earlier known results and summarize our own results

for these problems. The plan of this chapter is as follows: In Section 1.2 we will define the

models of SAW and LA. In Section 1.3 we define the model of directed lattice animals and

discuss the known results for them. We solved a model of DA in presence of an attractive

surface and studied the adsorption-desorption transition. Adsorption-desorption transition of

polymers is discussed in Section 1.4. In Section 1.5 we define and discuss the spiral tree

problem. In Section 1.6 we give a short outline of popular Monte-Carlo methods used for

polymer simulation and describe a particular algorithm, incomplete enumeration (IE), which

we have studied, in detail.

1.2 Definition and Notation of Self-avoiding walk and Lat-
tice animals

In this section we will describe the models of self avoiding walk and lattice animals in brief.
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Fig 1.2: Schematic of a SAW with 9 steps on a square lattice. The squared vertex represents the
origin.

1.2.1 Self-Avoiding Walk

An N -step self-avoiding walk (SAW) [6] ω on a d-dimensional lattice is defined as a se-

quence of distinct points ω0, ω1, ......ωN such that each point is a nearest neighbour of its

predecessor. The number of steps in the walk will be denoted by |ω| ≡ N (Fig. 1.2). There

is nothing special about ω0 and any of the sites of the lattice can be chosen as the origin. If

the walk has to visit a particular point ωi, then we get rooted SAW’s. The walks in which

no site is assigned the special status of root are unrooted walks. Hence, the total number of

rooted walks of size N are exactly N times the total number of unrooted SAW’s. The num-

ber (AN ) of possible configurations for N -step unrooted SAW’s on a d-dimensional lattice,

is exponential in N and is believed to have the asymptotic behavior

AN ∼ CµNNγ−1 (1.1)

Here µ is the connective constant of the lattice, C is a constant and γ is a critical ex-

ponent. The connective constant is lattice dependent while critical exponents are believed

to be universal and hence depend only on the dimension and not on the lattice. On the d-

dimensional hyper-cubic lattice for any d, it is easy to derive simple bounds on µ, which are,

d ≤ µ ≤ 2d− 1.

In order to study the thermodynamic properties of the polymers, one has to average over

all allowed configurations of the polymer with a given number of monomers. The averages

are defined with all configurations considered to be equally likely. For example, one of the

important quantities is the average moment of inertia of a polymer of size N . This is the
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average squared distance from the origin, averaged over all configurations of N -steps walks.

We denote it by R2
N . If ωi represents the site coordinates of the ith point of the walk, then

R2
N = 1

N

∑
i < |ωi − ω0|2 >, where <> denotes average over all configurations of SAW.

R2
N ∼ N2ν (1.2)

where ν is a critical exponent.

The upper critical dimension of SAW is four. In dimensions above four, SAW lie in the

same universality class as random walks and γ = 1 and ν = 1/2 for SAW’s in d ≥ 4. The

exact value of µ is not known for hyper-cubic lattices in any dimension d ≥ 2, although

for honeycomb lattice in two dimensions it is known to be
√

2 +
√

2 [16]. Also there is

a conjecture for its value on square lattice based on long series expansions [17]. Using

sub-multiplicity arguments one can easily show that AN ≥ µN and hence γ ≥ 1 in all

dimensions. Also in two dimensions value of critical exponents is known from conformal

field theory. In particular, γ and ν are respectively 43/32 and 3/4. But still the full expression

for the quantities like An and R2
N for all N , is not known on any regular lattice in d ≥ 2.

1.2.2 Lattice Animals

Fig 1.3: The figure shows a lattice site animal of size 15 and lattice bond animal of size 14 on a
square lattice. The dashed edge, is present for the site animal but need not be present for the bond
animal.

Lattice animals are the connected subgraph of a lattice. If they are specified by the

number of sites, they are called site animals and if they are specified by the number of
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bonds, they are called bond animals [3]. For a site animal, all edges in between sites of a

cluster is always present (Fig 1.3). Hence number of site animals with N sites are always

less than the number of bond animals with N bonds on any d-dimensional lattice for d > 1.

Just like SAW, the number of rooted lattice animals are N times the number of unrooted

LAs. Unrooted LAs are expected to have a asymptotic behaviour of the form

AN ∼ CλNN−θ (1.3)

Here again λ is lattice-dependent growth constant and θ is a critical exponent which

depends only on the dimension. One can also define the moment of inertia of a LA of size

N . The ν for animals is defined by Eq. 1.2. Bond and site animals are believed to lie in the

same universality class and hence are believed to have same θ and ν. The growth constant λ

is not universal and is different for bond and site animals. A subset of lattice animals with no

cycles, are known as bond or site trees. They are also believed to lie in the same universality

class, though again λ is different for trees and animals. The existence of growth constant λ

for unrooted lattice trees and animals has been proved rigorously using concatenation and

super multiplicity arguments [18]. Also a rigorous lower bound for θ for unrooted lattice

trees and animals has been proved [19] using the pattern theorem. Specifically, it is θ ≥
(d− 1)/d, for any dimension d ≥ 2.

The upper critical dimensions of these models is eight and the mean field exponents are

θ = 5/2 and ν = 1/4 [20]. The lattice animals problem has been shown to be related to

the Yang-Lee edge problem in two less dimensions. Actually, the exponents θ and ν are not

independent here and are related to each other by the hyper-scaling relation

θ = (d− 2)ν + 1, for d < 8 (1.4)

for unrooted lattice animals [21]. Hence θ = 1 in d = 2. This model is not conformally

invariant [22] and hence the exponent ν is not known in two dimensions. In three dimensions

both θ and ν are known through the correspondence with Yang-Lee edge problem in one

dimension. In three dimensions θ = 3/2 and ν = 1/2. But again the model of LA has not

been solved exactly and the growth constant λ is not known for any regular lattice for d ≥ 2.
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1.2.3 Dimensional Reduction

Lattice animals (or branched polymers) and directed animals (or directed branched poly-

mers) are two important examples of systems showing dimensional reduction (directed ani-

mals will be discussed in Sec1.3). Dimensional reduction is an important concept. For the

problem of branched polymers, the field theory was formulated by Lubensky and Isaacson

[7]. They had also noticed that the first terms in the ε-expansion of the critical exponents for

dimension d below the upper critical dimension eight, were same as those of the Yang-Lee

edge singularity in d−2 dimensions. The Yang-Lee edge problem is the problem of an Ising

model in a purely imaginary magnetic field and is described by a scalar field theory with cu-

bic interaction and purely imaginary coupling. Parisi and Sourlas [10] used super-symmetry

arguments to support this dimensional reduction by two in lattice animals and conjectured

that the branched polymer problem in d dimensions lies in the same universality class as the

Yang-Lee edge problem in d− 2 dimensions.

Besides this the Yang-Lee edge problem is believed to lie in the same universality as

the classical gas with short-range repulsive interaction in the grand canonical ensemble [23].

Hence this relates the branched polymer problem to the universal repulsive gas singularity in

d− 2 dimensions. This has very recently been proved to be true by Brydges and Imbrie [11].

The directed animal problem similarly shows a dimensional reduction by one and it was

shown that the DA problem in d+1 dimension is related to the time development of thermal

relaxation of a hard core lattice gas (HCLG) with nearest neighbour exclusion (nne) in d

dimension by Dhar [24]. Besides, Cardy [25] had given a relation between DA problem

in d + 1 dimension and the Yang-Lee edge singularity problem in d dimensions. Hence

we have four different problems, closely linked with each other. While correspondence

between LA and HCLG with nearest neighbour exclusion and DA and HCLG are known

rigorously, correspondence between LA, DA and Yang-Lee edge and hence between Yang-

Lee and HCLG is strongly believed to hold but has not been shown rigorously and proving

these correspondences is an important open problem.
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1.3 Directed Lattice Animals

1.3.1 Definition

Directed animals, just like the lattice animals are connected subgraphs of a lattice, but the

bonds are directed in this case. This additional direction leads to many interesting properties

like anisotropic scaling and direction dependent critical properties besides making the model

lie in a different universality class than LA’s. A DA rooted at the origin, is a cluster of

connected sites such that any site of the animal can be reached from the root by a walk

which never goes opposite to the preferred direction. Fig. 1.4 shows a directed animal on a

square lattice in two dimensions. Each site (x, t) has two bonds directed outwards towards

the sites (x + 1, t + 1) and (x − 1, t + 1). A directed site animal A rooted at the origin is

a set of occupied sites including origin, such that for each occupied site (x, t) other than the

origin, at least one of the two sites (x − 1, t − 1) and (x + 1, t − 1) is also occupied. The

origin is the source of the DA shown in Fig. 1.4. One can also define DA’s with a source

having more than one site along the t = 0 line.

0 2 4 6−2−4−6

t

x

Fig 1.4: Schematic figure of a directed animal of size 20 on a square lattice.

Just like LA, the bond and site directed animals and trees are also believed to lie in the

same universality class. The total number of DA,AN is believed to have the same asymptotic

behaviour as Eq. 1.3. But the average mean square displacement of a directed animal scales

differently in transverse and longitudinal directions. Hence, instead of a single exponent ν

which characterises the shape of LA, there are two critical exponents in DA, ν⊥ and ν||. If
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R⊥ and R|| denote the mean square displacement in the transverse and longitudinal planes

respectively, then they are expected to scale as

R⊥ ∼ N2ν⊥ (1.5)

and

R|| ∼ N2ν|| (1.6)

Directed animals have found correspondence with many other lattice models, which

makes this problem very interesting to study [26, 27, 28, 29, 30, 31]. The exponents of

(d+2) dimensional lattice animals, (d+1) dimensional directed animals and d dimensional

hard-core lattice gas at negative activity are related to each other [24, 25]. Besides, the geo-

metrical structure of directed animals describe qualitatively diverse situations such as trees,

river networks and dilute polymers in a flowing solvent etc. Directed animals problem is

also related to p → 0 limit of the directed percolation problem [32]. And hence a better

understanding of it will also help to understand the directed percolation problem. The DA

problem is also related to a recently studied model of quantum gravity [33], and there is an

unexpected relation between the number of distinct eigenvalues for the Potts model parti-

tion function on strips of width w and the number of directed animals with w sites in two

dimensions [34].

1.3.2 Directed animal and Hard core lattice gas problem

From Fig. 1.4 one can easily see that the configurations of occupied sites on the line with

fixed t depends only on the configuration on the line t − 1 for directed animals. Hence, if

we take t as the time coordinate of a site, directed animals can be said to have a Markovian

property in terms of this variable [35]. Let C be the configuration of occupied sites on the

line with a given t and AC(z) be the sum of weights of all distinct configurations of animals

with the given source C. If the weight of an animal of size n is zn, then we can write

AC(z) = z|C|
[
1 +

∑

C′

AC′(z)

]
(1.7)

where |C| is the number of sites in C and the sum over C ′ is over all possible configura-

tions of occupied sites at time t + 1, consistent with C.

Now, consider a discrete time Markov process on a linear chain with stochastic evolution

given by the rule: At time τ = 0 all sites below the line x + y = 0 on a square lattice are
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unoccupied (here x, y are the usual Cartesian co-ordinates on a square lattice). At time τ ,

sites on the line x+ y − τ are examined for occupancy. If both (x, y + 1) and (x+ 1, y) are

unoccupied, the site (x, y) is occupied with probability p, otherwise left unoccupied. Then

the probability that a site A ≡ (x, y) is eventually occupied is p times the probability that

both A′ ≡ (x+ 1, y) and A′′ ≡ (x, y + 1) are empty. That is

PA = p [1 − PA′ − PA′′ + PA′A′′ ] (1.8)

which has same form as earlier equation when C consists of a single occupied site. In

general, similar equations hold for other sites also and hence we can write

AC(z = −p) = (−1)|C|PC (1.9)

The above lattice gas model is the hard core lattice gas with repulsive interaction. This

establishes an equivalence between the DA problem and HCLG with negative fugacity. The

above mentioned dynamic rules satisfy detailed balance and the generating function of DA’s

with a single point source is equivalent to the average density of HCLG with negative fugac-

ity. All the three equations are valid in all dimensions and this correspondence holds in all

dimensions.

In this thesis, we study the directed lattice animals problem, extend the correspondence

with HCLG and obtained relation between the average number of sites at a given transverse

distance x from the origin for (d+1)-dimensional directed animals from the density-density

correlation function of the lattice gas in d dimensions. Specifically, we relate φ(x, s), the

average number of sites at a transverse distance x in the directed animals with s sites in

d transverse dimensions, to the two-point correlation function of a lattice gas with nearest

neighbor exclusion in d dimensions. For large s, φ(x, s) has the scaling form s
Rd

s
f(|x|/Rs),

where Rs is the root mean square radius of gyration of animals of s sites. We determine

the exact scaling function for d = 1 to be f(r) =
√

π

2
√

3
erfc(r/

√
3). We also show that

φ(x = 0, s) can be determined in terms of the animals’ number generating function of the

directed animals. We will discuss these results in Chapter 2.

1.4 Polymers with interaction

Lattice animals and self-avoiding walks as defined in Sec.1.2 define athermal polymers

which have no attractive forces acting between monomers. They are models of polymers
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in dilute solution in a good solvent. At high temperatures, in the dilute limit, good solvent

is a good approximation. But when the temperature is lowered, the effective monomer-

monomer interactions become stronger [2]. This self interaction, which is attractive, leads

at low enough temperatures to a strong size reduction. This is called the collapsed phase

of the polymer. In this phase the polymer collapses to a compact globular shape with its

fractal dimension equal to the dimension of the system, i.e. the radius of gyration scales

with N as RG ∼ Nν with ν = 1/d. The temperature where collapse occurs is known as

the θ point (this θ has no connection with the critical exponent θ defined in Eq. 1.3). At this

point the polymer actually undergoes a second order transition from a swollen phase whose

large scale properties can be characterized by non-interacting lattice models of polymers to

the compact phase. In the collapsed phase of the polymer the density of monomers makes a

jump as a function of chemical potential i.e. the polymer undergoes a first-order transition.

There is actually a line of second order phase transitions and the θ point separates this line

of second order transitions from a line of first order ones in the temperature and chemical

potential plane. The θ point is hence a tricritical point. In the case of branched polymers,

the collapsed phase may be modelled by compact lattice animals, which are animals with no

holes. Recently, Wu et. al. have shown that the generating function of compact lattice ani-

mals is precisely the reduced partition function of the infinite-states Potts model [36]. Hence

depending on the property of interest it is easy to modify the models of SAW and LA. For

example, when a polymer is close or even attached to a surface its critical properties may

change. When there is an attractive interaction between the monomers and the surface, it can

get adsorbed to the surface. Hence the polymer can undergo adsorption-desorption transition

as a function of surface-monomer interaction.

1.4.1 Adsorption-Desorption transition in polymers

Adsorption-desorption transition, has important applications in areas ranging from technol-

ogy such as in lubrication, adhesion, surface protection to biology [2, 37]. For example, ad-

sorbed polymers are used for surface-modification of medical implants [38]. There have been

several theoretical studies of the behavior of a polymer near a surface [2, 39, 40, 41, 42, 43].

Especially, the effect of surface for an idealized polymer (with no self-exclusion), modeled

by random walks has been studied extensively. There are many exact results known for Gaus-

sian random walks in presence of a surface [44, 45]. In comparison, linear polymers with

self exclusion and branched polymers are less well studied. For a self-avoiding walk in the

vicinity of a surface the exact critical exponents are known from conformal field theory [13].
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Directed polymer chain adsorption, modeled by a directed SAW, is one of the few solvable

models of surface effects in 2 and 3 dimensions [41]. For directed walks, self exclusion is

automatic, and nontrivial effects of excluded volume interaction are not seen. For branched

polymers (modeled by lattice animals), a relation between the exponent characterizing the

number of animals, in the presence of surface, and in the bulk is known from conformal

invariance and by a simple argument given by De’Bell et. al [13, 46].

The enumeration of directed site animals in d + 1 dimensions is related to hard-core

lattice gas (HCLG) at negative activity with repulsive interactions in d dimensions and to

the Yang-Lee edge problem in d dimensions [11, 24, 23, 47]. In Chapter3 of this thesis we

study the adsorption-desorption phase transition of the directed branched polymer in d + 1

dimensions in contact with a line by mapping it to a d dimensional hard core lattice gas at

negative activity. We solve the model exactly in 1+1 dimensions, and calculate the crossover

exponent related to fraction of monomers adsorbed at the critical point of surface transition,

and we also determine the density profile of the polymer in different phases. We also obtain

the value of crossover exponent in 2 + 1 dimensions and give the scaling function of the

sticking fraction for 1 + 1 and 2 + 1 dimensional directed branched polymer.

1.5 Spiral Trees

Spiral structures are very common in nature. Some examples of the beautiful spiral structures

in galaxies, shoot arrangements in plants, polymers with spiral structure etc may be found in

the book by Hargittai [48]. In an attempt to understand the spiral structures, spiral models of

SAW and LA have been defined and studied. In the presence of spiral constraint, a SAW or

a LA can grow either in the same direction as it has been growing in or inturn or branch out

in a specific rotational direction.

Lattice models of spiral self avoiding walk (SSAW) have been studied and solved exactly

in two dimensions for square and triangular lattices by mapping them to the combinatorial

problem of the number of partitions of an integer N [49, 50]. In the asymptotic limit, the

number of partitions is known from the work by Hardy and Ramanujam [51, 52]. For a

square lattice the number of SSAW of size N (AN ) in the asymptotic regime is given by

AN = CN
−7

4 exp


2π

(
N

3

) 1

2


 (1.10)

where C = π
4×35/4 . Hence we see that the rotational constraint has a non trivial effect on the
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scaling form of SAW and in fact the general form conjectured for SAW in Eq. 1.1 does not

hold for SSAW. Instead of exponential growth with the size of the walk, one sees a stretched

exponential growth. In contrast to SSAW, no exact solution is known for the problem of

SAW’s on any regular lattice with d ≥ 2.

In this thesis we study a lattice model of spiral trees using numerical techniques in 2, 3

and 4 dimensions. Spiral trees are a subclass of lattice trees. In a tree every cluster site is

attached to the origin through a unique path. In a spiral tree, this path has a specific rotational

constraint. A model of spiral trees and animals was proposed by Li and Zhou [53], which,

based on numerical studies, was suggested to be in a new universality class.

Fig 1.5: A rooted spiral tree of 15 sites on a square lattice. The root is the site enclosed in the square.
At the root site the tree is free to choose any of the four neighbouring sites. We count the spiral tree by
number of sites and hence all bonds between two occupied sites is always assumed to be present. The
site marked by X , if present will result in a loop for spiral site trees and hence will not be allowed.
But it can be present in a spiral bond tree.

We define a rooted spiral tree as an acyclic connected subgraph of a lattice such that the

projection to the x − y plane of the path joining any site of the tree to the root contains no

left turn (Fig. 1.5). We will measure the size of a spiral tree by the number of sites present in

the tree. These are called spiral site trees. The number of possibilities for spiral bond trees

are more than that for spiral site trees but both are supposed to lie in the same universality

class. The total number of distinct rooted spiral trees, AN is expected to have a asymptotic

behaviour of the form given in Eq. 1.3. Spiral trees are a subset of lattice trees, and clearly,

λspiral ≤ λall, where λall is the growth constant for all trees, λall ≈ 3.795 on a square lattice

[55].
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For the conventional lattice animals, one can prove θ ≥ 0 through concatenation and

super-multiplicity arguments [18, 19]. Concatenation does not work for spiral trees. Inter-

estingly, our numerical studies give a negative value of θ in two and three dimensions.

The spiral trees are anisotropic. We measure the average extent of a N -site spiral tree in

the x− y plane and perpendicular to the x− y plane through the moment of inertia tensors,

Ipl,N and I⊥,N respectively. In the asymptotic limit, they are expected to vary as

Ipl,N ∼ AN2νpl+1 (1.11)

and

I⊥,N ∼ AN2ν⊥+1 (1.12)

where νpl and ν⊥ define the length scale of the spiral tree in the planar and perpendicular

direction respectively.

Based on numerical evidence, and guided by the fact that a magnetic field acting perpen-

dicular to the motion of a charged particle produces spiralling motion and reduction by two

in effective dimensionality, Bose et. al [54] conjectured that the spiral tree problem would

show a dimensional reduction by four, and the exponents of the spiral tree problem would

follow the following relations:

θ = (d− 4)νpl for d = 2 (1.13)

θ = (d− 4)ν⊥ for d > 2 (1.14)

where θ is the entropic exponent and νpl and ν⊥ are the exponents related to the radius of

gyration in the plane in which the tree has a rotational constraint and perpendicular to that

plane respectively.

Since then this problem has not been studied further. Dimensional reduction is an in-

triguing possibility. The lattice tree model without spiral constraint is known to show a

dimensional reduction by two (Sec. 1.2.3). The directed version, show a dimensional reduc-

tion by one. For both models, the tree and animals are believed to lie in the same universality

class. In this thesis, we revisit the problem and obtain a significantly longer series for rooted

spiral trees. Specifically in two dimensions we have added twelve terms to the earlier series

of 25 terms. In three and four dimensions, we generated a seventeen and a thirteen term

series respectively. The earlier known series in three and four dimensions had thirteen and

nine terms respectively. In the process, we also correct some mistakes in the earlier reported
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series. We also perform Monte-Carlo (MC) simulations using the improved incomplete enu-

meration algorithm (Sec 1.6) and generate spiral trees up to sizes of 1000 in two dimensions.

Our analysis of the exact series and the MC samples does not support the conjectured dimen-

sional reduction by four in this problem. We also derived in two dimensions, the generating

function for enumeration of a subset of all possible spiral trees and give a non trivial lower

bound on the growth constant of rooted spiral trees on a square lattice. Our results for the

spiral tree problem are discussed in Chapter 5.

1.6 Monte Carlo simulations of polymers

Numerical methods are important for studying polymers, as exact results are hard to come

by and are available only for the simplest models. The numerical methods used for polymer

problems essentially lie in two classes: exact enumeration and Monte Carlo (MC) simulation.

An exact enumeration algorithm generates all the possible configurations of the polymer

up to certain length. But since the number of configurations grow exponentially with polymer

size, the computational complexity of the algorithm for enumeration of all configurations

increases exponentially with the size of the polymer. Hence, usually the largest polymer

studied using this has size between 10 to 100. One then performs an extrapolation to the limit

N → ∞, using techniques such as the ratio method, Pade approximants etc. Sometimes one

can exploit the symmetry of the problem and in that case one need to count only a subset of all

configurations. This subset still grows exponentially in most of the problems. For example,

for self avoiding polygons, Enting [56] developed a method based on transfer matrices known

as finite lattice method. This has been improved a lot by many modifications over the years

and very recently SAW’s up to size 71 on the square lattice, have been enumerated [57].

In contrast, using Monte-Carlo methods we can probe much larger polymer sizes (N ≈
103 − 105). A Monte-Carlo simulation is actually a computer experiment which generates a

random sample. Repeating many times one obtains many random samples and then one uses

statistical techniques to obtain an estimate of the desired quantity. Hence MC simulations

are just like laboratory experiments and contain statistical errors. By now there are many

excellent books dealing with the subject. For example, for application of MC techniques to

polymers see [14, 15].

Broadly speaking, MC algorithms fall in two classes [15]: the Metropolis type and the

genetic type. The Metropolis type algorithms generate a time sequence of configurations of
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the polymer using a Markovian evolution. The transition probabilities from one configura-

tion to the next are so chosen that the time average of properties of the system are equal to

that from the desired distribution. These may use local moves as in Rouse dynamics [58],

bi-local moves as in the reptation algorithm [59] or nonlocal moves as in the pivot [60] and

cut-and-paste [61] algorithms. There is inevitably some correlation between different con-

figurations generated in an evolution. These algorithms become inefficient if the correlation

time becomes very large, eg. simulating polymers in a random medium.

In the genetic algorithms, one randomly generates a small random number of configura-

tions in each run. The probability that a given configuration is obtained in a run is propor-

tional to the desired distribution. One repeats the process for many runs to get a large sample.

Examples of this type are, the enrichment [62] and the pruned-enriched Rosenbluth method

(PERM)-like [63] algorithms. We studied a algorithm called Incomplete enumeration (IE)

in this thesis which falls in this class.

While there have been many studies of linear polymers using various Monte-Carlo tech-

niques like pivot [60, 64, 65], PERM [63], Berreti-Sokal algorithm [66], branched polymers

have been less studied. Algorithms used for simulating linear polymers can often be adapted

for branched polymers, but they are usually found to be less efficient. For example, in the

pivot algorithm, the acceptance probability of the transformed configuration is found to be

much less for branched polymers than for linear polymers [67]. The algorithm does not

perform well for branched polymers adsorbed on a surface[68]. The PERM algorithm also

seems to work less well for branched polymers than for linear polymers [69].

A better understanding of the efficiency of Monte Carlo algorithms for generating branched

polymers is desirable. We have studied IE for linear and branched polymers in Chapter 4 of

this thesis. In the next few sections we will describe some of these algorithms.

1.6.1 Dynamic MC methods

A critical step in developing an efficient MC algorithm is the simulation (sampling) from an

appropriate probability distribution π(x). Dynamic algorithms produce statistically corre-

lated samples based on the idea of Markov chain Monte-Carlo sampling. For a simulation

to converge on the correct probability density, the move should be ergodic which means that

any configuration should be reached by any other configuration by a finite number of ele-

mentary moves of the algorithm. Also, the transition rates should satisfy detailed balance.

The moves chosen can be bilocal or non local. In the last few years, there has been lots of
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emphasis on non local move Markov chain based algorithms like the pivot. But it should be

realised that it is often difficult to find valid nonlocal moves which are useful. There are two

main reasons for this. Firstly, since a nonlocal move is very radical, the proposed configu-

rations usually violate the constraints of the problem (like self avoiding constraint of SAW).

It is therefore a nontrivial problem to invent a non local move whose acceptance probability

does not go to zero too rapidly as N → ∞. Secondly, a non local move usually costs a CPU

time which depends on N . The two broad types of useful non local moves known at present

are the pivot moves [60] and the cut and paste moves [61]. The algorithms employing non

local moves might turn out to be good to study properties like radius of gyration of poly-

mers in dilute systems, but it is less easy to estimate entropies with pivot like algorithm, and

it becomes inefficient in dense or constrained systems where most of the global moves are

forbidden. We will not discuss these algorithms any further and just mention that the pivot

algorithm is considered the most successful algorithm for SAW till now [65]. For lattice

animals also non-local move dynamical algorithms have been devised, but whereas one can

generate SAW’s of lengths up to lakhs with present algorithms, one can study lattice animals

of sizes of order thousands only.

1.6.2 Importance Sampling

In most statistical mechanics problems simple sampling (generating independent samples

directly from a desired distribution) is highly inefficient. Hence one has to either use the

Markov chain MC (see Sec. 1.6.1) or importance sampling. We describe the latter in this

section. In importance sampling strategy, random samples are generated from a trial dis-

tribution different from (but close to) the target one and then weighted according to the

importance ratio. Still it is non-trivial to design a good trial distribution for doing impor-

tance sampling. One of the most useful strategies in these problems is to build up the trial

distribution sequentially. This is known as sequential importance sampling (SIS) and the

importance weights are computed recursively [70]. This strategy was first applied by Rosen-

bluth and Rosenbluth [71] for SAW’s. It was basically an ‘inverted restricted sampling’ or

‘biased sampling’ algorithm. Its a stochastic growth algorithm in which the next step of

the SAW is chosen randomly from all those possible next steps which do not lead to self-

intersection. This generates different N step SAW’s with different probabilities and a weight

which is inverse of probability of generation of a given SAW is assigned to each SAW. This

algorithm has two limitations
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1. The weights vary widely in magnitude and hence the mean becomes dominated by

very few samples with very large weights.

2. Regularly occurring trapping events, i.e. generation of configurations with no allowed

neighbours for the next step, lead to exponential attrition.

This algorithm has been modified in recent times and used to great effect by Grassberger

et al [63]. Their algorithm is known as the pruned-enriched Rosenbluth method (PERM)

whose basic idea is to suppress large fluctuations in the weights of the configurations gen-

erated. The algorithm demands choosing pruning and enriching criterion. Basically one

chooses two cutoffs for the weights, W+
n and W−

n . Whenever the weight Wn is larger than

W+
n , double the configuration and assign a weight which is half of the original weight to

each copy. This is the enrichment step. Similarly, prune the sample by retaining every con-

figuration with weight less than W−
n with probability half after doubling its weight.

Actually PERM can be seen as a random walk in chain length with reflecting boundaries

at n = 0 and n = N . While normal evolution steps correspond to forward steps in n,

pruning events correspond to backward jumps at the last cloning time. The thresholds of

pruning and cloning should be such that the number of configurations generated at step n

should be independent of n as if it increase with n, that would imply that all configurations

are descendants of only few ancestors and hence are strongly correlated. PERM has been

successfully used to generate SAW’s of O(105) [72] and for the problem of collapse of

linear polymers [73]. But PERM as described above fails badly for lattice animals or trees

[69]. Recently, a new implementation of PERM has been developed for the problem of LA,

which works better, but still one could generate samples of sizes of O(103) only, using this

algorithm.

1.6.3 Incomplete Enumeration

Incomplete Enumeration (IE) [74, 75, 76] is an important sampling algorithm which has

naturally built in cut-off for pruning and enrichment, and is very simple to implement.

The IE algorithm is a simple modification of an exact enumeration algorithm for gener-

ating polymers. A good exact enumeration algorithm generates all possible configurations

exactly once [77]. This is ensured by defining a rule which, given an n-site configuration of

a polymer, identifies uniquely one of these sites as the ‘last added site’. Removing this site

must result in an allowed polymer configuration of (n − 1) sites. The (n − 1) site polymer



CHAPTER 1. Introduction 19

is called the parent of the n-site configuration. We start by arranging all configurations in

a genealogical tree, whose nodes are the different configurations of the polymer, such that

all polymer configurations of n sites are at level n and are connected to their parent at level

(n − 1). Clearly, the tree depends on the rule used to define parenthood. For example, Fig.

1.6 shows a genealogical tree for directed lattice animals on a square lattice for n ≤ 4, using

one such choice.
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Fig 1.6: An example of a genealogical tree. The numbers labelling the sites indicate the order in
which they are added (1 represents the root site). The tree shown is for directed lattice animals on a
square lattice.

Since the number of configurations of polymer of size n increases exponentially with n,

the time required to construct the genealogical tree up-to level n in the exact enumeration

algorithm increases exponentially with n. The basic idea of the IE algorithm is to decrease

this time by randomly pruning the genealogical tree.

In IE we choose a set of (n− 1) real numbers pi (0 < pi ≤ 1), for i = 1 to (n− 1). Any

bond in the genealogical tree connecting level r to level (r+1) is removed with a probability

(1 − pr) independent of the other bonds. If a configuration gets disconnected from the root

node, automatically all its descendants are also removed. We make a depth first search of the

pruned genealogical tree up-to depth n to determine the different configurations that remain

at level n. Pruning is decided as we go along in the depth-first search and hence memory

requirement of this algorithm is just of O(n). We run the algorithm several times to generate

a large sample. The probability of enumeration of a particular r site configuration in a given
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run is

Ξr =
i=r−1∏

i=1

pi (1.15)

This is same for all configurations of size r. This ensures that the sample of configura-

tions obtained is unbiased. As a configuration can occur at most once in a single MC run, IE

samples the population without replacement.

The different runs are mutually uncorrelated. However, the number of configurations

produced within one run varies from run to run, and different configurations produced in the

same run are correlated. Also, the fraction of runs generating configurations of size n goes

down with increasing n.

In case of SAW’s which model linear polymers, there is a natural labelling scheme in

which one just labels the first point of the walk by 1, the second by 2 and so on. In case

of branched polymers there are several different choices of labelling possible because one

can generate a (n − 1) site configuration by deleting any of the perimeter sites of the n-

site configuration. We have used Martin’s labelling scheme [77] for our cluster counting

algorithms. Here we describe his algorithm for labelling a n-cluster briefly.

• Choose a rule for ordering the neighbours of any given site. For example, for DA on

a square lattice (Fig. 1.6 ), we chose the rule that the upward neighbour is labelled

before the right neighbour.

• We label the root as 1 and its neighbours are labelled 2, 3, 4.... in the order according

to the priority rule.

• When all points adjacent to point 1 have been labelled, label any yet unlabelled points

adjacent to point 2 according to the priority rule and then of point 3 and so on. This

labeling hence induces a tree structure on the cluster which is the genealogical tree.

The labelling described above is just one way of labelling the configurations. One can

invent many other labelling schemes, which would give rise to different genealogical trees.

But we find that the nature of genealogical tree is qualitatively similar for different labelling

schemes.

In this thesis, we have studied this algorithm for linear and branched polymers. We find

the time to generate effectively one configuration of size n goes as O(n2) for SAW inde-

pendent of dimensions. The performance of the algorithm is comparable to other successful
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algorithms for generating SAW’s. For branched polymers we find that this time instead

shows a super-polynomial behaviour and goes as exp(nα), 0 < α < 1. We have made an

improvement on this algorithm which we call Improved Incomplete enumeration (IIE). All

this is dealt with, in Chapter 4 of this thesis.
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Distribution of transverse distances in
directed animals

In this chapter, we extend the known relation between the directed site animals enumeration

(DSAE) problem and the hard-core lattice gases at negative activity, to obtain the average

number of sites at a given transverse distance x from the origin for d + 1-dimensional di-

rected animals from the density-density correlation function of the lattice gas in d dimensions

[78]. This is discussed in Section 2.1. In Section 2.2, for d = 1, using the known simple ex-

ponential form of the lattice gas correlation function, we determine the scaling form for the

average number of sites at a given transverse distance in a 1+1-dimensional directed animal

having s sites, for large s. The average transverse size of the animal scales as sν⊥ , where

ν⊥ is known to be 1
2

for d = 1. For large s, the average value of q-th transverse moment

< |x|q > varies as Rq
sCq , where Rs is the root mean square radius of gyration of animals

of s sites. Using the exact scaling function we are able to determine the universal constants

Cq for all q. In Section 2.3 we derive the scaling function for DA on the Bethe lattice and in

Section 2.4 we describe and solve a model of generalised DAs.

2.1 Relation between transverse size distribution generat-
ing function and hard core lattice gas density-density
correlation function

We will denote the number of sites in a DA A by |A| or s. Also, we define n(x|A) as the

number of sites of A having the transverse coordinate x. For example, for the DA of 20 sites

shown in Fig. 1.3, n(x|A) takes the values 1, 3 and 0 for x equal to −4, 2, 5 respectively,

with |A| = 20. We shall define the radius of gyration1 of A as
√

1
s

∑
x2, where the sum is

1In general the radius of gyration of a polymer is defined about a point (root), but here for the DA problem
we define it about the preferred axis.
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over all sites of the animal. For example, the animal shown in Fig. 1.3, has a squared radius

of gyration 21/4.

We define the generating function A(y) by

A(y) =
∑

A
y|A| =

∞∑

s=1

Asy
s (2.1)

For large s, As varies as λss−θ, where θ is a critical exponent. The radius of gyration Rs

is expected to vary as sν⊥ , where the exponent ν⊥ is related to the animals number exponent

θ by the hyper-scaling relation θ = dν⊥ [21].

For a directed animal of size s we define the generating function Ψ(x; y) as

Ψ(x; y) =
∑

A
n(x|A)y|A| (2.2)

where the summation over A is the summation over all animal configurations. This can be

written as

Ψ(x; y) =
∑

s

φ(x, s)As y
s (2.3)

where φ(x, s) is the value of n(x,A) averaged over all animals A of size s.

The DSAE problem in d+1-dimensions is related to the time development of thermal re-

laxation of a hard core lattice gas (HCLG) with nearest neighbor exclusion on d dimensional

lattice [24]. On a d dimensional body-centered hyper-cubical lattice, the dynamics of the

lattice gas is defined as follows: The evolution is a stochastic discrete-time Markovian. At

odd(even) times, all the odd(even) sites are examined in parallel, and if a site has all neigh-

bors empty, it’s occupation number is set to 1 with probability p, and to 0 with probability

(1 − p). The rates of transition satisfy the detailed balance condition corresponding to the

Hamiltonian

H = +∞
∑

<ij>

ninj − (lnz)
∑

i

ni (2.4)

with z = p/(1 − p).

Let ρ(p) be the average density of particles in the steady state of this system. In [24], it

was shown that we have

A(y) = −ρ(p = −y) (2.5)
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For the d = 1 nearest-neighbor-exclusion lattice gas, it is straight forward to determine

the average density. It comes out to be

ρ(z) =
1

2


1 −

√
1

1 − 4z


 (2.6)

Substituting z = p/(1 − p), and then p = −y we get the animal number generating

function on the square lattice to be

A(y) = −1

2


1 −

√√√√
(

1 + y

1 − 3y

)
 (2.7)

The animal numbers As, which are the coefficients in the Taylor expansion of A(y) for

square lattice can be written as [26]

As =
∫ 2π

0

dθ

2π
(1 + cosθ)(1 + 2cosθ)s−1. (2.8)

For large s, As ∼ 1√
3π

3ss−
1

2 , which shows that in this case λ = 3, and θ = 1/2.

The derivation of Eq.(2.5) is easily generalized to the case where the values of p at dif-

ferent sites are different. Let the probability that site i gets occupied at time t+ 1 given that

all its neighbors are unoccupied at time t be pi. Then the rates of this process still satisfy the

detailed balance condition corresponding to the Hamiltonian

H = +∞
∑

<ij>

ninj −
∑

i

(lnzi)ni (2.9)

where zi = pi/(1− pi). The probability that site i is occupied in the steady state depends on

the pj’s for all sites j, and will be denoted by ρi({pj}). In the corresponding DA problem,

we have to define the weight of an animal A as the product of the weights of all occupied

sites, the weight corresponding to a site with x-coordinate j being yj. Then define Ai({yj})
to be the sum of weights of all animals rooted at i. Then clearly Ai({yj}) is a formal power

series in the variables {yj}. If all yj = y, this becomes independent of i, and reduces to the

function A(y). For unequal yj’s, Eq.(2.5) becomes

Ai({yj}) = −ρi({pj = −yj}) (2.10)

Applying the operator yx ∂
∂yx

on the weight of any particular animal, we get the weight
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multiplied by the number of occupied sites with transverse coordinate x in the animal. Thus,

yx
∂

∂yx
A0({yj})|{yj=y} = Ψ(x; y) (2.11)

Let Ω({zj}) be the grand partition function for the HCLG given by the Hamiltonian in

Eq. (2.9) with zj = pj/(1 − pj). Then, Ω({zj}) is a linear function of each of the variables

zj . Let ηj be the indicator variable taking value 1 if the site j is occupied, and 0 if not. The

density-density correlation function of the gas G(i,k) is defined as

G(i,k; {zj}) =< ηkηi > − < ηk >< ηi >= zk
∂

∂zk
ρi({zj}). (2.12)

When zj = z for all j, the correlation function depends only on (i−k) and hence can be

written as G(i − k; z).

Now, using Eq.(2.10), we get

Ψ(x; y) = − 1

1 + y
G

(
x; z = − y

1 + y

)
(2.13)

This equation relates the pair correlation functionG(x; z) of the HCLG with the function

Ψ(x; y) which gives the density profile of the DA problem in all dimensions.

2.2 Directed Animals on a square lattice

For the special case d = 1, it is a simple exercise to calculateG(x; z) explicitly, using transfer

matrix methods [79]. This gives

G(x; z) =
z

1 + 4z

[
1 −

√
1 − 4z

1 +
√

1 + 4z

]|x|
(2.14)

and we get the explicit expression for Ψ(x; y) on square lattice to be

Ψ(x; y) =
y

(1 + y)(1 − 3y)

[
1 −

√
1 − 3y

1 + y

]|x| [
1 +

√
1 − 3y

1 + y

]−|x|

(2.15)

This determines the density profile in the constant fugacity ensemble, where an animal

having s sites has weight ys. However, it is more instructive to look at the profile in the

constant-s ensemble. This is obtained by looking at the Taylor coefficient of ys in the above
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equation. This can become rather messy. However, the behavior for large s can be deter-

mined easily.

In general, for any dimension d , for large s, φ(x, s) has the scaling form

φ(x, s) ∼ s

Rs
d f

(
|x|
Rs

)
(2.16)

Usually the argument of the scaling function is defined only upto a multiplicative con-

stant. We have made specific choice for this by using the variable as |x|/Rs. The normaliza-

tion of scaling function f(r) is chosen such that it satisfies

∫ ∞

−∞
ddxf(|x|) = 1 (2.17)

∫ ∞

−∞
ddx |x|2f(|x|) = 1 (2.18)

In the DA problem, since the number of animals grow as λs, the series expansions for

Ψ(x; y) or A(y) in powers of y converge for y < yc = 1/λ. For y near yc, the singular

part of the function A(y) varies as (1 − yλ)θ−1. For the HCLG problem, this corresponds

to a singularity in the series for the density ρ in powers of activity for the activity zLY =

−(1 + λ)−1 [Eq. (2.13)]. This singularity on the negative real line is the Lee-Yang edge

singularity for this problem.

For z near the critical value z = zLY , this correlation functionG(x; z) is expected to have

the scaling form

G(x; z = zLY e
−ε) = c ε−ag(b|x|εν) + higher order terms in ε (2.19)

where b and c are non-universal, lattice dependent constants. We choose b such that g(ξ) =

exp(−ξ) for large ξ, and c is fixed by requiring g(0) = 1.

The scaling function g(ξ) tends to a constant limiting value as ξ tends to zero, and de-

creases to zero exponentially fast as ξ tends to infinity. Let the power-series expansion of

g(ξ) about ξ = 0 be given by

g(ξ) =
∞∑

k=0

gkξ
k (2.20)

Substituting this in Eq.(2.19), we get

G(x; z) ∼
∞∑

k=0

gkb
k|x|k

(
1 − z

zLY

)νk−a

(2.21)
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To get φ(x, s), we need to determine the coefficient of zs in the above expansion. From

the binomial expansion of (1 − z
zLY

)νk−a we immediately get

G(x; z) ∼
∞∑

s=0

(
z

zLY

)s ∞∑

k=0

gkb
k|x|k Γ(a+ s− νk)

Γ(s+ 1)Γ(a− νk)
(2.22)

For fixed k, for large s, we have

Γ(s+ a− νk)

Γ(s+ 1)
→ sa−1−νk (2.23)

Using this in Eq.(2.22), we get

f(|x|s−ν⊥) =
∞∑

k=0

gk

(
|x|
sν

)k
1

Γ(a− νk)
(2.24)

where the correlation length exponent ν for the HCLG problem is the same as the transverse

size exponent ν⊥ for directed animals.

For d = 1, it is easy to determine G(x; z) explicitly. In this case, using Eq.(2.14) we get

the scaling form for G(x; z) as

G(x; ε) =
1

4ε
exp(−2x

√
ε) (2.25)

so that a = 1, ν = 1/2, b = 2 and c = 1/4. The scaling function g(ξ) is simply given by

g(ξ) = exp[−ξ] (2.26)

hence gk = 1/Γ[k + 1]. Using this, and the values of a and ν in Eq.(2.24) we get the

leading singular behavior of φ(x, s)As on a square lattice to be

φ(x, s)As =
1

4
y−s

c

∞∑

k=0

(−
√

3x√
s
)k

Γ(k + 1)

1

Γ(1 − k
2
)

(2.27)

Since Γ(1 − k
2
) has poles when k is an even integer, only the odd terms contribute to the

sum. The resulting series is easy to sum explicitly, giving

φ(x, s)As =
1

4
3serfc

(√
3x

2
√
s

)
+ correction to scaling terms (2.28)

where erfc(x) = 2√
π

∫∞
x e−x2

dx.

This gives φ(x, s) for large s to be
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φ(x, s) =

√
3πs

4
erfc

(√
3x

2
√
s

)
+ correction to scaling terms (2.29)

From φ(x, s) we can as well derive the expression for qth transverse moment of the

directed animals. The qth transverse moment of a cluster of size s denoted by µqs is defined

as

µqs =
s∑

i=−s

φ(i, s)|i|q (2.30)

Using the scaling form of φ(i, s), for large s, we see that (µqs/sR
q
s) is a universal constant.

Denoting it by Cq, we get

µqs

sRq
s

= Cq =
∫ ∞

−∞
ddx|x|qf(|x|) (2.31)

For d = 1, we get

Cq =
1

q + 1
(3)

q
2 Γ
[
1 +

q

2

]
(2.32)

and Rs = 2
3

√
s. Hence we get the scaling function(2.17) in d = 1 to be

f(r) =

√
π

2
√

3
erfc

(
r√
3

)
(2.33)

In the entire low-density phase of the HCLG, in any dimension d, we expect the corre-

lation function G(x; z) to have an exponential decay at large |x|. But the behavior of the

scaling function f(r) for large r is in general different. Suppose ln f(r) varies as −rα for

large r. Putting this behavior in Eq.(3), and using As ∼ λs and Eq. (2.13) , we get

G(x; zLY e
−ε) ∼

∑

s

exp(−|x|αs−να − εs) (2.34)

For large |x|, the integral can be estimated by steepest descent, and gives log g(ξ) varying

as ξ
α

1+να . Since this should be linear in ξ, we see that α = 1
1−ν

. As a check, we see that in

d = 1, ν = 1/2, and f(r) varies as exp(−r2) for large r.

The case x = 0 is special, in that the density-density correlation function G(0, z) is

always equal to ρ(1−ρ) for hard-core lattice gas for any d dimensional lattice. Hence, if one

knows ρ as a function of the activity z ( equivalently, in the DA problem, if one knows the
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animal numbers generating function A(y)), then one can determine Ψ(0; y) in terms of A(y)

alone. For a d+ 1 dimensional DA on a body-centered hyper-cubical lattice it is given by

Ψ(0; y) =
1

1 + y
A(y)[1 + A(y)] (2.35)

For d = 1, using A(y) from Eq. (2.7), we get for the square lattice DA problem

Ψ(0; y) =
y

1 − 2y − 3y2
(2.36)

Expanding in powers of y we get

φ(0, s) =
3s + (−1)s−1

4As
(2.37)

where As is given in Eq.(2.8). For large s, φ(0, s) varies as s1/2 as expected.

Similar analysis can be extended to higher dimensions. In general the scaling function

f(r) tends to a finite value as r tends to 0, and hence φ(0, s) varies as s1−θ.

2.3 Scaling Function in Large Dimensions

The upper critical dimension of directed animals is 7 [80]. Hence for d > 7, mean field the-

ory becomes asymptotically exact and solutions on the Bethe lattice should depict the correct

scaling behaviors. We considered a Bethe lattice with coordination number 2d. We assign

a direction to each bond of the Bethe lattice and assume that each animal on d-dimensional

hyper-cubical lattice is equivalent to a bond animal on the Bethe lattice with coordination

number 2d. Though this is not a one-to-one mapping; every animal on the Bethe lattice may

not correspond to an animal on a corresponding d-dimensional hyper-cubical lattice because

of the possibility of loops on the latter. But for dimensions above mean-field dimension

these are expected to be irrelevant and scaling behavior is expected to be the same. We can

solve the problem exactly on the Bethe lattice for arbitrary co-ordination number to get the

transverse scaling behavior for large d [81].

A Bethe lattice is a Cayley tree with boundary sites ignored. We derive the exact self-

consistent equations for the animal number generating function and the number of occupied

sites at tth shell for arbitrary coordination number γ. γ = 2 is just the linear chain and is like

the 1-dimensional lattice animals problem. The exponents on the Bethe lattice for γ ≥ 3 are

the mean-field exponents independent of γ. Consider a Cayley tree with non-boundary sites
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having coordination number γ (Fig.2.1 shows a Cayley Tree with γ = 3). The first shell has

a single vertex and the second shell has γ vertices. Clearly the tth shell will have γ(γ−1)t−2

vertices for t ≥ 2.

Let ψA(u) be the animals number generating function on one of the branches of the

second shell (marked A in the Fig.2.1) and ψB(u) is the generating function on the whole

Bethe lattice, defined as ψB(u) =
∑∞

n=0Anu
n, where An is the number of lattice animals of

size n.

Clearly,

ψB(u) = 1 + uψγ
A(u) (2.38)

with ψA(u) satisfying the self-consistent algebraic equation of order γ − 1

ψA = 1 + uψγ−1
A (u) (2.39)

If m(t, n) is the number of sites in the tth shell in all configurations of animals of size n,

we define a generating function F (u, v) as

F (u, v) =
∞∑

n=1

∞∑

t=0

unvt (2.40)

One can solve for F (u, v) and we find,

F (u, v) = ψB(u) + γ uvf(u, v)ψγ−1
A (u) (2.41)

here fA(u, v) is the generating function of them(t, n) on theA branch (Fig.2.1) of the lattice

and satisfies a self-consistent equation

fA(u, v) = ψA − 1 + (γ − 1)uvfA(u, v)ψγ−2
A (2.42)

In general for any γ coordinated Bethe lattice, Eq.2.39 has solutions which have a u

dependence of the form (1−
√

1 − ucu)
1/(γ−2), where uc is the critical point of the function.

Hence in the scaling limit, in general for any γ

An ∼ u−n
c n− 3

2 (2.43)

f(u, v) ≈ F (u, v) ∼
∞∑

t=0

vt(1 −
√
ε)t (2.44)
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O

A

t = 4

t = 3

t = 2

t = 1

Fig 2.1: A part of a Cayley tree with coordination number 3.

where ε = 1− u/uc and only uc depends on the coordination number. Since the system will

have a double root at uc, solving Eq. 2.39 and its derivative simultaneously gives

uc =
1

γ − 1

(
γ − 2

γ − 1

)γ−2

(2.45)

and

ψBc = 1 +
γ − 1

(γ − 2)2
(2.46)

For example, for γ = 3, uc = 1/4.

Hence for large n and fixed value of t, average number of sites in the tth shell, φ(t, n)

scales as

φ(t, n) ∼ t exp(− t
2uc

n
) (2.47)

On a d-dimensional hyper-cubic lattice, with d = γ/2, the transverse distance x asymp-

totically goes as
√
t (t is the distance defined on the Bethe lattice) and hence

φ(x2, n) ≈ φ(t, n) (2.48)

and we get,

φ(x, n) ∼ x2exp(−x
4uc

n
) (2.49)
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As mentioned before, the solutions on the Bethe lattice are reliable for sufficiently large

d. In general for a d dimensional lattice, if g(r, n) is the two-point correlation function for

the connection between the origin and a site at a distance r, then for large enough d (here d ≥
8), total number of site on the surface of radius r ∼ rd−1g(r, n). Since this should behave

similar to the Bethe lattice solution for coordination number 2d, we find

g(r, n) ∼ 1

rd−2
exp(−r

2uc

n
) (2.50)

i.e., η = 0 for the system. The exponent η for large dimensions (d > 7) was shown to be

zero rigorously, using lace expansions by Hara and Slade [80]. Here we have given the full

scaling function for the correlation function in large dimensions and not just the exponent η.

2.4 Generalized directed animals

In the lattice animal problem only single occupancy per site is allowed. But one can gen-

eralise this model and define generalised animals as connected clusters of sites, with each

site allowed to be occupied by either different kind of particles or with one or more than

one particle. We solved a corresponding model of generalised directed animals exploiting its

mapping with lattice gases [81].

Consider a square lattice and let C be the configuration of occupied sites on the line

x + y = T and let b be the number of different kinds of particles. We assign a weight

ym to each particle of the mth kind. Let AC({ym}) be the sum of weights of all distinct

configurations of animals, starting with initial configuration C. We define a configuration

C by just the number of sites alone. Depending on b each configuration C will have some

degeneracy. In particular, if |C| is the number of occupied sites, the degeneracy is b|C|. Then

AC({ym}) has a Markovian property just like Eq. 1.5. For example, if b = 2, then

AC(y1, y2) =
|C|∑

q=0

y
|C|−q
1 yq

2

(
|C|
q

)[
1 +

∑

C′

AC′(y1, y2)

]
(2.51)

where the sum over C ′ is over all possible configurations of occupied sites at a line x +

y = T + 1, consistent with C. Note that though for a given C now there are many more

possibilities for C ′, they all depend only on the occupancy of C and not on the number of

particles at any occupied site in C. This equation can be generalised to any arbitrary integer

b.
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Now, if we consider a discrete time Markov process on a linear chain with stochastic

evolution given by the rule: At time τ = 0 all sites below the line x+ y = 0 are unoccupied.

At time τ , sites on the line x + y − τ are examined for occupancy. If both (x + 1, y)

and (x, y + 1) are unoccupied, the site (x, y) is occupied with probability pm by the mth

kind particle, otherwise it is left unoccupied. Then the Eq.1.5 and 1.6 still turn out to hold

true with p =
∑b

m=1 pm and pm = −ym. These evolution rules satisfy detailed balance

corresponding to

H = +∞
∑

<i,j>

ninj −
∑

i

[
b∑

k=1

lnvkδni,k,1

]
(2.52)

where vk = pk/Q and Q = 1 −∑b
k=1 pk. ni is 1 if there is a particle at the ith site and 0

if there is no particle at the ith site, and ni,k = 1 iff there is particle of kth kind at ith site. δ

is the Kronecker delta function. For d = 1 this Hamiltonian has a (b + 1) × (b + 1) transfer

matrix with all elements of first column being 1. The elements of the first row of the matrix

are all non zero and in general the (m−1)th element of the first row is vm. Rest of the entries

in the matrix are all zero. Hence this matrix has three eigen values: 0 which is (b − 1) fold

degenerate, and

λ1,2 =
1 ±

√
1 + 4

∑b
k=1 vk

2
(2.53)

The generating function of the corresponding animal problem works out to be

AC({yi}) =
1

2




√√√√ 1 +
∑b

k=1 yk

1 − 3
∑b

k=1 yk

− 1


 (2.54)

We see that this does not change the singularity structure of the generating functions. For

example, θ = 1/2 for two dimensional generalised directed animals. Now if we take b = 2,

i.e. if we assume that the sites can be occupied by two kinds of particles say 1 and 2 and

y1 = y and y2 = ay be the weight associated with a site occupied by particle of type 1 and 2

respectively, then

AC(y1, y2) =
1

2

[√
1 + y + ay

1 − 3y − 3ay
− 1

]
(2.55)

Hence a < 1 would imply that particles of kind 1 dominate whereas if a = 1, both kind

of particles are equally likely and for a > 1 the particles of second kind start dominating.
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The critical value yc depend on a and is equal to yc = 1
3(1+a)

.

This model can find applications in cluster growth models with more than one kind of

cell and in the statistics of clusters in directed percolation with two or more different kinds

of species.

One can also consider the case in which each site of the cluster can have one or more

particles. In that case all of the above treatment goes through with ym being the weight

associated with a site having m particles. If we take ym = ym, then clusters with, the same

number of particles would be equally likely and be given by Eq 2.52.

Hence, we find that this generalised model lies in the same universality class as the DA

problem. Actually, we find that the generating function of generalized directed animals on a

square lattice with the number of particles allowed per site approaching infinity is same as

that of directed animals on a triangular lattice.



CHAPTER 3 35

Directed Branched Polymers near an
attractive line

The plan of the chapter is as follows. In Section 3.1 we will define the model of a directed

branched polymer (DBP) near an attractive line. We give the mapping of a d+1 dimensional

DBP near a line to a d dimensional HCLG with repulsive interactions in [82] Section 3.2.

We consider and solve exactly the (1 + 1) d DBP in the presence of a 1d penetrable line in

Section 3.3, and in the presence of an impenetrable surface in Section 3.4. In Section 3.5,

using Baxter’s solution of hard hexagon gas we study 2 + 1 dimensional DBP in presence of

line and calculate the crossover exponent and sticking fraction exactly.

3.1 The Model

We study a model of DBP in presence of 1d line parallel to the preferred direction. This is

positioned along the line y = 0 of the lattice (Fig. 3.1). We have considered the polymer

rooted at (0, 0) on the line. The number of sites in A will be denoted by s = |A|. We define

n(x|A) as the number of sites of A having the transverse coordinate x.

We assign a fugacity y to each of the allowed sites of the cluster. Further, if we asso-

ciate an additional energy −E with each site on the line, each site on the line will have an

additional weight and the fugacity of sites on this line, denoted by y0 is equal to wy where

w = exp(E/kT ) (3.1)

Hence w > 1 would correspond to an attractive line.

We define A(w, y), the grand partition function of the polymer as

A(w, y) =
∑

A
y|A|wn0 =

∞∑

s=1

As(w)ys (3.2)
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where n0 = n(0|A) and As(w) is the partition function of the polymer made of exactly s

monomers. For w = 1, we get the statistics of equally weighted animals and As(1) is the

number of distinct directed animals having s sites with given boundary conditions.

The free energy per monomer of the polymer in the thermodynamic limit is given by

F (T ) = lim
s→∞−kBT

s
logAs(w) ≡ kBT log(y∞(w)) (3.3)

where y∞(w) is the value of fugacity at which A(w, y) has a singularity for a given value of

w.
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Fig 3.1: A directed branched polymer of size 50, rooted on the surface. The surface is along the t
direction

Let φ(x, s) be the value of n(x,A) averaged over all configurations A of size s. We

define a generating function Ψ(x;w, y) as

Ψ(x;w, y) =
∑

A
n(x|A)wn0y|A| ≡

∑

s

φ(x, s)As(w) ys (3.4)

For large s, As(w) varies as λ(ω)ss−θ, where θ is known as entropic critical exponent.

Similarly, the transverse size of the polymer for large s scales as sν , where ν is the exponent

which defines the transverse length scale of the polymer. These exponents take different

values in the desorbed , adsorbed and in the critical regions. We will use subscripts de, c

and ad to represent critical exponents and other quantities in desorbed , critical and adsorbed

phases of the polymer, respectively.
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There is a critical value wc of wall activity such that for w > wc, φ(0, s) is proportional

to s for large s and the transverse size is finite (νad = 0). This is the adsorbed phase, in

which monomers tend to stick to the surface. w < wc corresponds to the desorbed phase of

the polymer in which only a finite number of monomers stick to the surface. At w = wc the

critical point of the surface transition, the number of adsorbed monomers as a function of

polymer size in the large s limit has a behavior given by

φc(0, s) ∼ sα; (3.5)

where α is known as the crossover exponent of the surface transition.

In the s→ ∞ limit, the fraction of monomers adsorbed is like the order parameter of the

surface phase transition. In the constant fugacity ensemble A(w, y) is the partition function

with fixed w and y and hence the average polymer size would be given by

〈s(y, w)〉 =

∑
syswn0

∑
yswn0

≡ ∂lnA(w, y)

∂lny
(3.6)

Similarly, the average number of monomers at the surface would be

〈n0(y, w)〉 =

∑
n0y

swn0

∑
yswn0

≡ ∂lnA(w, y)

∂lnw
(3.7)

The sticking fraction, defined as the fraction of polymer segments at the surface, repre-

sented by Cst(w, y), would be given by

Cst(w, y) =
〈n0(y, w)〉
〈s(y, w)〉 (3.8)

In the infinite polymer limit, if we represent the value of fugacity at which 〈s(y, w)〉
diverges by y∞(w) for a given w, then the sticking fraction is only a function of the wall

activity w and is given by

Cst(w) = −dlny∞(w)

dlnw
(3.9)

This is the order parameter of the surface phase transition and is zero for w ≤ wc, where

wc is the surface phase transition point.

In general, in the large polymer limit, near the critical value of w, as w → w+
c , Cst(w, y)

is expected to have scaling form
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Cst(w, y) = ε1−αh((w − wc)ε
−α) (3.10)

where ε = 1 − y/y∞(w). The scaling function h(u) where u = (w − wc)ε
−α, is a function

of w and y which are both thermodynamic variables. As u → ∞, h(u) ∼ u(1−α)/α, and

h(u) = 0 for negative u.

3.2 General Results

The directed site animal enumeration (DSAE) problem in d + 1-dimensions is related to

the time development of thermal relaxation of a hard core lattice gas (HCLG) with nearest

neighbor exclusion on d dimensional lattice [24]. In Sec 2.1, we have shown that this corre-

spondence relates the density at a site i in steady state to the sum of weights of all animals

rooted at i, i.e.. the grand partition function of the animal. Also, the average number of sites

at a given transverse distance x from the origin for a d + 1 dimensional directed animal is

related to the density-density correlation function of the lattice gas in d dimensions.

Specifically, if on a d + 1 dimensional body-centered hyper-cubic lattice we define the

weight of an animal A to be the product of weights of all occupied sites, with the weight

corresponding to a site with x coordinate i being yi, then the DSAE problem on this d + 1

dimensional lattice gets related to the time development of HCLG with nearest neighbor

exclusion on a d dimensional body-centered hyper-cubic lattice with the rates which satisfy

detailed balance condition corresponding to the Hamiltonian

H = +∞
∑

<ij>

ninj −
∑

i

(lnzi)ni (3.11)

where zi = −yi/(1 + yi) and the animal number generating function is just the negative of

the density of HCLG with change of variables from z to y. Here we have used the conven-

tion that if
∑

<ij> ninj = 0 then the corresponding term in the Hamiltonian is zero. The

configurations with any pair of occupied nearest neighbors have infinite energy and do not

contribute to the partition function.

The partition function is linear in all z′is. The linearity of the partition function in the z ′is

implies that in case when the activity about x = 0 is different from that of the rest of the

sample, i.e. if we let the activity about x = 0 be z0 and activity everywhere else be z, then

the partition function of the HCLG can be written as
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Z(z0, z) = A(z) + z0B(z) (3.12)

where A(z) and B(z) are polynomials in z. If ρ represents the density of HCLG when the

activity about each site is the same, then the density of HCLG about the origin in the present

case ρ0(z0, z) can be written in terms of ρ as

ρ0(z0, z) =
z0ρ

ρz0 + z(1 − ρ)
(3.13)

Same observation has been made by Cardy in [47]. Correspondingly, since A(w, y) is

just the negative of ρ0(z0, z) with z0 = −wy/(1 +wy) and z = −y/(1 + y), we can express

A(w, y) in terms of A(1, y) and this is given by

A(w, y) =
w(1 + y)A(1, y)

(1 + wy) + A(1, y)(1 − w)
(3.14)

Moreover, the density-density correlation function of HCLG, G(x;w, z) with w 6= 1

can be expressed in terms of the w = 1 density density correlation function. We find that

the density density correlation function is related to Ψ(x;w, y) on a hyper-cubic lattice as

follows

Ψ(x;w, y) = − 1

1 + y
G

(
x;w, z =

−y
1 + y

)
(3.15)

From this we get

Ψ(x;w, y)

Ψ(x; 1, y)
=
w(1 + y)[1 + wy − (1 − A(1, y))(1− w)]

[1 + wy + A(1, y)(1− w)]2
(3.16)

Since ρ is the density of the HCLG, then as discussed in Sec. 2.2, for x = 0, the density

density correlation of HCLG is always equal to ρ(ρ − 1) for any dimensiond and hence

Ψ(0; 1, y) can be completely expressed in terms of A(1, y):

Ψ(0;w, y) =
w(1 + y)A(1, y)(1 + A(1, y))

[1 + wy + A(1, y)(1 − w)]2
(3.17)

Eq. (3.14-3.17) hold for all dimensions. Hence, in presence of 1d surface, a DBP in d+1

dimensions rooted on the surface can be studied using the mapping to HCLG. Moreover

the generating functions A(w, y) and Ψ(0;w, y) can be completely expressed in terms of the

animal number generating function when the wall is neutral i.e.., in terms ofA(1, y). We will

use these results below to study the effect of an attractive line for DBP in 2 and 3 dimensions.
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In the adsorbed regime the number of monomers in direct contact with the wall is propor-

tional to s and νad = 0. This implies that the scaling form of φ(x, s) in the adsorbed regime

would be

φad(x, s) ∼
s

ξd
g(|x|/ξ) (3.18)

where ξ = (w−wc)
−ν̃ is the characteristic length scale in the system. Since we are away from

the critical regime, ξ is well behaved and never diverges for finite w. Also ξ is independent

of the size s of the polymers. The normalization of scaling function g(r) is chosen such that
∫ ∞

−∞
ddxg(|x|) = 1 (3.19)

As(w)φ(x, s) is the coefficient of ys in the expansion of Ψ(x;w, y). In the adsorbed

regime, As(w) ∼ (y∞(w))−s for large s and the behavior of φ(x, s) is given by Eq. (3.18),

hence Ψ(x;w, y) will have a scaling form

Ψ(x;w, y) ∼ ε−2

ξd
g(|x|/ξ) (3.20)

where ε = 1 − y/y∞(w).

Since the scaling function g(|x|/ξ) has no y dependence, the scaling function ofG(x;w, z)

would also be just g(|x|/ξ) for w > wc.

3.3 Two dimensional Directed Branched Polymer in pres-
ence of 1-d penetrable surface

For a penetrable surface, since the configurations spanning through the surface are allowed,

there is no loss of entropy per monomer to take into account (Fig 3.1). Hence, w = 1

corresponds to a zero gain in free energy per monomer of the surface. This implies that

wc = 1 for a DBP in any dimension in presence of a 1d line as long as A(1, y) is divergent

at a finite value of y. Then the polymer has bulk behavior at the critical point. At w = 1, i.e.

for directed branched polymer in bulk, we have shown in Section 2.1 by scaling arguments

and dimensional analysis that φ(x, s) has a scaling form

φc(x, s) ∼ s1−dνcf(|x|ε−νc) (3.21)

This implies that φc(0, s) ∼ s1−dνc , and the crossover exponent α is exactly given by
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α = 1 − dνc ≡ 1 − θ (3.22)

where νc is the transverse correlation exponent of a d + 1 dimensional DA in bulk, which

is equal to the correlation length exponent for a d dimensional HCLG with nearest neighbor

exclusion.

As we go to higher dimensions, even though entropy loss and energy gain balance each

other at w = 1, the polymer might start binding to a line only at wall activity greater than 1.

For directed branched polymers, when A(1, yc) is finite, w = 1 is not the critical point of the

surface transition. Instead it is given by

wc =
1 + 1/A(1, yc)

1 − yc/A(1, yc)
(3.23)

where yc is the large polymer limit fugacity value of the polymer with neutral wall i.e., when

w = 1.

The 1+1 dDA gets mapped to a 1dHCLG. For 1+1 dimensional DA’s in bulk we derived

the exact expressions of A(1, y) and Ψ(x; 1, y) in Sec 2.2. Using them and Eq. 3.14-3.16 we

get the expressions for A(w, y) and Ψ(x;w, y) as follows

A(w, y) =
2wy(1 + y)

(1 − y − wy − 3wy2) + (1 + wy)
√

(1 − 3y)(1 + y)
(3.24)

The connected density-density correlation function of the corresponding gas is a simple

exponential and hence the generating function Ψ(x;w, y) has the form

Ψ(x;w, y) = K(w, y)exp(−b(y)|x|) (3.25)

where it is straightforward to calculate K(w, y) and b(y), and we get

K(w, y) =
2wy(1− 3y)(1 + wy)(1 − y +

√
(1 − 3y)(1 + y))

[(1 − 3y)(1 + wy)
√

1 + y + (1 − y − wy − 3wy2)
√

1 − 3y]2
(3.26)

and

b(y) = log(
√

1 + y +
√

1 − 3y) − log(
√

1 + y −
√

1 − 3y) (3.27)
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The generating functions A(w, y) and Ψ(x;w, y) have a branch cut at y = 1/3. For

w = 1, they also have a pole singularity at y = 1/3. Hence, clearly the phase transition from

desorbed to adsorbed phase occurs at w = 1, i.e. wc = 1. For w ≤ 1, y∞(w) = 1/3 and for

w > 1 it is given by the real positive solution of

w − y − w(3 + 2w)y2 − 3w2y3 = 0 (3.28)

Near the critical point, for w = 1 + δ, to leading order we get y∞(w) to be

y∞(w) =
1

3
− δ2

16
+ higher order terms (3.29)

The sticking fraction Cst(w, y) can also be exactly calculated and we get it to be

Cst(w, y) =


y(1 − w)

1 + y
+

1 + wy√
(1 + y)(1 − 3y)



−1

(3.30)

From this, near the critical point, we get the scaling form of Cst(w, y) to be

Cst(w, y) =
√
ε h(u) (3.31)

where ε = 1 − y/y∞(w) and u = ε−1/2δ and we get

h(u) =

√
3

2

[
1 +

9u2

48

] 1

2

(3.32)

This gives the order parameter Cst(w) near the critical point to be proportional to 3δ
8

. For

large values of w, expanding Cst(w) in powers of (1/w) we get

Cst(w) ∼ 1

2
− 3

√
2

16
√
w

− 3

16w
− ..... (3.33)

For w → ∞ it approaches 1/2, the maximum possible fraction that can stick to wall, as

expected.

3.4 Two dimensional Directed Branched Polymer in pres-
ence of 1-d impenetrable surface

In the presence of an impenetrable surface, because of loss in entropy per monomer on the

wall, the transition from desorbed to adsorbed phase takes place at a non trivial value of
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adsorption activity.
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Fig 3.2: Directed branched polymer on a square lattice in presence of a 1-d impenetrable line about
the diagonal.

Here we study a DBP in 1 + 1 dimension on a square lattice, in presence of an impen-

etrable surface, about the diagonal (Fig 3.2). From the exact generating function A(1, y),

A(w, y) and Ψ(x;w, y), it is straightforward to determine the critical value of w and the

sticking fraction and the density profile in the desorbed, critical and adsorbed phase of the

system. The 1+1 d case in presence of a solid wall along the growth direction can be mapped

to the HCLG in 1-d with fugacity 0 for all sites lying along the negative axis. Making use of

this mapping we get

A(1, y) =
(1 − y −

√
1 − 2y − 3y2)

2y
(3.34)

and then A(w, y) is easy to get by substituting in Eq. 3.14. This result can also be obtained

using the heap method. For an alternate treatment see [83].

The density-density correlation of the corresponding gas is exponential and hence the

generating function Ψ(x;w, y) still has a form given by Eq. 3.25, but K(w, y) and b(y) are

now given by

K(w) =
wy(1 + wy)(

√
1 + y +

√
1 − 3y)

(1 + y)(1 − w2y2)
√

1 − 3y + (1 − y − (4 − w)wy2 − w2y3)
√

1 + y
(3.35)

and

b(y) = log(
√

1 + y +
√

1 − 3y) − log(
√

1 + y −
√

1 − 3y) (3.36)
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The generating functionsA(w, y) and Ψ(x;w, y) have a branch cut at y = 1/3. Atw = 1,

A(1, y) has no divergence and yc = 1/3. Substituting in Eq. (3.23), we get wc = 3. This

value is greater than the value for 1 + 1 d DBP with a penetrable surface. This is expected,

since the tendency of polymer to grow away from the surface is more when the surface is

impenetrable and hence only when the surface gets sufficiently attractive, the polymer starts

sticking to it. For w > 3, the closest singularity to the origin occurs at

ys =

√
4w − 3 − 1

2w
(3.37)

For w ≤ 3 the branch cut singularity 1/3 dominates and hence y∞(w), the infinite poly-

mer limit fugacity value is equal to 1/3 for w ≤ 3. Whereas for w > 3, y∞(w) = ys. Free

energy is a constant and the order parameter, Cst(w) is zero for w < 3.

We get the sticking fraction, Cst(w, y) to be

Cst(w) =
1 − 2y − 3y2 + (−1 + y + 2y2)

√
(1 + y)(1 − 3y)

y[−2y + (w + 2y − wy)
√

(1 + y)(1 − 3y) + w(−1 + 2y + 2y2)]
(3.38)

Near the critical point for w = 3+ δ and y = ys(1− ε), we get the same scaling form for

Cst(w, y) as given by Eq. 3.31, with the scaling function h(u) to be

h(u) =
2√
3

[
1 +

u2

27

] 1

2

(3.39)

Hence Cst(w) is proportional to 2δ
9

near the critical point and approaches 1/2 as w → ∞.

This is plotted in Fig. 3.3 along with the sticking fraction for the penetrable case. The

qualitative behavior in both cases is just the same, the main difference being the shift of the

transition point from 1 to 3 and the initial slope. For large value of w it is easy to expand

Cst(w) in powers of 1/w. It should be noted that the largew expansion ofCst(w) will involve

powers of w−1/2 in this case as well.

Using the exact equations for generating function for Ψ(x;w, y) we translate these results

to the constant number ensemble and we get the function φ(x, s) in the three regions giving

the spread of sites as a function of distance from the wall. Here we give these calculations

for the impenetrable case only because the qualitative behavior in both the impenetrable and

penetrable cases is exactly the same for 1 + 1 dimensional system.
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Fig 3.3: Sticking Fraction in presence of line for a directed branched polymer in 1+1 and 2+1
dimensions, when the polymer size tends to infinity.

In the desorbed phase(w < 3), expanding near yc = 1/3 as y = yce
−ε, we get the scaling

form for Ψ(x;w, y) to be

Ψ(x;w, ε) = c(w)exp(−x
√

3ε) (3.40)

where, c(w) is a w dependent constant and is 3(3+w)
2(3−w)2

.

To obtain φ(x, s) for large s, we need to determine the coefficient of ys in the series

expansion of Ψ(x;w, ε) i.e.,

Ψ(x;w, ε) ≡
∑

s

φ(x, s)As(w) ys = c(w)
∞∑

k=0

(−
√

3x)k

Γ[k + 1]
(1 − 3y)

k
2 (3.41)

= c(w)
∞∑

s=0

(3y)s
∞∑

k=0

(−
√

3x)k

Γ[k + 1]

Γ[s− k/2]

Γ[s+ 1]Γ[−k/2]
(3.42)

For fixed k and large s,

Γ[s− k/2]

Γ[s+ 1]
→ s−1−k/2 (3.43)

Hence the leading singular behavior of φ(x, s)As(w) in the desorbed phase is given by

φ(x, s)As =
3sc(w)

s

∞∑

k=0

(−
√

3x/
√
s)k

Γ[k + 1]Γ[−k/2]
(3.44)
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Since Γ[−k/2] has poles when k is an even integer, only odd terms contribute to the sum.

It is easy to sum the resulting series, giving φ(x, s) for large s in the desorbed phase to be

φde(x, s) =
3

2
x exp

(
−3x2

4s

)
(3.45)

For w = 3, c(w) is singular and we have to keep terms till first order in ε in the expan-

sion(for w < 3 the constant term dominates) and we get

Ψ(x; 3, ε) =
1

ε
exp(−x

√
3ε) (3.46)

Again, just as in the desorbed phase expanding Ψ(x; 3, ε) in powers of ys, the average

number of sites at a distance x, i.e. φ(x, s) for the critical region for large s is

φ(x, s) =

√
3πs

2
erfc

(√
3x

2
√
s

)
(3.47)

Hence we see that at w = 3 not just the crossover exponent α is equal to 1/2, but even

the scaling form of φ(x, s) is same as that of a (1 + 1) dimensional DA in bulk [78] and

hence same as that of the penetrable wall at the critical point. This unusual result can be

understood as coming from exact cancellation of decrease in entropy and increase in internal

energy at the critical point. Also note that the value of exponent α = 1/2 for DBP is equal

to the estimates of α for linear polymers [84].

For w > 3, the behavior of the generating function is dominated by the singularity given

by Eq. (3.37). For w � 3, ys ≈ 1/
√
w and we get the large s behavior of φ(x, s) to be

φ(x, s) = s exp(−x) (3.48)

i.e., finite fraction of the sites stick to the line passing through the origin as expected.

Similarly, expanding A(w, y) about yc and then going to constant number (s) ensemble,

we get As(w) for large s as As(w) ∼
√

3
2
√

π
c(w)3ss−

3

2 in the desorbed regime. Hence the

number of animals in presence of the 1d impenetrable wall i.e. As(1) for large s are As(1) ∼
√

3
2
√

π
3ss−

3

2 . This gives θde to be 3/2. This is consistent with the result derived for lattice trees

by De’Bell et al [46]. Also we get at the critical point w = 3, As(3) ∼ 2√
3π

3ss−
1

2 , implying

θc to be 1/2. For w � 3, As(w) ∼ (
√
w)s, giving θad = 0.

The function φ(x, s) gives the density profile of the polymer as a function of distance
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from the surface. Since the configurations are very different in the two phases, as shown

schematically in Fig 3.2, φ(x, s) is very different in the three regions. In the desorbed phase,

it peaks away from the surface at a distance of the order of the average transverse diameter

of the polymer in the large s limit. Whereas at the critical point and in the adsorbed phase it

peaks at the surface (Fig 3.4).
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Fig 3.4: Density profile of a 2-dimensional DBP in presence of a 1-dimensional line. The solid line
shows the scaling function of φ(x, s) in the desorbed regime, the dotted fill line represent the same in
the critical region and the dashed curve is for the adsorbed phase.

3.5 Three dimensional Directed Branched Polymer in pres-
ence of an attractive line

In 2 + 1 dimensions, a DBP on a simple cubic lattice with nearest and next nearest neighbor

connections gets mapped to the hard hexagon gas model in 2 dimensions at negative activity

in the disordered regime, which was solved by Baxter [85]. He obtained the equation for the

average density of the gas. It was shown by Joyce that there is an algebraic equation in z

(activity of the gas) and ρ (density of the gas) [86].

The equation given by Joyce is quartic in z and 12th order in ρ. For convenience we will

reproduce it here [86]

ρ(1− ρ)11 − (1− ρ)5P1(ρ)z + ρ2(1− ρ)2P2(ρ)z
2 − ρ5P1(ρ)z

3 + ρ11(1− ρ)z4 = 0 (3.49)
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where

P1(ρ) = (1 − 13ρ+ 66ρ2 − 165ρ3 + 220ρ4 − 165ρ5 + 77ρ6 − 22ρ7)

P2(ρ) = (1 − 13ρ+ 63ρ2 − 125ρ3 + 6ρ4 + 401ρ5 − 689ρ6 + 476ρ7 − 119ρ8)

The density ρ of the HCLG is just the negative of A(1, y) and z = −y/(1 + y). It is

straightforward to get an algebraic equation involving A(1, y) and y [87]. As A(w, y) is a

simple rational function of A(1, y), y and w (see Eq.3.14), substituting ρ in terms ofA(w, y),

the grand partition function of the 2 + 1 dimensional DA in presence of a 1-dimensional line

parallel to the main diagonal of the lattice gas passing through the origin, we get a 12 th

order polynomial equation in A(w, y), where the coefficients are functions of w and y. The

explicit form of the equation is rather tedious and is omitted. Since A(1, y) becomes singular

for y = yc = 2/(9 + 5
√

5), in presence of the 1-dimensional line the polymer will undergo a

desorption-adsorption transition at w = 1. For w ≤ 1 the dominant singularity will be yc and

y∞(w) = yc. For w > 1, at y∞(w), A(w, y) tends to infinity and at this point the coefficient

of the highest order term must be zero. Since we have a 12th order equation in A(w, y),

equating the coefficient of the 12th order term to zero, we get a polynomial equation in y

and w (Q(y, w) = 0) whose smallest positive real root would be y∞(w). This polynomial is

12th order in w. But we can find the root numerically. The free-energy is just log(y∞(w))

and hence can be evaluated numerically.

In this case the expressions of A(w, y) and other generating functions are rather compli-

cated and hence it is difficult to go to the constant size ensemble. But at the critical point, the

system behaves like a bulk system and since θ = 5/6, by hyper-scaling arguments νc = 5/12

which implies that the crossover exponent α = 1/6 (Eq. 3.22). And by Eq. 3.10, the sticking

fraction Cst(w, y) ∼ (1 − y/y∞(w))5/6 as w → 1+ asymptotically.

By solving Q(y, w) = 0 we get y∞(w) as a function of w. Near the critical point for

w = 1 + δ, to leading order we get

y∞(w) = yc(1 − cδ6 + higher order term) (3.50)

where c = 5(5γ)5 with γ = (13
√

5 − 25)/50.

In the large polymer limit, for y very close to yc, A(1, y) has a scaling form

A(1, y) = a0

(
1 − y

yc

)− 1

6


1 + a1

(
1 − y

yc

) 5

6

+ .....


 (3.51)
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where a0 = (
√

5γ
1/6

)−1 [87].

Hence taking y = y∞(w)(1−ε) and w = 1+δ we get the scaling function of Cst(w, y) =

ε5/6h(u) to be

h(u) =
6a0

1 + yc
(1 + cu6)

5

6 − 6cu5 (3.52)

where u = δε−1/6. The scaling function h(u) is a function of w and y.

For large w, expanding in power of 1/w we get

y∞(w) ∼ 1√
6w

− 1

4w
− 11

16

√
3

2

(
1

w

) 3

2

− .... (3.53)

and

Cst(w) ∼ 1

2
− 1

4

√
3

2w
− 9

4w
− ... (3.54)

As w → ∞, Cst(w) approaches 1/2, the maximum possible fraction of adsorption. It is

like the order parameter of the surface transition. It is plotted in Fig 3.3. As is clear from the

scaling function, the sticking fraction increases much more slowly than in the 1 + 1 d case.

This is expected; there, the polymer in 2 dimensions was getting adsorbed at a 1 dimensional

surface whereas here a polymer in 3 dimensions is getting adsorbed on a 1 dimensional

surface.
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Efficiency of Incomplete Enumeration
Monte-Carlo method for
linear and branched polymers

Monte-Carlo simulations are a very important tool for studying polymers, as exact results

are hard to come by, and are available only for the simplest models. We introduced the

Incomplete-enumeration (IE) algorithm for Monte-Carlo (MC) simulations in Sec. 1.6.3.

IE is an example of a genetic algorithm. In this chapter we make a detailed study of the

algorithm for linear and branched polymers [88]. The plan of this chapter is as follows:

In Sec. 4.1 we discuss the efficiency criterion for MC algorithms in general, and for IE in

particular. In Sec. 4.2 we study the efficiency of IE analytically for some simple cases where

the genealogical tree has a simple recursive structure. We also study IE for self avoiding

walks (SAW) in this section. In all cases we find that Tn ∼ n2. In Sec. 4.3 we propose

an improved version of the IE algorithm, which we call improved incomplete enumeration

(IIE). For simple random walks Tn = n for the IIE algorithm as compared to Tn ∼ n2 for

IE. For SAW’s, IIE is significantly more efficient and becomes better in higher dimensions,

but asymptotic efficiency remains the same and Tn ∼ adn
2 in all dimensions, though the

coefficient ad decreases with increasing dimension. In Sec. 4.4 we study IE for branched

polymers or lattice animals on a binary tree. We give a non rigorous argument and numerical

evidence to show that Tn ∼ exp(cn1/3) for large n for branched polymers on a binary tree.

We also study IE and IIE numerically for undirected and directed branched polymers on a

square lattice in this section. We find that in both cases Tn ∼ exp(cnα), 0 < α < 1.
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4.1 Efficiency

In general, in Monte-Carlo methods, the time needed to estimate an ensemble average µ =

〈O〉 of some observable O over all clusters of size n averaged over N independent samples

would give estimate as µ∗ = µ ± σ/
√
N , where σ2 is the variance of O. If correlations

are present, the average time required to estimate µ within the fractional error ε varies as

(σ/εµ)2τ , where τ is a measure of correlations in the data. For Metropolis evolution, τ is the

auto-correlation time of the observable O. In the case of IE, the efficiency depends on the

average time taken by the Monte Carlo algorithm to generate a single run and the degree of

correlations present in the different samples produced in the same run. We will take inverse

of the average time taken by the Monte Carlo algorithm to obtain one run which generates

atleast one configuration of the desired size, as the measure of efficiency.

It is difficult to determine the latter exactly for IE. It depends also on the quantity we

want to average. Consider a set of configurations generated by N independent runs of the IE

algorithm. Let the probability that a single run produces at least one sample be P (n), and the

average number of configurations produced per run be a. Then for large N , we will generate

approximately Na configurations, which will be made of approximately P (n)N mutually

uncorrelated groups. Thus the average size of a correlated group is a/P (n). It seems reason-

able to measure the efficiency of the algorithm in terms of the average CPU time required

to produce one independent group of configurations. This overestimates correlations as this

treats all samples produced within one run as fully correlated. For example, the value of

mean radius of gyration of animals of size 50 on the square lattice is 54.9 and standard de-

viation σ is 26.9. The average number of samples produced per successful run was 27.5. If

we calculate the standard deviation of average radius of gyration of 104 consecutive runs, we

get σ
′
= 2.8. This would have been σ/100 ≈ 0.3 if they were uncorrelated and 4.6 if they

were fully correlated. Thus, assuming fully correlated configurations within a run is not an

unreasonable estimate.

Other definitions of efficiency are possible, and may be advantageous in specific contexts.

For example, one may be interested in some asymptotic properties of the polymer problem,

like the branching number λ, or the critical exponent θ. In this case, the value of n is not

decided beforehand, and the desired estimate is obtained by suitable extrapolation of data for

different n. We can study average number of descendants < Xn >≈ λ(1− θ/n) to estimate

λ and θ. Analysis of errors in such quantities is more complicated, and will not be discussed

here.
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Let Tn be the average CPU time required to obtain one run which generates at least one

configuration of size n. If τn is the average CPU time for one Monte-Carlo run, then we have

Tn =
τn
P (n)

(4.1)

The average CPU time required for one run is estimated easily in terms of the time taken

to add or delete a configuration on the genealogical tree. We define this to be one unit of

CPU time.

The total CPU time for one MC run is proportional to the number of nodes in the pruned

genealogical tree. Let Xj denote the random number of j site configurations generated in a

single run. The time to visit the sites of the randomly pruned tree up-to depth n is
∑n

j=1Xj .

The CPU time in a run is then proportional to the number of nodes in the pruned tree. The

average CPU time per run τn, would be equal to the sum of average values 〈Xj〉, averaged

over all runs.

τn ∝
n∑

j=1

< Xj > (4.2)

For linear and branched polymers, the total number of configurations An of a given size

n is known to vary as

An ∼ Aλnn−θ (4.3)

for large n. Here A is a constant, λ is called the growth constant and θ is a critical exponent.

Since each configuration with n sites has a probability Ξn (Eq. (1.15)) of being generated,

and there are An total number of configurations, 〈Xn〉 = ΞnAn, giving

τn =
n∑

j=1

AjΞj (4.4)

Since 〈Xn〉 can be directly estimated in IE, we get a way to estimate the number of

configurations 〈Xn〉 by simulations. This can be used to estimate λ and θ.

A study of the efficiency of the algorithm is complicated as P (n) depends on the structure

of the genealogical tree, and is difficult to determine theoretically.

An upper bound on working of this algorithm is the time for exact enumeration of all the

samples, which is exponential in n. Consider the case in which pi = p for all i. So long as
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pλ > 1, 〈Xn〉 will grow exponentially with n. As P (n) ≤ 1, this implies that Tn increases

exponentially with n if pλ > 1. Also, if pλ < 1, then P (n) varies as (pλ)n to leading

order, but τn remains finite (τn ≥ τ1). Thus again Tn increases exponentially with n. These

two considerations together imply that a good choice of p is that it should be chosen to be

approximately 1/λ. However, finding the optimal choice of {pi} for a given problem is non

trivial. We investigate this in the next section for some illustrative cases.

4.2 Optimising the Incomplete enumeration algorithm

4.2.1 Systems with Uniform genealogical tree

The simplest of enumeration problems is the enumeration on a uniform genealogical tree.

For example, random walks which are models for linear polymers without self exclusion

correspond to a uniform genealogical tree of branching number λ. The number of nodes at

level n is λn−1.

Consider a uniform genealogical tree with two descendants per node. In this case, the

number of nodes at level n would be 2n−1. For a given choice of {pi}, the probability of

connection of root with level r, denoted by P (r) follows a simple recursion relation

P (r + 1) = 2prP (r) − p2
rP

2(r) (4.5)

with P (1) = 1. The average CPU time per run τn is given by

τn = 1 +
n∑

i=2

2i−1Ξi (4.6)

First we try to determine the p′is that minimises Tn for small n.

For small sizes one can try systematic optimisation. Let us choose n = 2. Then on the

binary tree, P (2) = 2p1 − p1
2 and τ2 = 1 + 2p1. This gives,

T2 =
2p1 + 1

2p1 − p1
2

(4.7)

Minimising with respect to p1, we get the minimum value of T2 to be (3+
√

5)/2 ≈ 2.618

for p1 = (
√

5 − 1)/2 ≈ 0.618.

Similarly, the time (T3) of IE for reaching level 3 from level 1, is given by
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T3 =
1 + 2p1 + 4p1p2

2p1(2p2 − p2
2) − p2

1(2p2 − p2
2)

2
(4.8)

It is easy to check that T3 in this case takes its minimum value for p1 = 0.534 and

p2 = 0.618. Similarly for n = 4, the minimum occurs at p1 = 0.516, p2 = 0.534 and

p3 = 0.618. For large n, the best choice for the pi approach 1/2. By optimising for all

n ≤ 30, we find that the best choice for pi is well described by the approximate formula

pi ≈ 1
2
(1 + 0.5/(n− i)2).

For large r, if pr → p∗, Eq. (4.5) can be approximated by P (r+1) = 2p∗P (r)−p∗2P (r)2.

For 2p∗ < 1, we get P (r) → (2p∗)r decreases exponentially with r. For (2p∗) > 1, it leads

to P ∗(∞) ∼ (2p∗ − 1).

We have already argued that pi should be close to 1/λ, else the algorithm is inefficient

since Tn varies as exp(n). Consider now the case where pi = 1
λ
(1 + α/im), where α and m

are parameters that we can vary to find the optimal values. In this case, 〈Xn〉 =
∏

i(1+α/im),

and P (n) is approximately given by

∂P (n)

∂n
=

α

nm
P (n) − 1

λ2
P 2(n) (4.9)

Then , if m > 1, we see that 〈Xn〉 tends to a constant for large n, and τn is proportional

to n. Also, P (n) varies as 1/n, and we have Tn ∼ n2.

If m = 1, and −1 < α < 1, then 〈Xn〉 varies as nα, and hence τn ∼ nα+1. Also, Eq.

(4.9) gives P (n) ∼ A(1 − α)nα−1. Interestingly, in the Tn, these powers cancel and we get

Tn = τn/P (n) ∼ Cαn
2. We find that Cα ∼ 1/(1− α), hence the best choice for α is α = 0.

If m < 1, then 〈Xn〉 varies as exp(n1−m), and P (n) varies as n−m, and hence Tn varies

as exp(n1−m) to leading order. Thus in this case m < 1 leads to a suboptimal performance

of the algorithm.

On a binary tree for pi = 1
2
, we get Tn = n2/4. From systematic optimisation we

saw that there exists a nontrivial optimal value for each pi which depends on the depth

of the genealogical tree to be reached. This value for the uniform binary tree was pi ≈
1
2
(1 + 0.5/(n− i)2). But even with this choice for large n we get Tn ≈ n2/4. This result is

generalised straight forwardly to the k-node uniform tree. For the choice, pi = 1/k ∀i, we

get Tn = (k−1)n2

2k
.
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4.2.2 Systems with recursively defined genealogical tree

It is necessary to check how non-uniformity of trees can change the above conclusions. The

simplest of non-uniform trees are the recursively defined trees. The number of branches from

a given node still follow a definite pattern which repeats and depends on the coordination

number of the parent node. We consider some examples

A node with k descendants will be called a k-node. Consider a tree specified by the rule

that the descendants of a 2-node are a 2-node and a 3-node, and the descendants of a 3-node

are a 2-node and two 3-nodes. We specify such a tree by the notation (23, 233) tree. If B2(n)

and B3(n) are the number of distinct trees of n levels with 2 and 3 descendants at level n− 1

respectively, then

B2(n) = B2(n− 1) +B3(n− 1) (4.10)

B3(n) = B2(n− 1) + 2B3(n− 1) (4.11)

From these linear recursion equations it is easy to see that B2(n), B3(n) and also the

total number of nodes at depth n, An, all grow as (λ)n for large n, where λ = (3 +
√

5)/2.

We now look at the efficiency of IE on this tree. Take all pi = p. We define P2(r) and

P3(r) as the probabilities that a 2-node and a 3-node respectively are connected to at least

one node r levels below. Clearly they have the following recursions

1 − P2(r + 1) = (1 − pP2(r))(1 − pP3(r)) (4.12)

1 − P3(r + 1) = (1 − pP2(r))(1 − pP3(r))
2 (4.13)

with P2(1) = P3(1) = 1.

For large r, near the fixed point we get P2(r) ≈ p
1−p

P3(r). Substituting in the second

equation, we find that the linear term vanishes for p = 1/λ and the difference equation can

be approximated by ∂P2/∂r ∼ −P 2
2 , which implies that P2(n) and P3(n) decay as 1/n for

large n. We get P2(n) ≈ λ2

(1+λ)n
. The total CPU time at p = 1/λ is (5+

√
5)n

10
. It gives the

upper bound on the time per independent run to be (λ−2)(1+λ)
(3λ−2)

n2 ≈ 0.382n2.

We can similarly analyse the other recursively defined trees. Consider for example, the

tree given by the rule (23, 223). We find that the growth constant λ is 2.4142 and for pi = 1/λ

for IE this gives Tn ≈ 0.396n2. On a (33, 233) with growth constant 2.732 for pi = 1/λ for

IE this gives Tn = (λ+4)
4(λ+2)

n2 ≈ 0.35n2. It is easy to convince oneself that for all recursively

defined trees we get Tn ∼ n2.
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It is instructive to see the results of systematic optimisation over {pi} in case of non

uniform trees. Similar analysis for (23,233) tree (Fig. 1.6) between level 1 and 2 gives p1 =

0.618. Similarly optimising T3 between level 1 and 3 gives p1 = 0.562 and p2 = 0.484. An

optimisation between level 1 and 4 gives the best values of p′is to be p1 = 0.562, p2 = 0.42

and p3 = 0.467. We see that the optimal value of pi in this case depends on n. By optimising

till n = 30, where n is the depth of the genealogical tree, we find that for tree levels away

from root and bottom, the optimal value of pi approaches 1/λ with increasing i and the

asymptotic behaviour of the algorithm remains the same as long as we choose pi ≈ 1/λ.

The optimal pi values as a function of i are plotted in Fig.4.1. The optimising value of pi are

a bit higher than 1/λ near the two ends i = 1 and i = n. This extra optimisation does not

change the Tn ∼ Kn2 dependence, and in fact does not change the asymptotic value of K

either.
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Fig 4.1: Plot of optimum values of pi on a (23, 233) tree of depth 30

The incomplete enumeration algorithm generates a bond percolation process on the ge-

nealogical tree, where each link is present independently with a probability p. We define

the percolation threshold pc on the tree to be such that for all p > pc, there is a non zero

probability that the starting node belongs to an infinite cluster. For p < pc the probability

of connection between root and level n usually goes down exponentially in n. At pc it is

expected to decrease as a power law in n and for p > pc it takes a finite value in the limit of

n → ∞. The pc on a tree is bounded from below by 1/λ [20]. For the genealogical trees

which we discussed, the pc was equal to 1/λ and the optimal behaviour of the algorithm was

achieved for pi ≈ 1/λ = pc.
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4.2.3 Self avoiding Walks

We now consider IE for SAW. For a SAW on a d dimensional lattice, the number of config-

urations An ∼ λnnγ−1, where λ is a lattice dependent constant and γ depends only on the

dimension. The exponent γ is known to be 1 for d > 4, and γ = 43/32 for d = 2 [6]. The

exact value of λ is known for the hexagonal lattice [16], and a fairly precise numerical esti-

mate, which matches well with root of a quartic equation with integer coefficients is known

on the square lattice [17].

The genealogical tree for SAW is not uniform. For example, for rooted SAW (one end

fixed at origin) on a square lattice, the number of different allowed choices of the nth step

for n > 1 varies from 0 to 3, depending on the walk. In this case it is difficult to determine

the probabilities of connection up-to level n analytically but we have estimated P (n) numer-

ically by simulations. We choose pi = λ−1(1 + 1/i)1−γ , so that on the average we get order

one configurations of size n per run for large n. With this choice of pi our numerical simu-

lations show that the probability of reaching level n goes down as 1/n and hence whenever

level n is reached, on an average ∼ n SAW’s of size n are generated. This also implies that

pc is indeed 1/λ on the SAW genealogical tree. We did 106 Monte-Carlo simulations and

generated walks up-to size 10, 000 on a square lattice. We have plotted Tn in Fig 4.2. Our

numerical fit suggests Tn for IE to be (0.42 ± 0.01)n2.

   n

3−d

2−d

4−d

n−2 Tn

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0  100  200  300  400  500  600  700  800  900  1000

Fig 4.2: Tn/n2 of IE as a function of size n for SAW on a 2, 3 and 4 dimensional hyper cubic lattice.

In 3 dimensions, λ = 4.6839 and γ = 1.16 [6] and nearly 90% nodes have coordination

number 5. Hence the tree is more uniform than the 2d case and we get Tn ≈ 0.43n2 (Fig.
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4.2).

The genealogical tree becomes more and more uniform as we go to higher dimensions.

In general on a d dimensional hyper-cubic lattice the maximum branching possible is 2d− 1

and in the limit d→ ∞ the growth constant has an expansion [6]

λ = 2d− 1 − 1

2d
− 3

(2d)2
− ..... (4.14)

Hence the dominant branching is 2d − 1 and the probability of a node branching into

2d−1 branches increases with dimension, and the lower branching numbers occur with much

smaller frequencies. The probability of connection to level n is hard to obtain analytically

for any d.

In Fig. 4.2 we have also shown a plot of efficiency of IE in 3 and 4 dimensions for SAW.

In few hours one can simulate 105 Monte-Carlo runs for walks of size 1000 on a Pentium-4

machine. We get Tn ∼ n2 for 2,3 and 4 dimensions. This leads us to conclude that the small

non uniformity of the genealogical tree is unimportant and Tn varies as n2 in all dimensions

for SAW.

We note that for SAW’s, other algorithms like pivot are known to be more efficient.

For the pivot algorithm the correlation time for end to end length varies as nx with x < 1

in two dimensions [65]. However, if we want to study some variable like correlation in

the direction of consecutive steps of the walk, the correlation time will have to satisfy the

inequality, Tn ≥ n, as one would need to update each step about O(1) times to affect the

nearest neighbour correlations.

4.3 Improved Incomplete Enumeration (IIE)

The main limitation of IE is attrition: the probability of generating n-site configurations in a

given Monte-Carlo run goes down with n. One way to increase the probability of survival is

to redistribute weight amongst the descendants in such a way that while the probability that a

particular node is selected remains the same as before, the probability that at-least one of the

descendants is chosen is increased. We call this ‘Improved Incomplete Enumeration(IIE)’.

Suppose in the implementation of IE as outlined in Sec. 1.6.3, we come to a node with

degree j. Then in IE, each link is independently deleted with a probability (1 − p), and

the probability that all links are deleted is (1 − p)j, which is non zero, even if the expected
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number of descendants of this node is pj > 1. In IIE, the links are not deleted independently.

The probability that any given node is selected remains p, but the probability that at least one

node is selected increases. This is implemented as follows: If there are j descendants of a

node and each link downward is present with probability p, then we choose Int(pj) edges

at random and give them weight one, and select one of the edges out of the remaining j at

random and give it a weight one with probability Frac(pj) and delete all the other edges.

Hence we see that in IIE, though the average probability of selection of an edge remains

p, it enhances the probability of connection between level 1 and level n of the genealogical

tree and hence the probability of success in a given Monte Carlo run. For example, as will be

discussed in the next section, on a regular tree with p = 1/λ, the probability of connection

up-to n levels below in IIE is exactly one whereas it goes as 1/n in IE.

4.3.1 Systems with recursively defined genealogical tree

In IIE one redistributes the sum of probabilities of connection from a node to the next level.

On a uniform binary tree yi = 2 ∀i and with pi = 1/2, yipi = 1 and hence for pi = 1/2 with

IIE probability of reaching any level n of the tree after n steps is exactly 1 and exactly one

configuration of any given size is generated in the process and hence Tn = n. With pi = 1/k

this result holds for any k node uniform tree. Clearly pi = 1/k is the best choice in this case,

since an absolute lower bound on time Tn of the algorithm is n.

If we use the improved algorithm for a (23,233) tree, 〈Xn〉 and hence the average CPU

time per run will remain the same. We can also determine the connection probabilities P2(n)

and P3(n). The coupled difference equations for P2(r) and P3(r) have no cubic term. The

recursions are

P2(r + 1) = p(P2(r) + P3(r)) (4.15)

P3(r + 1) = p(P2(r) + 2P3(r)) −
3p− 1

3
(2P2(r)P3(r) + P 2

3 (r)) (4.16)

which at p = 1/λ = pc gives P2(n) varying as 1/n for large n. The time per independent

run comes out to be λ(3−λ)
3

≈ 1
3

times that in incomplete enumeration. That is, IIE is nearly

three times more efficient than IE in this case.

IIE certainly works better than IE. But, except for the uniform tree, the difference be-

tween IE and IIE is only in the coefficient of n2. While performance of IIE improves as the
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genealogical tree becomes more and more uniform, there is no qualitative difference in the

efficiency of IE and IIE on a recursively defined non uniform tree.

4.3.2 IIE for Self avoiding walks

We studied IIE on a d dimensional hyper-cubic lattice for d = 2 to 10.

P(n)

n

IE
(2.4/n)

IIE (8.56/n)

 0.0001

 0.001

 0.01

 0.1

 1

 1  10  100  1000  10000

Fig 4.3: Probability of getting a walk of size n on a square lattice for IE and IIE.

IIE enhances the performance of the algorithm by increasing the probability of connec-

tion between root and level n. For SAW on a square lattice, Fig. 4.3 shows the probability

of connection P (n) for IE and IIE both. P (n) is roughly 3.5 times bigger for IIE. In two

dimensions, Tn is of order 0.12n2 for IIE. In three dimensions the performance is even better

and Tn ≈ 0.056n2, which is roughly a factor of 7.5 less than the time taken by IE.

In general we find on a d-dimensional hyper-cubic lattice IIE has a efficiency Tn = adn
2

where ad is a decreasing function of dimension for generating SAW’s. Fig.4.4 shows the

plot of IIE for dimensions 2 to 10. The memory requirement of the algorithm just increases

linearly with system size in all dimensions and we could perform 105 MC runs for walks up-

to sizes 1000 in a few hours of computer time on a Pentium-4 (speed is 2.4 GHz) machine.

We find that ad decreases as d−2 approximately, i.e. the algorithm performs better with

increasing dimension.

We conclude that for IE and IIE for SAW, Tn = adn
2. The probability of connection

between root and level n does not depend on γ. It depends only on the non-uniformity of
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Fig 4.4: Tn/n2 of IIE vs size n for SAW on a 2, 3, 4, 5, 6, 7, 8 and 10 dimensional hyper cubic lattice.

the tree. The genealogical tree is more uniform in higher dimensions and the constant ad

depends on dimension. For IE, the change in ad with dimension is quite insignificant. But ad

can be decreased significantly by redistributing weights. This is a strong numerical evidence

that the performance of this algorithm is alwaysO(n2) independent of the dimension and the

value of γ for linear polymers.

A further enhancement in the probability of connection can be achieved by choosing the

pruning only after looking deeper, but we found that because of the increase both in the

memory requirement and in the CPU time to generate one configuration, there is no net gain

over IIE.

4.4 Lattice Animals and Branched Polymers

In this section we will study the IE algorithm for branched polymers. Since the efficiency

of IE is polynomial in n for linear polymers, it seems plausible that it will be so also

for branched polymers. There are two important ways in which the genealogical tree for

branched polymers differ from that for linear polymers. There are several equally reason-

able, computationally easy to implement choices of rules to define parentage, and in all of

them the degree of a node is not bounded. The number of possible descendants of a node is

of the order of its perimeter sites and hence the maximum of the degree of nodes at level n

increases linearly with n. The average number of descendants λ is of O(1), and the number
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of nodes with large branching number is exponentially small. But this makes an important

difference in the fluctuations of the number of animals of a given size generated in a given

run.

The structure of the genealogical tree for lattice animals is more complex than for self-

avoiding walks. We studied the algorithm on the genealogical tree obtained by using Martin’s

labelling scheme [77]. We have tried two or three variations of the priority rules, and our

results are insensitive to these changes.

4.4.1 Lattice animals on a Binary tree

We first discuss our results for the animals on a binary tree. This simple case is more analyt-

ically tractable. The generating function of total number of lattice animals on a binary tree

is well known [20] and it is A(y) =
∑∞

0 Ary
r = (1 − √

1 − 4y)/2y, where Ar is the total

number of animals with r sites. Ar are the Catalan numbers, which come up in many other

contexts in combinatorics [89]. For large r this gives Ar ∼ 4rr−
3

2 . The growth constant λ in

this case is 4.

The number of descendants of a node at level r in the genealogical tree for this problem

lies between 2 to (r + 1). In this case the genealogical tree is easily characterised: The

root site is a 2−node. A k-node has k descendants, and the degree of these descendants are

k + 1, k, ....3, 2 respectively. This is seen as follows: the node corresponds to a branched

polymer with k unblocked perimeter sites, which are ordered by some priority rule. The mth

descendant of this node is a node of degree (k + 2 − m) and corresponds to first (m − 1)

perimeter sites blocked, mth site occupied and (k−m) allowed for further occupation. Since

on a binary tree every site has two downward neighbours, hence we see that a k-node will

give rise to nodes with k + 1, k, .....2 descendants (Fig. 4.5). For example, in Fig. 4.6, the

top node corresponds to an animal of one site, and has two growth sites. If the first of these

two sites is occupied, then the corresponding animal has three growth sites. If it is blocked

it has two growth sites and so on.

The total number of nodes at a level r is equal to Ar. Let Br(k) is the number of k-nodes

at level (r − 1). We can determine the distribution of the branching number. We find that

Br(k) satisfies the following relation

Br(k) = Ar−2 −
k−2∑

s=2

Br−1(s) (4.17)
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r−2

r−1

r
k branches 2 branchk+1 branches

k branches

Fig 4.5: A node at level r − 2 on the genealogical tree of lattice animal enumeration on a binary tree
with k descendants. Here k ≤ (r − 1)

As r → ∞, 1/4 of the nodes at a level have 2 offsprings and 1/4 of the total nodes have 3

offsprings. And level r has exactly one node with degree (r+1). For k ≥ 4, it can be shown

that in the asymptotic limit (r → ∞), the fraction of nodes having k offsprings is (k− 1)/2k

for r >> k.

To find the efficiency factor Tn, we have to determine the probability of connection of

root to a level. If P (k, r) is the probability of a node with k offsprings to be connected to

at-least one node r levels below it, then P (k, r) has a recursion

P (k, r + 1) = 1 −
k+1∏

s=2

(1 − pP (s, r)) , k = 2 to ∞ (4.18)

with initial conditions

P (k, 1) = 1∀ k ≥ 2 (4.19)

and p is the probability with which we choose any edge of the tree. P (2, r) will give the

probability of connection of root to level r on the genealogical tree. Eq. (4.18) is a nonlinear

equation. This equation can also be written as

1 − P (k, r) = (1 − P (k − 1, r))(1 − pP (k + 1, r − 1)) k > 2 (4.20)

This equation is also valid for k = 2 if we choose the convention that P (1, r) = pP (2, r−
1).

These equations have the following properties:
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Fig 4.6: First few levels of the genealogical tree for lattice animals on a binary tree. Solid circles
represent the occupied sites and crossed circles denote blocked sites on the Bethe lattice. Dotted lines
sketch the underlying Bethe lattice, whereas solid lines represent the bonds present.

1. For p < 1/4, P (k, r) tends to zero as r tends to infinity exponentially fast for any fixed

k. In fact, if we consider r as a time like variable and k as space like variable, then

P (k, r) has a travelling front solution in this regime (P (k, r) ∼= F (k − vr)).

2. For p = 1/4, the velocity of travelling front goes to zero. The distance moved by the

front increases as r1/3 and P (k, r) ∼ F (k − r1/3). As F (x) ∼ exp(x) for x → −∞,

this implies that P (2, r) ∼ exp(−cr1/3) for large x.

3. For p > 1/4, as r goes to infinity, P (k) tends to a non trivial fixed point function

P ∗(k) greater than zero.

This may be seen as follows. The fixed point equation in terms of fixed point variables

P ∗(k) is

1 − P ∗(k) = (1 − P ∗(k − 1))(1 − pP ∗(k + 1)) (4.21)

Clearly, P ∗(k) = 0 ∀k is a trivial fixed point of this equation. For p > 1/4, there is a non

trivial fixed point with P ∗(k) non zero monotonic increasing, with P ∗(k) ≈ 1− (1− p)k for

large k. However, a closed form solution for any p > 1/4 is difficult.

On numerically iterating Eq. (4.18) in r, we find that the equation has a travelling front

solution for p ≤ 1/4 and has nontrivial fixed point for p > 1/4.
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Eq (4.21) has two stationary solutions, i.e. P ∗(k) = 1∀k and P ∗(k) = 0∀k. For p ≤ 1/4,

P ∗(k) = 0 is the stable solution while P ∗(k) = 1 is an unstable solution. Our initial

conditions given by Eq (4.19) are steep. Starting with these initial conditions, on numerical

iteration we find that as r increases, a front separating the stable solution P = 0 and the

unstable solution P = 1 moves in the forward direction. From the translational invariance of

Eq. (4.18) one expects a running wave solution. We find that the front moves with a constant

velocity and hence, P (k, r) for large k and v must tend to the asymptotic form

P (k, r) ∼ F (k − vr) (4.22)

We define k∗(r), the width of the front by the equation,

P (k∗(r), r) =
1

2
(4.23)

Fig. 4.4.1 shows a plot of numerically determined P (k, r) with respect to k−k∗(r) for p

near 1/4. Curves for p below, above and at p = 1/4 all collapse on the same line. Actually,

a travelling front for P (k, r) as defined by Eq. (4.20) exists for all k, −∞ < k < ∞, if we

take boundary conditions such that P (−∞, r) = 0 and P (∞, r) = 1.
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Fig 4.7: Plot of P (k, r) versus scaled k−k∗(r), for p = 0.25 and p = 0.25±0.0001 and r = 100, 300
and 600. All the nine curves collapse to the same front profile.

At p = 1/4, the velocity of the travelling front is zero. If we plot P (k+1, r) as a function

of P (k, r), we find that as r increases the graph approaches a limiting form. Thus for the



CHAPTER 4. Incomplete Enumeration Monte-Carlo Method 66

asymptotic wavefront, P (k+ 1, r) is a single valued nonlinear function of P (k, r). We have

plotted these values for different r in Fig. 4.8 and they all are very close and seem to lie

on the same curve. Hence if we start from a point on this curve and iterate the fixed point

equation Eq. (4.21) with p = 1/4, we generate a travelling front. We have not been able

to deduce the functional form of this function, which corresponds to a first order difference

equation for P ∗(k) from the second order equation Eq. (4.21). Eq. (4.21) turns out to be a

stiff equation and one has to be careful while iterating it in the increasing k direction. We

iterated Eq. (4.21) starting with different sets of values of P ∗(k+1) and P ∗(k) given by Fig.

4.8 and found the equation yields a travelling front same as the one shown in Fig. 4.4.1.
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Fig 4.8: Plot of P (k + 1) as a function of P (k) at p = 1/4 for r = 25000, 26000, 28000 and 30000.
All the curves are very close and approach a limiting form with increasing r. The dotted line is just
the line x = y.

We could not solve the full non-linear difference equation Eq. (4.18). Keeping only the

terms linear in P will give an upper-bound on P (k, r + 1), i.e.

P (k, r + 1) ≤ p
k+1∑

s=2

P (s, r) (4.24)

We can represent this set of equations in matrix form also. Hence if Pr represents the

infinite column array with kth entry being P (k, r) then

Pr ≤ prM rP0 (4.25)
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where M is the transition matrix. If λm is the largest eigenvalue of M then for p < 1/λm, in

the limit of r → ∞, P∗ will be 0, i.e. P ∗(k) = 0 for all k, and for p < 1/λm.

The elements Mi,j of the transition matrix M are such that, Mi,j = 1 for j ≤ (i+ 1) and

0 otherwise. If we truncate M beyond n × n (Mn), then the determinant Dn of Mn comes

out to be

Dn = A(λ)

[
1

xn+1
1

− 1

xn+1
2

]
(4.26)

with x1, x2 = −1
2
±
√

1 − 4
λ

, and A(λ) = 1/
√

1 − 4
λ

is a coefficient which does not depend

on n. Then equating Dn = 0 in the n → ∞ limit gives λm = 4. This implies that for

p < 1/4, P (k, r) will decay exponentially with increasing r and Eq (4.24) will work well.

Hence, by definition percolation threshold pc of this tree is 1/4.

The linearised recursion can be solved explicitly, and we get,

P (k, r) = pr Γ[k + 2r − 1]

Γ[k + r − 1]Γ[r + 1]
(4.27)

which for large r gives

P (k, r) ∼ 1

4
√
πr

exp

[
ln 2

(
k + r

ln(4p)

ln(2)

)]
(4.28)

If we assume a travelling front solution of kind P (k, r) ∝ exp(λ(k − vr)) to be valid in

the tail of the distribution, then substituting in linearised recursion (Eq.(4.24)), for a given p

we get a spectrum of travelling wave like solutions parametrised by λ with the velocity v of

the front given by

v =
1

λ
ln

1 − exp(−λ)

p
− 1 (4.29)

In this case, it is known that the front actually chooses a unique velocity given by the min-

imum of right hand side of Eq. (4.29) with respect to λ [90]. The front velocity is given

by

v∗ =
2exp(−λ∗) − 1

1 − exp(−λ∗)
(4.30)

where λ∗ is the solution of the transcendental equation
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−1

λ∗
ln

1 − exp(−λ∗)

p
+

exp(−λ∗)

1 − exp(−λ∗)
= 0 (4.31)

Near p = 1/4, we can take v ≈ ln(4p)/ln(2) and λ ≈ ln2. Travelling front solutions

have been found in a large variety of problems in physics [91].

The linearisation of Eq (4.18) would be valid only for p ≤ 1/4 and k < ko(r). Beyond

that the linear solution will grow beyond one whereas the solution of the full nonlinear equa-

tion will saturate to 1. Here ko(r) is the value of k at which P (k, r) given by Eq. (4.28)

becomes of O(1) and is equal to

ko(r) =
−rln(4p)

ln2
, for p <

1

4
(4.32)

At p = 1/4, the asymptotic velocity of the front is zero and the front advances as a sub

linear power of r. This is the critical point of the percolation on this tree, and Eq. (4.28)

gives a algebraic decaying solution for sufficiently small k. This is only an upper bound

to the actual value. On numerically iterating Eq. (4.18) for r up to order 104, we found

unexpectedly that it decays as a stretched exponential in r.

The fixed point equation as given by Eq. (4.21) is again a nonlinear equation. To find the

dependence of the probability of connection of root, P (2, r), on the width of the front we

solved the linearised fixed point equation. On solving, we find that it goes as 2−k∗(r) for large

r, where k∗(r) is the width of the distribution. Hence in general, P (2, r) ∼ exp(−ak∗(r)).

We further studied the width k∗(r) of the front as a function of r for different values of

p. At p = 1/4 we found k∗(r) ∼ r
1

3 . Fig. 4.9 shows a plot of k∗(r) as a function of r1/3. For

p = 1/4, the plot is a straight line. This implies that P (2, r) ∼ exp(−cr1/3) at p = 1/4. For

p < 1/4, k∗(r) varies linearly with r and tends to a constant for p > 1/4. We can directly

iterate Eq. (4.18). In Fig 4.10 we have plotted −log(P (2, r)) as a function of r1/3 which

comes out to be a straight line. Fig 4.9 and Fig. 4.10 are strong numerical evidence that

the probability of connection goes as exp(−crα) for branched polymers on binary tree. Our

numerical studies give α = 0.333 ± 0.005 and c = 2.47 ± 0.01.
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Fig 4.9: The width k∗(r) of the travelling front as a function of r1/3 for different values of p. The
value of p increases from left to right. Curves of left of p = 1/4 are for p < 1/4 and the ones on right
are for p > 1/4. For p = 1/4 the graph approaches a straight line as r → ∞.

4.4.2 Heuristic argument for the stretched exponential behaviour of
P (n) at p = 1/4

We now present a heuristic argument to understand why k∗ varies as r1/3 at pc. Let us

consider a genealogical tree of lattice animals on a binary tree, in which nodes with more

than k descendants are deleted. We denote the probability that the maximum degree of a

node connected to root down to level r is km, by H2(km) and the probability that a km node

is connected to at least one node r levels down on the truncated genealogical tree by Jkm(r).

Now on a truncated tree, transition matrix M is no longer infinite. It is now a km × km

matrix with Mi,j = 1 for j ≤ (i + 1) and 0 otherwise. Here Mi,j represents the ith row and

jth column entry of M , and we find the critical value of p which is just inverse of the largest

eigenvalue of M to be a function of km and is equal to

pc(km) =
1

4

(
1 + tan2

(
π

km + 1

))
(4.33)

For p < pc(km), Jkm(r) decays exponentially with r. In the large r limit it is given by

Jkm(r) ∼ exp(rlog(p/pc(km))) (4.34)

At p = 1/4, we get Jkm(r) ∼ exp(−br/k2
m), where b is a constant.
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Fig 4.10: Thick line is the plot of −log(P (2, r)) as a function of r1/3, when p is taken to be 1/4.
The dotted line is a straight line of slope 2.47.

It is easy to get a lower bound on H2(km), as an order km node occurs for the first time

at level km and the probability of connection of root to this node is pkm . Hence

H2(km) ≥ pkm = 4−km (4.35)

Hence, since p = 1/4 is less than pc(km) for any finite km, Jkm(r) ∼ exp(−br/k2
m),

where b = π2. Since H2(km) ≥ exp(−apkm), for large r we get

P (2, r) ≥ max
km

[
exp

(
−apkm − br

k2
m

)]
(4.36)

which gives

P [2, r] ≥ exp(−cr1/3) (4.37)

where c = 3
2
(2ba2

p)
1

3 . If we take H2(km) to be as given by Eq. (4.35), we get a lower bound

on P (2, r). Taking b = π2 and ap = log4 we get c = 3
2
(2π2log24)1/3 = 5.04. This should be

compared with the numerical estimate c ∼= 2.47.

Thus our numerical simulations and qualitative arguments show that probability of con-

nection goes down as a stretched exponential at p = 1/4, the pc of the genealogical tree

of lattice animals on binary tree as opposed to r−1 decay for linear polymers. So if we
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chose pi = 1/4 ∀i, then 〈Xr〉 ∼ r−3/2 and hence the average computer time to generate one

statistically independent sample of size r, Tr would go as exp(cr1/3) to leading order.

Clearly the algorithm is not working well and one would like to enhance its efficiency

if possible. We tried to study the algorithm by choosing pi such that its asymptotic value is

1/4. We chose pi = 1
4
(1 + x

im
) and studied Tr as a function of x and m.

As argued earlier, taking m = 1, we can change τr and P (r) by multiplicative factors

which are powers of r. This will not make much of a difference, as the leading dependence

remains exp(cr1/3). Using m < 1, seems to be more interesting.

x

r
lo

gT

     m=1

m=5/6

m =2/3

 22

 22.5

 23

 23.5

 24

 24.5

 25

 25.5

 26

 0  0.5  1  1.5  2

Fig 4.11: Plot of logTn for m = 2/3, 5/6 and 1 as a function of x for n = 1000.

For m < 1, the average CPU time per Monte-Carlo run would vary as exp(xr1−m). In

case of linear polymers, we saw that time complexity of the algorithm for m = 1 for any

x is polynomial in r. Hence, m < 1 was clearly a bad choice. But in the case of lattice

animals, this increase in numerator is exactly cancelled by a corresponding increase in P (r).

For 2/3 ≤ m < 1, τr increases as exp(xr1−m) and P (r) varies as exp(−cr1/3 + xr1−m)

to leading order for large r. These cancel to give Tr ∼ exp(cr1/3) independent of m. To

monitor the behaviour of various prefactors, we study this numerically. Fig. 4.11 shows plot

of Tr for r = 1000, for m = 2/3, 5/6 and 1 as a function of x. For 1 ≥ a ≥ 2/3, to leading

order Tr goes as exp(cr1/3), but there exist a non trivial value of x at which Tr is minimum

for a given m. If we look at Tr at best value of x for m = 2/3, 5/6 and 1, we find that as r

increases the difference is not significant.

Hence we conclude that to leading order, Tr ∼ exp(cr1/3), for the best choice of p. For
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all 2/3 ≤ m ≤ 1, there exists a range of x for which the time complexity of the algorithm

will remain qualitatively the same.

4.4.3 Lattice Animals on a 2 dimensional square lattice

We also studied the efficiency for lattice animals on a square lattice. From exact series

enumeration the Ar is known to vary as λr with λ ≈ 4.06257 [55]. In this case also the

number of offsprings a node at level r can have is O(r) and the genealogical tree in this case

though more complicated, is qualitatively similar. Numerically, we find that the probability

distribution of the number of descendants k (of a randomly chosen node) has a maximum at

k = 4, with Prob(k = 4) ≈ 1/4. We enumerated lattice animals up-to sizes 1000 using IE

with 106 Monte-Carlo runs. It took time of order one day on a Pentium-4 (2.4MHz) machine.

With IIE we generated samples of size 2000 with 2×106 Monte-Carlo runs in 2-3 days time.

These sizes are of same order as those produced using the cut and paste type algorithms.
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Fig 4.12: Plot of −log(P (2, r)) versus r0.4 for lattice animals on a square lattice with IE and IIE

In this case, we find that P (r) has the stretched exponential form P (n) ∼ exp(−cnα),

with α ≈ 0.4 for both IE and IIE. Fig. 4.12 shows [−logP (r)] varies approximately linearly

with r0.4. We also studied the directed lattice animals (DA) on a square lattice. In this case

we find that, α = 0.32 ± 0.02 (Fig. 4.13).
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Fig 4.13: Plot of −log(P (r)) versus r0.32 for directed animals with IIE.



CHAPTER 5 74

Rooted Spiral-trees in
two, three and four dimensions

The model of rooted spiral trees was defined in Section 1.5. In this chapter, in Section. 5.1

we will derive the generating function for enumeration of a subset of all possible spiral trees

and thus obtain a lower bound on the growth constant λspiral of the spiral trees on a square

lattice. In Section. 5.2, we study spiral trees on a square lattice using both exact enumeration

and Monte-Carlo methods. In Section. 5.3 and Section. 5.4 we give our numerical estimates

for spiral trees on three and four dimensional hyper-cubic lattice. We find that the spiral con-

straint can be implemented in two ways for d > 2. We studied both of them and surprisingly

found the two implementation of spiral rules belonging to two different universality classes

[92].

5.1 Lower Bound on Growth Constant on a Square lattice

Some pictures of randomly generated large spiral trees are shown in Fig. 5.1. One notes

very long one dimensional structures with infrequent turns. Hence, a simple counting of

structures of the kind shown in Fig.5.2 should give a good estimate of the growth constant λ.

The generating function of trees of this type is easy to determine. If A1(x) is the generating

function, we get
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Fig 5.1: Randomly generated spiral trees of 1000 sites in 2-dimensions using the incomplete-
enumeration algorithm
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A1(x) =
x

1 − x
+

x3

(1 − x)2
A1(x) (5.1)

here first term comes from trees which are just the one-dimensional line of variable size

along the y-axis and the second term counts trees with atleast one horizontal bend. From

Eq. 5.1 we get, A1(x) = x(1−x)
1+x2−2x−x3 . The number of trees of this type grows as λ1

n,

with λ1 = 1.754878. It is straightforward to include more complicated branches in such a

counting to get a better lower bound. This we proceed to do below.

Consider a subset of all the spiral trees on a square lattice rooted at the origin, which lie

strictly in the first quadrant x ≥ 0, y ≥ 0; starting at the origin, and not touching y = 0 and

y = 1 except at points (0, 0) and (0, 1) respectively. If Q(x) is the generating function for

spiral trees in a quadrant and if q4,n is the coefficient of xn in the expansion of ([Q(x)]4)/x3,

then

An ≥ q4,n (5.2)

where An is the nth term of A(x), the generating function of all spiral trees on the square

lattice.

The enumeration of graphs contributing toQ(x) can be made easier by noticing that these

graphs can be formed by combination of smaller graphs. We define an articulation point [93]

as a point on y-axis such that the tree above is an allowed spiral tree in the quadrant above

that part (note that these trees are defined in the upper quadrant and they never touch y = 0

axis, except at (0,0)). For example, the solid squares represent the articulation points of the

graph in Fig. 5.2, and Fig. 5.3 shows a spiral tree with no articulation point. Hence, these

spiral trees can be seen as trees having y axis as a backbone on which spiral graphs are

connected at different articulation points maintaining the spiral constraint.

Let B(x) be the generating function of the quadrant spiral trees with no articulation

points. B(x) can be seen as the sum of generating functions of irreducible graphs with i sites

along y-axis. We represent them by Bi(x) (see Fig. 5.4), then B(x) =
∑∞

i=1Bi(x). The full

generating function in terms of B(x) would be

Q(x) = x(1 +B(x) +B2(x).......) =
x

1 − B(x)
(5.3)

where Bi(x) are spiral graphs starting with i-sites along the y-axis. It is easy to see that

B1(x) = x, B2(x) = x3

1−x
and B3(x) = x6

(1−x−x3)(1−x)
. One can write B4(x) with some effort
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Fig 5.2: A simple counting problem of backbone with arbitrary long straight offshoots. Minimum
distance between two offshoots is 2 so that the tree constraint is not violated. Solid squares represent
the articulation points of the graph.

but we do not have a general form for Bi(x) for all i.

We restrict the graphs contributing to Bi(x) to be graphs such that they have i sites along

the y axis and have at least one downward branch with i − 1 sites. This would not include

structures like Fig. 5.3. We will represent the generating function of these graphs by Q1(x).

Then we can represent Bi(x) in terms of two other generating functions, Vi(x) and Wi(x).

We define Vi(x) as the generating function of spiral subgraphs starting with having i sites

along y-axis. Wi(x) is the generating function of spiral subgraphs starting with i-sites along

y-axis and ending with a downward branch with i− 1 sites (Fig.5.5). Then,

Bi(x) = Wi(x) +
Wi(x)Vi−1(x)

xi−1
(5.4)

Also, Vi(x) can be rewritten in terms of Wi(x) as

Vi(x) = xVi−1(x) +Wi(x) +
Wi(x)Vi−1(x)

xi−1
(5.5)

By expressing Q1(x) in terms of Bi(x) and Bi(x) in turn in terms of Wi(x), we can

reduce the computational time. If Wn is the number of graphs of size n contributing to W (x)

(W (x) =
∑∞

i=1Wi(x)), and Qn is the number of graphs of size n contributing to Q1(x), then

Wn grows more slowly than Qn. We enumerated Wn and using them we could generate a
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Fig 5.3: An example of an irreducible spiral graph with no articulation point. This is also an example
of a graph not included in Q1(x)

56 term series for Q1(x). The computation time for Wn grows more slowly, and roughly as

(1.8)n, in contrast to (2.04)n for the Qn series.

If we restrict the graphs contributing to Bi(x), Wi(x) and Vi(x) to the graphs having

comb-like structure (by comb-like structure we mean graphs with one dimensional backbone

having vertical straight lines of arbitrary lengths), then it turns out that one can get the exact

expression for these generating functions. We represent them by Ṽi(x), W̃i(x) and B̃i(x). It

is easy to see that for comb like structures,

Wi(x) ≥ W̃i(x) =
x2i

1 − x
+

x2i

1 − x

K(x)

1 − x
+

x2i

1 − x

(
K(x)

1 − x

)2

+ ..... (5.6)

where K(x) = x2∑i−2
j=1 x

j . Hence,

W̃i(x) =
x2i(1 − x)

1 − 2x+ x2 − x3 + xi+1
(5.7)

Similarly, we get

Ṽi(x) =
xi+1(1 − x + x2 − xi)

1 − 2x+ x2 − x3 + xi+1
(5.8)

and hence
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B 2 B i

i

B 1

Fig 5.4: Schematic figure of spiral trees contributing to Bi(x).B1(x) is just a single vertex.

i i

Wi(x)V i(x)

Fig 5.5: Example of graphs contributing to Vi(x) and Wi(x) respectively.

Bi(x) ≥ B̃i(x) =
x2i(1 − x)2

(1 − 2x+ x2 − x3 + xi)(1 − 2x+ x2 − x3 + xi+1)
(5.9)

Substituting in Eq. 5.3 we get the generating function, Q̃1(x) for this subset of spiral

trees in a quadrant. This generating function has a singularity at xc = 0.51662 which gives

the growth constant λ
′

of these trees to be 1.93565. Since this counts only a subset of all the

spiral trees on a square lattice, this is a rigorous lower bound on λspiral for spiral trees on a

square lattice.

For the full Q1(x), we derived a 55 term series. This series is given in Table 5.1. If we

assume,

Qn ∼ λn
1n

−θ1 (5.10)

then we got estimates of λ1 and θ1 to be
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Cluster size(n) An Cluster size(n) An

4 2 30 67231660
5 4 31 133149845
6 7 32 263802053
7 13 33 522850068
8 25 34 1036643261
9 48 35 2056018929
10 92 36 4079092115
11 178 37 8095287385
12 345 38 16070435197
13 672 39 31911288108
14 1310 40 63383684512
15 2560 41 125928086949
16 5011 42 250250858092
17 9824 43 497430669322
18 19282 44 988985669035
19 37890 45 1966729333270
20 74531 46 3911949831518
21 146744 47 7782751762274
22 289155 48 15486797698499
23 570204 49 30823085860957
24 1125202 50 61358440154867
25 2221827 51 122167029706091
26 4389751 52 243283788357669
27 8677757 53 484562545163938
28 17163089 54 965299790910033
29 33961624 55 1923306810488493

Table 5.1: Series for the number of quadrant spiral trees on a square lattice

λ1 = 2.0449 ± 0.0001 (5.11)

θ1 = 0.830 ± 0.01 (5.12)
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5.2 Spiral trees on a square lattice

5.2.1 Exact enumeration

Since the number of configurations of a given cluster size is exponential in cluster size, the

computational complexity of the algorithm for enumeration of all lattice animals or trees

grows exponentially with the cluster size. For direct enumeration algorithms like Martin’s

algorithm [77], the time required to generate all the configurations of a given size grows as

λn, where λ is the growth constant and n is the cluster size and the memory requirement

grows like a polynomial in cluster size. For lattice trees and animals, a finite lattice method

[56] with an associated transfer matrix algorithm was used by Conway [94]. Conway gener-

ated a 25 term series for lattice animals using this algorithm. This series has recently been

extended to 46 terms by Jensen [55] with a slight improvement in the algorithm. Both space

and time requirements of this algorithm are found numerically to approximately grow as

1.4n. The growth constant of lattice animals in contrast is approximately 4.06. Hence a

considerable improvement in time is obtained by the transfer matrix algorithm at the cost of

memory.

The spiral constraint, cannot be easily implemented using the transfer matrix. Hence we

have used Martin’s algorithm for spiral trees, making use of the four-fold rotational symme-

try of the lattice. Our series for the number of trees and their average moment of inertia is

given in Table 5.2.

Using this we generated a series of spiral trees on square lattice up to 37 terms (Table

5.2). Earlier known series had only 25 terms.

For analysing the series data we tried a four parameter sequential fit to the data of the

form

An = Bλn(n+ δ)−θ (5.13)

where δ is an adjustable fixed parameter and B is a constant. We did a linear fit on the

logarithm of Eq. 5.13 using An, An+1, An+2 and An+3 to estimate values of Bn, δn, λn and

θn. For spiral trees on square lattice we found a good convergence in successive values of

λn and θn for δ lying between 2.03 and 2.04. Fixing δ = 2.0367 and B = 0.18124 we get a

very good convergence of λn and θn for different values of n. These are given in Table 5.3.

From this we estimate
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Cluster size(n) An 〈Ipl,n〉
1 1 0
2 4 1
3 14 3.142857
4 40 6.800000
5 105 12.266667
6 268 19.656716
7 674 28.919881
8 1660 40.159036
9 4021 53.513056
10 9612 69.074906
11 22734 86.926014
12 53276 107.140851
13 123916 129.787372
14 286376 154.926432
15 658100 182.624835
16 1504900 212.938547
17 3426464 245.919131
18 7771444 281.619675
19 17565064 320.089299
20 39576360 361.374917
21 88916877 405.522760
22 199252252 452.577078
23 445438310 502.580546
24 993616344 555.575100
25 2211923712 611.601183
26 4914811468 670.697934
27 10901498938 732.903853
28 24141259980 798.256392
29 53379537257 866.791847
30 117861710196 938.545859
31 259891311248 1013.553288
32 572356464452 1091.848086
33 1259008971656 1173.463504
34 2766351037428 1258.432171
35 6071954146120 1346.786006
36 13314252070412
37 29167189621351

Table 5.2: The number of spiral trees on a square lattice and their average moment of inertia.
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λ = 2.11433 ± 0.00010 (5.14)

θ = −1.3667 ± 0.0010 (5.15)

We have tried fits with non analytic corrections to scaling of the form , Bλn(n+δ)−θ[1+

a/n∆], but we didn’t get good convergence for ∆. Instead, Bλn(n+ δ)−θ[1− αe−βn] seems

to fit much better with α ≈ 0.32 and β ≈ 0.35.

λ
n

n

 2.1138

 2.1139

 2.114

 2.1141

 2.1142

 2.1143

 2.1144

 2.1145

 2.1146

 2.1147

 2.1148

 10  15  20  25  30  35  40

Fig 5.6: Figure shows the convergence of λn for spiral trees on a square lattice.

For the radius of gyration data we used a sequential fit of the form

logIi,n = (2νi + 1)ln(n+ δ) + u+
v

(n+ δ)2
(5.16)

where i stands for pl or ⊥ as the case maybe and u and v are constants.

For spiral trees in a plane I⊥,n would be zero and by symmetry the sum of squares of x

coordinate of all sites for all configurations of clusters of size n equal to the sum of squares

of y-coordinate. Using Eq. 5.14 for sequential fit to our 35 term series we get a good

convergence for δ lying between −0.33 and −0.35. Fixing δ = −0.338 we get the estimates

of νpl to be (see Table 5.3)

2νpl = 1.3148 ± 0.0010 (5.17)
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n λn θn 2νpl,n

5 2.078982187 -1.4143616 1.2918751
6 2.118727624 -1.3598402 1.3047319
7 2.117039314 -1.3623751 1.3092198
8 2.115352878 -1.3651395 1.3108492
9 2.114617151 -1.3664433 1.3117861
10 2.114771869 -1.3661493 1.312420
11 2.113813740 -1.3680905 1.3128895
12 2.113978775 -1.3677359 1.3132536
13 2.114183882 -1.3672706 1.3135423
14 2.114099443 -1.3674721 1.3137672
15 2.114103267 -1.3674625 1.3139586
16 2.114205656 -1.3671946 1.3141194
17 2.114223238 -1.3671466 1.3142505
18 2.114256310 -1.3670527 1.3143596
19 2.114279786 -1.3669834 1.3144497
20 2.114291286 -1.3669483 1.3145234
21 2.114301033 -1.3669174 1.3145839
22 2.114310834 -1.3668854 1.3146334
23 2.114311487 -1.3668832 1.3146734
24 2.114314464 -1.3668728 1.3147059
25 2.114318963 -1.3668566 1.3147321
26 2.114320428 -1.3668513 1.3147529
27 2.114321722 -1.3668464 1.3147694
28 2.114324605 -1.3668351 1.3147823
29 2.114326551 -1.3668274 1.3147921
30 2.114327932 -1.3668217 1.3147994
31 2.114329734 -1.3668142 1.3148047
32 2.114331349 -1.3668072 1.3148083
33 2.114332328 -1.3668029 1.3148104
34 2.114333055 -1.3667997 1.3148113
35 2.114333550 -1.3667974 1.3148113
36 2.114333553 -1.3667974
Es. Val. 2.11433 ± 0.0001 −1.3667 ± 0.001 1.3148 ± 0.001

Table 5.3: Values of λn, θn and νn from sequential fit to data for spiral trees of size n to n+3
on a square lattice. See Fig. 5.6 and Fig. 5.7
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Fig 5.7: Figure shows the convergence of θn for spiral trees on a square lattice.

These estimates are much more precise than the earlier estimates λ = 2.1166 ± 0.001,

θ = −1.307 ± 0.006 and 2νpl = 1.306 ± 0.010 using a 25 term series. We can rule out the

dimensional reduction conjecture with fair confidence.

Above we presented our estimates using four parameter fits. Method of differential ap-

proximants has almost become a standard technique for such analysis [95]. In this case,

the generating function has a divergent singularity at xc. We tried zeroth order differen-

tial approximants, they are listed in Table 5.4. We find a very poor convergence in values

of xc and θ. Out of 70 approximants, 15 show spurious singularities (singularities with

|xc| < 0.45). We have listed 20 values which showed best convergence. From these we get,

λ = 2.1142 ± 0.002 and θ = −1.39 ± 0.02. Clearly the series is not very well behaved.

This is reflected in the slow convergence of our series. Also Monte-Carlo generated random

spiral trees of sizes 1000 (Fig. 5.1) suggest that the asymptotic behaviour of the series might

set in rather late. Because of poor convergence of differential approximants, we relied on

parameter fits for series analysis.

5.2.2 Monte-Carlo analysis

With exact enumeration, we are restricted to clusters of size thirty seven in two dimensions.

The main problem is with the extrapolation since the crossover sizes are likely to be large, as

the total angle turned by the largest spiral arm about the origin for a spiral tree of size 1000 is

about 2π only (Fig. 5.1). This indicates that the crossover value above which asymptotic be-
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[l, m] xc = 1/λ θ [l, m] xc = 1/λ θ
[14, 13] 0.47288256 −1.36083 [15, 18] 0.47307144 −1.39078
[14, 14] 0.47290325 −1.36384 [14, 17] 0.47307308 −1.39106
[15, 13] 0.47290516 −1.36413 [16, 17] 0.47307863 −1.39209
[16, 15] 0.47294898 −1.37035 [17, 15] 0.47308675 −1.39369
[13, 15] 0.47297513 −1.37499 [16, 19] 0.47309052 −1.39421
[16, 13] 0.47303007 −1.38409 [18, 15] 0.47310355 −1.39686
[13, 16] 0.47303305 −1.38436 [17, 18] 0.47310906 −1.39788
[16, 16] 0.47305593 −1.38800 [15, 16] 0.47311001 −1.39775
[14, 15] 0.47305793 −1.38863 [18, 18] 0.47311071 −1.39822
[15, 17] 0.47306712 −1.39002 [17, 19] 0.47311091 −1.39826

Table 5.4: Estimates of critical exponents and growth constant from differential approxi-
mants. We looked at approximants for l ≥ 9 and l− 3 ≤ m ≤ l+ 3. We have tabulated here
20 values which showed the best convergence.

haviour sets in would be of order 103. We tried to study larger spiral trees using MC methods.

MC simulation of branched polymers is a challenging problem. Because of branching, most

MC algorithms which are good for linear polymers show critical slowing down for branched

polymers. For lattice trees there have been some studies using the cut and paste dynamic MC

technique [96]. But with spiral constraint, algorithms involving large scale non local moves

are not useful. We used an improved version of incomplete enumeration algorithm proposed

recently by us (Section 4.4 and also [88]). Using it we could study spiral trees of sizes up to

one thousand on a square lattice.

We have already shown pictures of some typical spiral trees thus generated in Fig.5.1.

Clearly, their structure is very different from lattice trees without spiral constraint. Because

of the constraint they tend to branch much less. For spiral constraint, earlier numerical

evidence suggest that unlike lattice trees and animals, spiral tree and animal do not lie in

same universality class. The reason is that by allowing loops, the polymer can bend much

more often and hence spiral animals would be more compact than the spiral trees.

We studied spiral trees up to sizes 1000 using incomplete enumeration MC method. We

made 107 MC runs. The moment of inertia tensor Ipl,n as a function of n is plotted in Fig 5.8

and Fig 5.9. Assuming the asymptotic form to be such that

log(Ipl,n) = logC + (2νpl + 1)logn +
D

n
(5.18)
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Using above written form, we get the estimate of νpl to be (Fig 5.8 and Fig 5.9)

2νpl = 1.312 ± 0.010 (5.19)
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Fig 5.8: Plot of Ipl,n

n2.312 as a function of n for Monte-Carlo generated spiral trees on a square lattice.

In incomplete enumeration MC algorithm [88], each configuration of n sites is generated

with equal probability Pn which is just
∏n

i=1 pi, where pi is the probability with which an

edge between level i and i+1 on the genealogical tree of the problem is chosen. By keeping

track of the average number of clusters of a given size generated in a given run, one can

estimate the growth constant λ and the critical exponent θ. But, the variance of the number

of clusters increases as exp(nα), 0 < α < 1 for large n. Hence, instead we counted the

number of descendants of each spiral tree generated. This approach has been used previously

in [54, 96]. The mean number of descendants of a tree of size n gives a direct estimate of

An+1/An. We represent the mean number of descendants byMn. This is plotted in Fig. 5.10.

A linear fit of the form λ(1−θ/n) to this data gives λ = 2.116±0.01 and θ = −1.29±0.02.

For better estimates we assume

logMn = logλ− θlog

(
n + δ

n− 1 + δ

)
(5.20)

With this we get the following estimates for n ≤ 200 which are in agreement with the

value obtained by extrapolating the exact series expansions.

λ = 2.1145 ± 0.0010 (5.21)
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Fig 5.9: Plot of Ipl,n versus n for Monte-Carlo generated spiral trees on a square lattice. The dotted
line is a straight line with slope 2.312.

θ = −1.364 ± 0.010 (5.22)

with δ = 1.8.

5.3 Spiral trees on a cubic lattice

In dimensions higher than two, the spiral constraint defined as the projection of the path

joining any site of the tree to the root in x− y plane containing no left turn, can be employed

in two ways. Bose et. al. [54] defined it such that for the projected path from origin to site

on x− y plane only forward and right turns are allowed. But in dimensions higher than two,

we can define another variation where trees as long as they do not violate the tree constraint

and the projection on x − y plane is spiral, are allowed. We will call the spiral trees with

only forward and right turns allowed ST1.

If we allow for back-turns also, we would get different series because for example, Fig 5.1

shows one spiral tree of six sites which would not be a valid configuration if we consider only

forward and right turns. We call the spiral trees with back-turns allowed as ST2. Naively,

one would expect these two to belong to the same universality class. We generated the series

till n = 17 on a cubic lattice using both definitions, however we find the two series behaving

differently. Series for ST1 and ST2 are given in Table 5.5 and 5.6 respectively.

For ST1, for An the number of configurations, using Eq. 5.13 we find that the sequential
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Fig 5.10: Monte-Carlo estimates of ratios of the number of configurations on a square lattice. The
straight line gives a linear fit of the form λ(1 − θ/n) to the date.

fit shows a good convergence around δ = 2.43. With δ = 2.43 and B = 0.094, the values of

λ and θ obtained are listed in Table 1. For νpl and ν⊥, we used fitting form as given in Eq.

5.16, with δ = −1.46 and δ = −0.43 respectively. The sequential fits are given in Table 5.7

and the estimates are listed in Table 5.9.

Similarly, we obtained 17 term series for ST2. The sequential fits are given in Table 5.8

and the values of λ, θ, νpl and ν⊥ are listed in Table 5.9.

The difference in value of λ for ST1 and ST2 is understandable as ST2 has a greater

number of configurations. More surprisingly, the critical exponents θ, νpl and ν⊥ within our

error estimates are different in two models. In neither case, the conjectured dimensional

reduction (Eq.1.13 and 1.14) seems to be satisfied.

5.4 Spiral trees in four dimensions

On a hyper cubic lattice in four dimensions we generated a series till n = 13. We also correct

the mistakes in the earlier series reported for ST1 in [54]. The corrected series is given in the

Table 5.10. We also obtained a 13 term series for ST2(see Table 5.11). The estimates of λ

and critical exponents are listed in Table 5.9.

We also performed Monte-Carlo simulations using incomplete enumeration algorithm

for spiral trees up to size 50. Our estimates from MC simulations for ST1 are given in Table
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n An 〈Ipl,n〉 〈I⊥,n〉
1 1 0. 0.
2 6 0.66666 0.333333
3 41 1.85366 1.07317
4 260 3.63076 2.27692
5 1568 6.02296 3.98214
6 9190 9.06464 6.19913
7 53090 12.75954 8.91987
8 303900 17.09588 12.1405
9 1727691 22.0606 15.8606
10 9767426 27.6424 20.0821
11 54966550 33.8322 24.8071
12 308138528 40.6214 30.0376
13 1721739000 48.0022 35.7754
14 9592901762 55.9676 42.0229
15 53314247488 64.5112 48.7822
16 295644339728 73.6274 56.0556
17 1636179620652 83.3112 63.8454

Table 5.5: Exact enumeration values of the number of spiral trees ST1 on a cubical lattice
and their average moments of inertia.
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n An 〈Ipl,n〉 〈I⊥,n〉
1 1 0 0.
2 6 0.666666 0.333333
3 41 1.85366 1.07317
4 260 3.63076 2.27692
5 1576 6.00762 4.00761
6 9342 9.00192 6.30208
7 54890 12.60084 9.17041
8 320952 16.7848 12.6182
9 1869907 21.5398 16.651
10 10861750 26.8572 21.2772
11 62939998 32.7312 26.5047
12 364004296 39.156 32.3409
13 2101795408 46.1276 38.7927
14 12119643750 53.6422 45.8667
15 69805866848 61.6968 53.5693
16 401668709200 70.2898 61.9068
17 2309283650656 79.4192 70.8851

Table 5.6: Exact enumeration values for number of spiral trees ST2 on a cubical lattice and
their average moments of inertia.

n λn θn 2νpl,n 2ν⊥,n

5 5.153269 -1.019107 0.847865 1.128949
6 5.275382 -0.810187 0.865641 1.098419
7 5.310873 -0.743662 0.871330 1.083814
8 5.319667 -0.725590 0.874191 1.077873
9 5.327658 -0.707695 0.875922 1.073809
10 5.334141 -0.691977 0.876525 1.070550
11 5.337903 -0.682161 0.876502 1.068326
12 5.339533 -0.677605 0.876303 1.067085
13 5.340111 -0.675880 0.876176 1.066526
14 5.340282 -0.675339 0.876139 1.066334
15 5.340255 -0.675428 0.876197 1.066365
Es. Val. 5.340 ± 0.02 −0.675 ± 0.05 0.876 ± 0.05 1.066 ± 0.05

Table 5.7: Values of λn, θn and νn from sequential fit to data for spiral trees ST1 on a cubical
lattice.
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n λn θn 2νpl,n 2ν⊥,n

5 5.694072 -0.143802 1.054721 1.200021
6 5.719085 -0.123718 1.013833 1.171160
7 5.710159 -0.132441 0.989310 1.153823
8 5.695471 -0.149408 0.977105 1.147515
9 5.689143 -0.157845 0.969817 1.144294
10 5.687350 -0.160552 0.963977 1.141637
11 5.686110 -0.162645 0.959561 1.139686
12 5.684763 -0.165153 0.956738 1.138646
13 5.683809 -0.167099 0.955250 1.138243
14 5.683473 -0.167843 0.954653 1.138124
15 5.683632 -0.167463 0.954662 1.138134
Es. Val. 5.683 ± 0.02 −0.167 ± 0.05 0.954 ± 0.05 1.138 ± 0.05

Table 5.8: Values of λn, θn and νn from sequential fit to data for spiral trees ST2 on a cubical
lattice.

ST1(d = 3) ST2(d = 3) ST1(d = 4) ST2(d = 4)
λ 5.340 ± 0.020 5.683 ± 0.020 9.62 ± 0.10 10.20 ± 0.10
θ −0.675 ± 0.050 −0.167 ± 0.050 −0.11 ± 0.10 0.29 ± 0.10
νpl 0.44 ± 0.05 0.477 ± 0.05 0.34 ± 0.05 0.37 ± 0.05
ν⊥ 0.54 ± 0.05 0.69 ± 0.05 0.44 ± 0.05 0.45 ± 0.05

Table 5.9: Estimates of critical exponents and growth constant from series analysis in three
and four dimensions.
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n An 〈Ipl,n〉 〈I⊥,n〉
1 1 0. 0
2 8 0.5 0.5
3 80 1.35 1.5
4 800 2.54 3.030
5 7912 4.05864 5.10010
6 77656 5.89816 7.70862
7 759172 8.04822 10.84584
8 7403292 10.49742 14.50268
9 72073417 13.23410 18.67008
10 700774524 16.24692 23.34
11 6806914432 19.52526 28.5052
12 66064406668 23.0592 34.1596
13 640741734643 26.8396 40.2974

Table 5.10: Exact enumeration data for the number of spiral trees ST1 on four dimensional
hyper-cubic lattice and their average moments of inertia.

n An 〈Ipl,n〉 〈I⊥,n〉
1 1 0. 0.
2 8 0.5 0.5
3 80 1.35 1.5
4 800 2.54 3.030
5 7960 4.05226 5.10754
6 79048 5.87628 7.74208
7 785748 7.99822 10.93174
8 7822676 10.40506 14.6724
9 78011513 13.08484 18.95778
10 779189988 16.0274 23.7816
11 7793590224 19.22410 29.1376
12 78049539204 22.6676 35.0206
13 782488672931 26.3518 41.4252

Table 5.11: Exact enumeration data for the number of spiral trees ST2 on four dimensional
hyper-cubic lattice and their moments of inertia.
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Fig 5.11: This configuration will contribute to spiral trees ST2 of six sites but not to ST1.

ST1(d = 4) ST2(d = 4)
λ 9.60 ± 0.1 10.2 ± 0.1
θ −0.13 ± 0.1 0.17 ± 0.1
νpl 0.33 ± 0.02 0.38 ± 0.05
ν⊥ 0.451 ± 0.020 0.455 ± 0.050

Table 5.12: Estimates of critical exponents and growth constants from Monte-Carlo simula-
tions in four dimensions.

5.11.

Though we cannot rule out the possibility of θ being zero in both series analysis and

Monte-Carlo simulations, it seems unlikely.
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Summary of Results and Discussion

In this chapter we will summarise the results of Chapters 2-5.

6.1 Directed animals (Directed branched polymers)

In Chapter 2 of this thesis we studied the model of directed animals and found a mapping

between distribution of sites in transverse direction and density-density correlation function

of a lattice gas model. Specifically, we obtained the exact scaling function of the distribution

for DA’s in 1 + 1-dimensions. DA’s are anisotropic and their average size in transverse and

longitudinal direction scales with different exponents. The properties of DA in longitudinal

direction can be obtained by studying the time evolution of the HCLG with the stochastic

evolution rules described in Sec 2.1. Unfortunately, this cannot be solved exactly and hence

the exact value of the size exponent ν|| in longitudinal direction is not known in any dimen-

sion. Though using Markovian property of the generating functions, one can get very good

numerical estimates [97], finding it exactly remains an open important problem. In Sec. 2.3

we solved the DA problem on Bethe lattice obtaining the exponent and scaling functions in

both longitudinal and transverse directions. In Sec. 2.3 we defined a model of generalized

DA and found that model lies in the same universality class as the DA problem.

We gave the mapping of a d + 1 dimensional directed branched polymer in presence of

a line to a d dimensional HCLG with repulsive interactions in Chapter 3. For DBP in 1 + 1

dimensions we show that the behavior at the transition point for penetrable and impenetrable

wall is the same, and not just the crossover exponent but even the density profile is the same.

This implies that for 1 + 1 dimensions, for impenetrable surface, at the phase transition

point the decrease in entropy is exactly compensated by the change in internal energy. This

seems to be a special property of polymers in 2 dimensions. Even for linear polymers the

exponent for both cases is the same and hence it has been argued that for a linear polymer
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in 2 dimensions in presence of a impenetrable surface the phase transition point corresponds

to the point where surface effects vanish completely and the system behaves like bulk [43].

Here we are able to show it explicitly for directed branched polymers. Also, note that the

value of the exponent α = 1/2 for DBP is equal to the estimates of α for branched polymers

[99] and linear polymers in [84] in two dimensions. In fact, for adsorption of an undirected

d-dimensional branched polymer on a (d − 1)-dimensional surface, the crossover exponent

α is conjectured to be 1/2 in all spatial dimensions [98].

Using Baxter’s solution of hard hexagon gas we calculated the crossover exponent and

sticking fraction exactly for 2 + 1 dimensional DBP in presence of line in Sec 3.5. The

scaling function of sticking fraction is a function of two thermodynamic variables. We have

derived its exact form in 1 + 1 and 2 + 1 dimensions. This thus provides a simple soluble

model where a nontrivial scaling function of more than one thermodynamic variable can be

explicitly calculated. There are very few such exact nontrivial scaling functions of more than

one thermodynamic variable known [100].

6.2 Incomplete enumeration algorithm

In Chapter 4 we studied the efficiency of a MC method known as IE. We also give an im-

provement on IE, which we call improved incomplete enumeration (IIE). Its a stochastic

growth algorithm, similar to other stochastic growth algorithms like PERM. We find the ef-

ficiency of IE to be different for linear and branched polymers. This is due to the fact that

genealogical tree for the latter is much more non uniform.

For self avoiding walks, in any dimension, the time to generate an independent sample

of n steps Tn ∼ adn
2, independent of dimension for both IE and IIE. For IE there is no

significant change in ad with dimension. But for IIE ad ∼ d−2. In the limiting case of SAW

on binary tree Tn = n for IIE.

For branched polymers Tn increases as exp(cnα) with 0 < α < 1 in all dimensions for

both IE and IIE. Redistributing weights does not change the value of α. IIE works better

than IE, but the difference is only in the coefficient c. The exponent α depends weakly on

the dimension, its relation to the usually studied exponents of the branched polymer problem

eg. θ, ν is not clear at present.

As discussed in Section 4.4, the genealogical tree for cluster enumeration is not unique

and one might argue that Martin’s scheme is not the optimal choice. We tried to generate
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the genealogical tree using some variations of this rule, but we did not find any significant

change in the efficiency of the algorithm.

For branched polymers, the degree of a node in the genealogical tree is not bounded, and

the maximum degree increases with depth of the genealogical tree. However, the fractional

number of nodes with high degree is very small. For genealogical tree corresponding to

animals on a binary tree we find the fractional number of k-nodes goes down exponentially

with k for large k(Eq. (4.17)). Similar behaviour was observed for branched polymers and

directed branched polymers on a square lattice numerically. It is interesting that even an

exponentially rare distribution of nodes with large degree seems to be enough to change the

behaviour of efficiency of the algorithm on the tree.

In the case of branched polymers, we found that the Tn for IE varies as exp(cnα) with

0 < α < 1. While this is not very good, one can find problems for which IE’s performance

is even worse with α = 1. As an example, consider self avoiding walks on a disordered

lattice, obtained by removing a fraction (1 − u) of bonds at random from a square lattice. It

is known that the average number of self avoiding walks of length n varies as (uλ)n [101],

where λ is the growth constant of the self avoiding walks on the same lattice with u = 1.

Hence the growth constant of the corresponding genealogical tree would also be uλ. Now if

we consider a square lattice, the λ ≈ 2.638 and the bond percolation threshold is 1/2. For

1/λ < u < 1/2, all clusters would be finite with probability 1, and the probability that cluster

contains n sites would decrease exponentially with n. In this case, IE will be inefficient and

even for best choice, Tn will vary as exp(cn).

One could argue that IE is a rather inefficient algorithm, which gives reasonable perfor-

mance only for a small selected set of problems. We do not think so. In fact, the causes that

make IE inefficient are also operative in the much larger class of genetic type algorithms.

The high degree of correlations between different samples generated is a common feature of

many of these algorithms which employ pruning and enrichment. For example, one could ex-

pect a similar behaviour to occur in the Berreti-Sokal algorithm [66] for branched polymers.

The correlations arise because in all such ‘evolutionary’ type algorithms different samples

generated often share a common ancestor in the past. Whether our results can be generalised

to a larger class of PERM type algorithms is an interesting question for further study.
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6.3 The Spiral trees problem

We studied rooted spiral trees in two three and four dimensions on hyper cubic lattices using

numerical techniques. This is an interesting model. Our results show the presence of many

universality class as among lattice trees with different implementation of the spiral constraint.

Also dimensional reduction which has played an important role in lattice tree/animals prob-

lem and was conjectured for this model doesn’t seem to hold. Our numerical evidence as

presented in this thesis does not support the conjecture; clearly our estimates of critical ex-

ponents do not satisfy Eq. 1.13 and 1.14. Spiral tree is computationally a very challenging

problem. Lattice tree/animal itself are not easy to generate and because of a further spiral

constraint the situation becomes worse and most nonlocal algorithms will not work well here.

So this problem shows the need for and the importance of stochastic growth algorithms. It

seems IE is ideally suited for such problems. I could generate spiral trees up to size 1000 on

a square lattice using IIE. This problem also shows a need to work and think of some new

MC techniques to tackle these problems.

In Chapter 5, we also obtained a non-trivial lower bound on the value of growth constant

λspiral on a square lattice. Our bound is λspiral ≥ 1.93565, whereas numerical estimates for

it is λspiral ≈ 2.114. For quadrant spiral trees on a square lattice, we obtained exact series up

to sizes 55. There are very few such long series known for lattice models. The series gives a

estimate of λ = 2.044 for these quadrant spiral trees. This value is significantly smaller than

for the full spiral trees. This indicates that that trees where spiral turns a lot are important.

Actually, for large clusters of size 103 generated by Monte Carlo, the total angle turned by

the largest spiral arm about the origin is about 2π. It is possible that the structure of spiral

trees is such that this angle tends to infinity as n tends to infinity. In this case the crossover

value above which asymptotic behaviour sets in would be expected to be of order 103, and

series analysis for smaller n may not give correct limiting behaviour.

The spiral constraint for trees seems to be very special. For example, the structure of

spiral trees is very different from spiral animals with loops allowed [102]. Different imple-

mentation of the constraint in d > 2, seems to give different critical behaviour, suggesting

different universality classes. A variety of self avoiding walks with different step restrictions

rules on simple cubic lattice were studied in [103] using exact enumeration. Their analysis

suggested the same universality class for SAW’s with various restrictions (including the spi-

ral constraint) as for the unrestricted SAW’s. In contrast, our studies show different critical

behaviour of spiral trees with different geometrical restrictions in three and four dimensions.
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