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Synopsis

String theory aims to achieve a complete understanding of quantum gravity. Ein-

stein’s theory of general relativity is a classical theory of gravity, and black holes

are interesting solutions in this theory. It is possible to associate with black

holes, thermodynamic properties like temperature and entropy, and to formu-

late the three laws of thermodynamics in terms of these quantities. A statistical

description of the thermodynamics of black holes is an outstanding problem in

gravity and needs to be necessarily addressed by any theory of quantum gravity.

String theory has a set of duality symmetries which map theories in one region

of their moduli space to the same or different theories in other regions of moduli

space. These symmetries have proved to be extremely useful in understanding

black holes since they can be used to map a non-perturbative description of a

state in the theory to a description which is perturbatively accessible. This is

a powerful tool especially when it comes to understanding the non-perturbative

structure of string theory. To see this consider the T-duality group of string the-

ory. A particle on a circle will have quantized momentum which is the charge of

the U(1) translation symmetry along the compact direction. But since strings can

wind on a circle, string theory compactified on a circle has a 2d self dual integral

Lorentzian lattice consisting of momentum and winding. The SO(1, 1,Z) Lorentz

group of this lattice is called the T-duality symmetry of the theory. This concept

generalizes to bigger T-duality groups obtained by compactification on 6d com-

pact manifolds to obtain string theories in 4 noncompact dimensions. T-duality

is a symmetry that is realized perturbatively. There is an additional symmetry in

string theory which takes a strongly coupled theory to a weakly coupled theory
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and exchanges fundamental strings with solitonic states. This is called S-duality

and evidently is a symmetry that is not accessible in perturbation theory. The

net symmetry group of string theory called U-duality contains both S and T du-

alities and is called the U-duality group of string theory. Hence using dualities we

can make statements about non-perturbative aspects of string theory by doing a

perturbatively accessible computation.

A very powerful technique to do the same is to compute the degeneracy of states

in a theory and demand that this degeneracy be invariant under S-duality. This

lays down strong constraints on the form of the degeneracy function and this

function will be highly sensitive to underlying non-perturbative structures in the

theory like lines of marginal stability across which the degeneracy jumps. Hence

counting degeneracies becomes a outstanding problem in string theory and dual-

ities provide a powerful tool to do the same.

Not surprisingly, therefore, string theory has had some spectacular successes along

these directions. Strominger and Vafa [1] performed a microscopic computation

of the Bekenstein Hawking entropy of a certain class of supersymmetric black

holes. This entropy was derived in the gravity theory from the Einstein-Hilbert

action. Subsequently, Wald presented a formula to compute entropy from a gen-

eral gravitational action1 and the resulting sub-leading corrections to SBH have

been successfully compared with those arising from an exact microscopic counting

[2].

In this dissertation, we are going to deal with a similar program for four dimen-

sional charged extremal black holes which arise as solutions of the N = 4 theory

obtained by compactifying Type II string theory on K3×T 2 or its heterotic dual

on T 4 × T 2, and an orbifold of the same theory. We encapsulate in the remain-

ing part of this synopsis a summary description of the research covered in this

dissertation. We first summarize the contents of [3]. Herein, we look at 1/4 BPS

1This included higher derivative corrections to the Einstein Hilbert action
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supersymmetric dyonic configurations in the two theories that we consider in this

paper. For, Type II string theory on K3 × T 2, [4], proposed an exact counting

formula for the degeneracy of these configurations. This formula was derived by

Jatkar and Sen in [5] using a prescription called the Arithmetic lift. We offer an

alternate derivation of the same using a procedure called the Borcherds lift. The

4d dyonic charges are first lifted to a 5d configuration of a D1-D5-P bound state

moving in the Taub-NUT geometry of a KK monopole. The generating function

of degeneracies is then a product of the degeneracy of 1/4 BPS states in the world

volume theory of the D1-D5-P system, the KK-P bound state degeneracy and the

degeneracy due to motion of the D1-D5-P in Taub-NUT. The first of these is the

elliptic genus of the symmetric product of K3 and is obtained by the Borcherds

lift while the remaining two are obtained by multiplying additional terms to pre-

serve S-duality invariance of the final answer. The Borcherds lift prescription is

then used for the orbifolded theory to get a counting formula for quarter BPS

dyons in this theory.

As a sequel to this work, we summarize [6] which analyzes the degeneracy formula

for the Type II theory on K3× T 2, which we derived before. An important con-

sistency requirement of any degeneracy formula is that it be invariant under the

U-duality symmetry of the theory. Now the degeneracy formula is already given

in terms of the T-duality invariants. Now, under S-duality, both charges and

moduli change. We showed that in different regions of moduli space the contour

of integration used to extract degeneracies from the generating function needs to

be chosen differently and these contours can not be deformed smoothly to each

other because of the existence of poles in the function. These poles correspond

to lines of marginal stability in moduli space across which the degeneracy jumps

discontinuously. We also build on a picture of the dyonic configurations being

represented as string webs in Type IIB string theory[7] to find a new discrete

invariant I of the exact U-duality group of the theory. I is a function of the

integral electric and magnetic charges of the theory and we showed that the de-

generacy formula that was derived applied only to dyonic configurations with I=1.
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An extension of the above work is performed in the contents of [8]. Here, we

try to extend the class of dyons for which exact counting formulas can be derived

beyond those counted by the above function. We focus on charge configurations

which never form black holes but nevertheless exist in the N = 4 field theory

limit of the string theory. We concentrate on a special class of dyons in SU(N)

gauge theory called Stern-Yi dyons. We start from our previous observation that

these dyons have degeneracy jumps across lines of marginal stability we analyze

these configurations near a line of marginal stability where they decay. Near these

lines the 1/4 BPS dyon splits into a constituent 1/2 BPS and another 1/2 or 1/4

BPS dyon which are far separated from each other. Then the interaction between

these two centers can be ignored and the net degeneracy comes from the product

of the degeneracies of the individual centers and the electromagnetic field angular

momentum associated with their bound state. This heuristic picture was used

to compute the entropy of the Stern-Yi dyons and the results are found to be in

agreement with previously known exact results.

We now summarize the contents of [9]. Here, we shift focus and move on to under-

standing the entropy of non-supersymmetric dyonic configurations. In this case

even getting a microscopic understanding of black hole entropy is a formidable

challenge. For a certain class of extremal black holes, namely those which admit

a description as BTZ black holes in AdS3, the black hole can then be viewed as

a state in the boundary CFT2. If the charges are in a certain specific ratio, the

leading order entropy can then be computed using the Cardy formula . We use the

exact symmetries of string theory to answer the question of whether other charge

configurations can be brought to regions in charge and moduli space which allow

a microscopic description of their entropy. We managed to demonstrate that a

large class of dyonic configurations could be brought to the required regime in

charge space. Hence if it was possible to use the residual symmetries of string

theory to go to the relevant region of moduli space, we could have a microscopic

derivation of the black hole entropy.
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Chapter 1

Introduction

A complete understanding of a quantum theory gravity involves understanding

physics in the realm of length scales of the order of 10−33cm (Planck length). The

curvature of spacetime at these scales is correspondingly high and these are re-

ferred to as singularities in the classical description of spacetime given by general

relativity. At a singularity all unitary evolution of wavefunctions breaks down

simply because the conditions at the singularity are not well-defined. One of

the main aims of string theory, as a purported theory of quantum gravity, is to

resolve classical singularities and provide a consistent description of the quantum

mechanical Hilbert space of states obtained by quantizing both gravity as well as

the other forces in nature. A consistent theory of strings has both open and closed

strings, which move about in spacetime. The induced metric on the string world-

sheet and the pull-back of the background 2 form fluxes gives rise to a 1+1 CFT

on the string worldsheet whose quantization yields a Hilbert space of spacetime

states. These states can be thought of as different vibrational harmonics of the

string and each harmonic corresponds to a distinct representation of the Poincare

algebra i.e. a distinct particle with unique mass and quantum numbers. To en-

sure the absence of a tachyonic state we consider a supersymmetric worldsheet

theory which is consistent only in 10 dimensions. In ordinary field theories, a

KK-reduction or compactification on a circle converts particle momentum along

that circle into the charge of the compact U(1) group generating translations
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along the circle. A string wrapped on a circle in addition to this charge also has a

winding number associated with the circle. These charges are integral and fill out

a lattice called the Narain lattice. The symmetry group of this lattice is called the

T-duality group. In addition to the fundamental string, there are also solitonic

objects called D-branes and NS5 branes in the theory and a strong weak coupling

S-duality exchanges the fundamental strings with the soliton states. One of the

best laboratories to test conjectures and results of string theory is in the vicinity

of a singularity (either naked or covered by an event horizon-a black hole), where

the classical geometry undergoes stringy corrections. These can be either as tree

level corrections suppressed by powers of the square of the string length α′ or as

loop corrections suppressed by the string coupling constant gs.

In string theory, 4d black holes are realized as states of strings or solitons wrapped

on non-trivial cycles in a 6d Ricci flat compact manifold. The black holes carry

charges corresponding to the momenta and winding number of strings or the

number of branes wrapped on various cycles in the manifold. The intersection

number of the cycles in the manifold define a symplectic structure in the charge

lattice and the S-and T dualities can then be used to generate new solutions.

The biggest symmetry of the compactification includes both S and T dualities

and is called the U duality group. Depending on whether the bound state of

strings and branes breaks the background supersymmetry or not, we get SUSY

and non-SUSY black holes. If N be the order of the charges then the effective

coupling constant for the world volume field theory living in the common world

volume of these objects is gsN and a counting of the degeneracy of the state in

this theory carrying the same charges and quantum numbers as the black hole

under consideration should give the entropy of the black hole. For small gsN

we can think of this system as a bound state of branes and strings while for

large coupling the gravitational description becomes valid and this system can

be viewed as a black hole solution of the low energy supergravity. It turns out

that a degeneracy counting of the total number of bosonic and fermionic states

in a given charge sector is not protected in string theory under a renormaliza-

tion flow from small to large coupling. What are actually protected are indices

2



1.1 Background

which count solutions that retain full or partial (BPS) supersymmetry. These

indices remain unchanged as one moves through the moduli space of compactifi-

cation except for discrete jumps. Hence we can obtain exact counting formulas

for supersymmetric black holes which are also extremal. Thus we have a way

of achieving a statistical description of a certain class of black holes in string

theory and there by understanding the laws of black hole thermodynamics from

first principles. Also an exact counting formula should be invariant under strong

weak coupling dualities and so must encode information about non-perturbative

structures in string theory. Yet another technique to explore black holes is to

use the AdS/CFT paradigm which conjectures an equivalence of the partition

function of strings in spacetimes that are asymptotically AdS and a CFT living

on the boundary of the AdS space. So a black hole in the bulk can be viewed as a

state in the dual CFT and CFT counting formulas can be used to obtain atleast

the leading order entropy for non-SUSY black holes.

In the following chapters, we use the Borcherds lift to derive the elliptic genus

of the symmetric product of K3 and finally to construct the conjectured exact

counting formula for 1/4 BPS dyonic black holes. We further explore the ques-

tion of whether in the non-SUSY case, all extremal charged configurations can

be brought by U-duality to a point in charge space where they are amenable to a

approximation to the full CFT partition function called the Cardy formula. Each

chapter in this dissertation is based on a research paper that I have worked on,

and is titled by the name of the paper. All conclusions of various chapters are

grouped together in a separate chapter at the end as are the appendices of all

chapters.

1.1 Background

The work summarized in this thesis deals with microscopic counting of dyonic

configurations in N = 4 4d string theories. We deal with both supersymmetric

as well as non-supersymmetric configurations in these theories. In the supersym-

metric case we derive exact counting formulas and examine their properties while
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1.1 Background

in the non-supersymmetric case we use the Cardy formula extensively. So in this

section, some basic facts of the theory under consideration as well as the Cardy

formula are set out and notation and terminology is set up which will be used

extensively in the remainder of this article. The compactification of Type IIA

theory on K3×T 2 preserves 16 supersymmetries. It is dual to Heterotic theory on

T 6[10]. The resulting four dimensional theory has 28 gauge fields. In the IIA de-

scription these arise as follows. One gauge field comes from the RR 1-form gauge

potential, C1; 23 gauge fields from the KK reduction of the RR 3-form gauge

potential, C3, on the 22 non-trivial 2-cycles of K3 and on the T 2; and 4 gauge

fields from the KK reduction of the metric and the 2-form NS field, B2 on the

1-cycles of the T 2. The duality group is O(6, 22,Z)×SL(2,Z). O(6, 22,Z) is the

T-duality group of the Heterotic theory, and SL(2,Z) is the S-duality symmetry

of the 4 dimensional Heterotic theory.

A general state carries electric and magnetic charges with respect to these

gauge fields. The electric charges, ~Qe, and the magnetic charges, ~Qm, take values

in a lattice, Γ6,22, which is even, self-dual and of signature, (6, 22). The lattice

is invariant under the group, O(6, 22,Z). The electric and magnetic charges,

~Qe, ~Qm, transform as vectors of O(6, 22,Z). And together, ( ~Qe, ~Qm), transform

as a doublet of SL(2,Z). In a particular basis, {ei} of Γ6,22, the matrix of inner

products,

ηij ≡ (ei, ej), (1.1)

takes the form,

η = H ⊕H ⊕H⊕H ⊕ E8 ⊕ E8 ⊕H⊕H. (1.2)

Here H, is given by,

H =

(

0 1

1 0

)

, (1.3)

and E8 is the Cartan matrix of E8.

In this basis, the electric charge vector has components,

~Qe = (q0,−p1, qi, n1, NS1, n2, NS2). (1.4)

4



1.1 Background

Here, q0 is the D0-brane charge; p1 is the charge due to D4-branes wrapping K3;

qi, i = 2, · · ·23 are the charges due to D2-branes wrapping the 22 2-cycles of K3

which we denote as Ci; n1, n2 are the momenta along the two 1-cycles of T 2 and

NS1, NS2 are the charges due to NS5 branes wrapping K3× S1 where S1 is one

of the two 1-cycles of T 2.

And the magnetic charge vector has components,

~Qm = (q1, p
0, pi, w1, KK1, w2, KK2). (1.5)

Here, q1 is the charge due to D2-branes wrapping T 2; p0 is the D6-brane charge;

pi, i = 2 · · ·23, are the charges due to D4-branes wrapping the cycle C̃i × T 2,

where C̃i is the 2-cycle on K3 dual to Ci; w1, w2 are charges due to the winding

modes of the fundamental string along the two 1-cycles of T 2; and KK1, KK2

are the KK-monopole charges that arise along the two 1-cycles of the T 2.

Three bilinears in the charges can be defined,

~Q2
e ≡ ( ~Qe, ~Qe)

~Q2
m ≡ ( ~Qm, ~Qm)

~Qe · ~Qm ≡ ( ~Qe, ~Qm). (1.6)

These are invariant under O(6, 22,Z).

An invariant under the full duality group is,

I = ( ~Qe)
2( ~Qm)

2 − ( ~Qe · ~Qm)
2. (1.7)

It is quartic in the charges. For a big supersymmetric black hole, I is positive,

and the entropy of the black hole[11] is,

S = π

√

~Q2
e
~Q2
m − ( ~Qe · ~Qm)2. (1.8)

In contrast, for a big non-supersymmetric extremal black hole, I is negative and

the entropy is,

S = π

√

( ~Qe · ~Qm)2 − ~Q2
e
~Q2
m. (1.9)

We now turn to discussing the Cardy limit. Consider a Black hole carrying

D0 − D4 brane charge. In our notation the non-zero charges are, q0, p
1, pi, i =
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1.1 Background

2, · · · 23. This solution can be lifted to M-theory, and the near horizon geometry

in M-theory is given by a BTZ black hole in AdS3 × S2. The AdS3 space-time

admits a dual description in terms of a 1+1 dim. CFT living on its boundary. The

central charge, C, of the CFT can be calculated from the bulk, it is determined

by the curvature of the AdS3 spacetime. For large charges we get,

C = 3|p1dijpipj|, (1.10)

where dij is the matrix ηij, eq.(1.1), restricted to the 22 dimensional subspace of

charges given by D4-branes wrapping two-cycles of K3 and T 2. This corresponds

to the second, third and fourth factor of H and the two E8’s in eq.(3.27). In the

Cardy limit the condition,

|q0| ≫ C, (1.11)

is satisfied. The well known Cardy formula is

S = 2π

√

C|q0|
6

. (1.12)

For a generic charge configuration, the central charge is

C = 3|p1 ~Q2
m|, (1.13)

and the Cardy limit is

I ≫ 6(p1)2( ~Q2
m)

2. (1.14)
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Chapter 2

Spectrum of Dyons and Black

Holes in CHL orbifolds using

Borcherds Lift.

In this chapter, the degeneracies of supersymmetric quarter BPS dyons in four

dimensions and of spinning black holes in five dimensions in a CHL compacti-

fication are computed exactly using Borcherds lift. The Hodge anomaly in the

construction has a physical interpretation as the contribution of a single M-theory

Kaluza-Klein 6-brane in the 4d-5d lift. Using factorization, it is shown that the

resulting formula has a natural interpretation as a two-loop partition function of

left-moving heterotic string, consistent with the heuristic picture of dyons in the

M-theory lift of string webs.

2.1 Siegel Modular Forms of Level N

Let us recall some relevant facts about Siegel modular forms. Let Ω be the period

matrix of a genus two Riemann surface. It is given by a (2×2) symmetric matrix

with complex entries

Ω =

(

ρ ν

ν σ

)

(2.1)
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2.1 Siegel Modular Forms of Level N

satisfying

Im (ρ) > 0, Im (σ) > 0, Im (ρ) Im (σ) > Im (ν)2, (2.2)

and parameterizes the ‘Siegel upper half plane’ in the space of (ρ, ν, σ). There is a

natural symplectic action on the period matrix by the group Sp(2,Z) as follows.

We write an element g of Sp(2,Z) as a (4×4) matrix in a block-diagonal form as

(

A B

C D

)

, (2.3)

where A,B,C,D are all (2× 2) matrices with integer entries. They satisfy

ABT = BAT , CDT = DCT , ADT −BCT = I , (2.4)

so that gtJg = J where J =

(

0 −I
I 0

)

is the symplectic form. The action of g

on the period matrix is then given by

Ω → (AΩ +B)(CΩ+D)−1. (2.5)

The Sp(2,Z) group is generated by the following three types of (4× 4) matrices

with integer entries

g1(a, b, c, d) ≡













a 0 b 0

0 1 0 0

c 0 d 0

0 0 0 1













, ad− bc = 1,

g2 ≡













0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0













,

g3(λ, µ) ≡













1 0 0 µ

λ 1 µ 0

0 0 1 −λ
0 0 0 1













. (2.6)

8



2.1 Siegel Modular Forms of Level N

We are interested in a subgroup by G1(N) of Sp(2,Z) generated by the matrices

in (2.6) with the additional restriction

c = 0 mod N , a, d = 1 mod N. (2.7)

Note that with the restriction (2.7), the elements g1(a, b, c, d) generate the con-

gruence subgroup Γ1(N) of SL(2,Z) which is the reason for choosing the name

G1(N) for the subgroup of Sp(2,Z) in this case. From the definition of G1(N) it

follows that if
(

A B

C D

)

∈ G1(N), (2.8)

then

C = 0 mod N , detA = 1 mod N , detD = 1 mod N . (2.9)

One can similarly define G0(N) corresponding to Γ0(N) by relaxing the condition

a, d = 1 mod N in (2.7).

We are interested in a modular form Φk(Ω) which transforms as

Φk[(AΩ+B)(CΩ +D)−1] = {det (CΩ +D)}kΦk(Ω), (2.10)

for matrices

(

A B

C D

)

belonging to G1(N). We will actually construct modular

forms of the bigger group G0(N). Such a modular form is called a Siegel modular

form of level N and weight k. From the definition (3.6) it is clear that a product

of two Siegel modular forms Φk1 and Φk2 gives a Siegel modular form Φk1+k2. The

space of modular forms is therefore a ring, graded by the integer k. The graded

ring of Siegel Modular forms for N = 1, 2, 3, 4 is determined in a number of papers

in the mathematics literature [12, 13, 14, 15, 16]. The special cases of our interest

for the pairs (N, k) listed in the introduction were constructed explicitly in [5].

In the theory of Siegel modular forms, the weak Jacobi forms of genus one play

a fundamental role. A weak Jacobi form φk,m(τ, z) of Γ0(N) transforms under

modular transformation
(

a b

c d

)

∈ Γ0(N)

9



2.1 Siegel Modular Forms of Level N

as

φk,m(
aτ + b

cτ + d
,

z

cτ + d
) = (cτ + d)k exp [

2πimcz2

cτ + d
]φk,m(τ, z). (2.11)

and under lattice shifts as

φk,m(τ, z + λτ + µ) = exp
[

−2πim(λ2τ + 2λz)
]

φk,m(τ, z) , λ, µ ∈ Z . (2.12)

Furthermore, it has a Fourier expansion

φk,m(τ, z) =
∑

n≥0, r∈Z
c(4nm− r2)qnyr. (2.13)

The significance of weak Jacobi forms in this context stems from the fact that,

with the transformation properties (2.11) and (2.12), the combination φk,m(ρ, ν) ·
exp(2πimσ) transforms with weight k under the group elements g1(a, b, c, d) and

g3(λ, µ) in (2.6). Then, with some additional ingredients using the property

(2.13), one can also ensure the required transformation properties under g2 to

obtain a Siegel modular form.

There are two methods for constructing a Siegel modular form starting with

a weak Jacobi form which we summarize below.

• Additive Lift

This procedure generalizes the Maaß-Saito-Kurokawa lift explained in detail

for example in [17]. We refer to it as the ‘additive’ lift because it naturally

gives the sum representation of the modular form in terms of its Fourier

expansion. The starting ‘seed’ for the additive lift is in general a weak

Jacobi form φk,1(ρ, ν) of weight k and index 1. Let us denote the operation

of additive lift by the symbol A[.]. If a given weak Jacobi form φk,1 results

in a Siegel modular form Φk after the additive lift, then we can write

Φk(Ω) = A[φk,1(ρ, ν)]. (2.14)

In the cases of our interest for the pairs (N, k) above, this procedure was

used in [5] to obtain the modular forms Φk listed there. The seed in these

10



2.1 Siegel Modular Forms of Level N

cases can be expressed in terms of the unique cusp forms fk(ρ) of Γ1(N) of

weight (k + 2),

fk(ρ) = ηk+2(ρ)ηk+2(Nρ), (2.15)

where η(ρ) is the Dedekind eta function. The seed for the additive lift is

then given by

φk,1(ρ, ν) = fk(ρ)
θ21(ρ, ν)

η6(ρ)
, (2.16)

where θ1(ρ, ν) is the usual Jacobi theta function.

• Multiplicative Lift

This procedure is in a sense a logarithmic version of the Maaß-Saito-Kurokawa

lift. We call it ‘multiplicative’ because it naturally results in the Borcherds

product representation of the modular form. The starting ‘seed’ for this lift

is a weak Jacobi form φk0,1 of weight zero and index one and the superscript

k is added to denote the fact after multiplicative lift it gives a weight k form

Φk. Let us denote the operation of multiplicative lift by the symbol M[.].

If a given weak Jacobi form φk0,1 results in a Siegel modular form Φk after

the multiplicative lift, then we can write

Φk(Ω) = M[φk0,1(ρ, ν)]. (2.17)

Given the specific Siegel modular forms Φk(Ω) obtained by additively lifting

the seeds φk,1 in (2.16) for the pairs (N, k) = (1, 10), (2, 6), (3, 4), (7, 1) as in [5],

we would like to know if the same Siegel forms can be obtained as multiplicative

lifts of some weak Jacobi forms φk0,1. Such a relation between the additive and

the multiplicative lift is very interesting mathematically for if it exists, it gives

a Borcherds product representation of a given modular form. However, to our

knowledge, at present there are no general theorems relating the two. Fortu-

nately, as we describe next, in the examples of interest to us, it seems possible

to determine the seed for the multiplicative lift from the seed for the additive lift

quite easily and explicitly. Finding such a multiplicative seed to start with is a

nontrivial step and is not guaranteed to work in general. But if one succeeds in

11



2.2 Multiplicative Lift

finding the multiplicative seed φk0,1 given a Φk obtained from the additive seeds

φk,1 in (2.16) then one can write

Φk(Ω) = A[fk(ρ)
θ21(ρ, ν)

η6(ρ)
] = M[φk0,1(ρ, ν)]. (2.18)

2.2 Multiplicative Lift

We now outline the general procedure for constructing modular forms Φk(Ω) as

a Borcherds product [18] by a multiplicative lift following closely the treatment

in [14, 15, 16]

For the special pair (1, 10), which results in the Igusa cusp form Φ10, the

product representation was obtained by Gritsenko and Nikulin [19, 20]. The

starting seed for this lift is a weak Jacobi form φ10
0,1 of weight zero and index one

φ10
0,1 = 8[

θ2(ρ, ν)
2

θ2(ρ)2
+
θ3(ρ, ν)

2

θ3(ρ)2
+
θ4(ρ, ν)

2

θ4(ρ)2
], (2.19)

where θi(ρ, ν) are the usual Jacobi theta functions. We therefore have in this case

the desired result

Φ10(Ω) = A(φ10,1) = M(φ10
0,1). (2.20)

This weak Jacobi form happens to also equal the elliptic genus of K3. As a result,

the multiplicative lift is closely related to the elliptic genus of the symmetric

product of K3 [21] which counts the bound states of the D1-D5-P system in five

dimensions. This coincidence, which at first sight is purely accidental, turns out

to have a deeper significance based on the 4d-5d lift [22].

We would now like find a similar product representation for the remaining

pairs of (N, k) using the multiplicative lift so that we can then try to find a

similar physical interpretation using 4d-5d lift. We first describe the general

procedure of the multiplicative lift for the group G0(N) and then specialize to

the illustrative case (2, 6) of our interest, to obtain the product representation of

Φ6 using these methods.

As we have defined in 2.1, the group G0(N) consists of matrices with integer
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2.2 Multiplicative Lift

entries of the block-diagonal form

{
(

A B

NC D

)

∈ Sp(2,Z)} (2.21)

which contains the subgroup Γ0(N). A basic ingredient in the construction of

Siegel modular forms is the Hecke operator Tt of Γ0(N) where t is an integer.

The main property of our interest is that acting on a weak Jacobi form φk,m

of weight k and index m, the Hecke operator Tt generates a weak Jacobi form

φk,mt = Tt(φk,m) of weight k and index mt. Thus, on a modular form φk,1, the

Hecke operator Tt acts like a raising operator that raises the index by (t − 1)

units. One subtlety that needs to be taken into account in the case of Γ0(N)

that does not arise for SL(2,Z) is the fact that Γ0(N) has multiple cusps in its

fundamental domain whereas SL(2,Z) has a unique cusp at i∞. As a result,

the Hecke operators that appear in the construction in this case are a little more

involved as we review in 6.1 in the appendix. .

Let us now explain the basic idea behind the lift. Given a seed weak Jacobi

form φk0,1(ρ, ν) for the multiplicative lift, we define

(Lφk0,1)(ρ, ν, σ) =

∞
∑

t=1

Tt(φ
k
0,1)(ρ, ν) exp (2πiσt). (2.22)

Now, Tt(φ
k
0,1) is a weak Jacobi form of weight 0 and index t. It then follows as

explained in 2.1, with the transformation properties (2.11) and (2.12), the combi-

nation Tt(φ
k
0,m)(ρ, ν)·exp(2πitσ) is invariant under the group elements g1(a, b, c, d)

and g3(λ, µ) in (2.6). Thus, each term in the sum in (2.22) and therefor Lφ is

also invariant under these two elements.

If Lφ were invariant also under the exchange of p and q then it would be

invariant under the element g2 defined in (2.6) and one would obtain a Siegel

modular form of weight zero. This is almost true. To see this, we note that

exp(Lφk0,1) can be written as an infinite product using the explicit representation

of Hecke operators given in the appendix :

∏

l,m,n∈Z

m>0

(1− (qnylpm)ns)hsn
−1
s cs,l(4mn−l2), (2.23)
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2.2 Multiplicative Lift

where q ≡ exp(2πiρ), y ≡ exp(2πiν), p ≡ exp(2πiσ) (6.15). In the product

presentation (2.23), the coefficients cs,l(4mn− l2) are manifestly invariant under

the exchange of m and n. The product, however, is not quite symmetric because

the range of the products in (2.23) is not quite symmetric: m is strictly positive

whereas n can be zero. This asymmetry can be remedied by multiplying the

product (2.23) by an appropriate function as in [16, 23]. The required function

can essentially be determined by inspection to render the final product symmetric

in p and q. Following this procedure one then obtains a Siegel modular form as

the multiplicative lift of the weak Jacobi form φk0,1(ρ, ν),

Φk(Ω) = M[φk0,1] = qaybpc
∏

(n,l,m)>0

(1− (qnylpm)ns)hsn
−1
s cs,l(4mn−l2), (2.24)

for some integer b and positive integers a, c. Here the notation (n, l,m) > 0 means

that if (i) m > 0, n, l ∈ Z, or (ii) m = 0, n > 0, l ∈ Z, or (iii) m = n = 0, l < 0.

It is useful to write the final answer for Φk(Ω) as follows

Φk(Ω) = pcH(ρ, ν) exp[Lφk0,1(ρ, ν, σ)], (2.25)

H(ρ, ν) = qayb
∏

s

∏

l,n≥1

(1− (qnyl)ns)(1− (qnyl)ns)n
−1
s hscs,l(−l2) (2.26)

×
∞
∏

n=1

(1− qnns)n
−1
s hscs,l(0)

∞
∏

l<0

(1− ylns)n
−1
s hscs,l(−l2), (2.27)

in terms of the separate ingredients that go into the construction. This rewriting

is more suggestive for the physical interpretation, as we discuss in the next section.

Following Gritsenko [24], we refer to the functionH(ρ, ν) as the ‘Hodge Anomaly’.

The construction thus far is general and applies to the construction of modular

forms of weight k which may or may not be obtainable by an additive lift. In many

cases however, as in the cases of our interest, it might be possible to obtain the

same modular form by using the two different lifts. To see the relation between

the two lifts in such a situation and to illustrate the significance of the Hodge

anomaly for our purpose, we next specialize to the case (2, 6). We show how to

determine the multiplicative seed and the Borcherds product given the specific

Φ6 obtained from the additive lift.
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2.3 Multiplicative Lift for Φ6

2.3 Multiplicative Lift for Φ6

We want to determine the seed φ6
0,1 whose multiplicative lift equals Φ6 constructed

from the additive lift of (2.16). From the p expansion of the additive representa-

tion of Φ6 we conclude that the integer c in (2.24) and (2.25) equals one. Then

we see from (2.25) that if Φ6 is to be a weight six Siegel modular form, H(ρ, ν)

must be a weak Jacobi form of weight six and index one. Such a weak Jacobi

form is in fact unique and hence must equal the seed φ6,1 that we used for the

additive lift. In summary, the Hodge anomaly is given by

H(ρ, ν) = φ6,1(ρ, ν) = η2(ρ)η8(2ρ)θ21(ρ, ν) (2.28)

= qy(1− y−1)2
∞
∏

n=1

(1− q2n)8(1− qn)4(1− qny)2(1− qny−1)2.(2.29)

Comparing this product representation with (2.26), we determine that

c1(0) = 4, c1(−1) = 2; c2(0) = 8, c2(−1) = 0; (2.30)

and moreover c1(n) = c2(n) = 0, ∀n < −1. This information about the leading

coefficients cs(n) obtained from the Hodge anomaly is sufficient to determine

completely the multiplicative seed φ6
0,1. Let us assume the seed to be a weak

Jacobi form1. Now, proposition (6.1) in [16] states that the space of weak Jacobi

forms of even weight is generated as linear combinations of two weak forms φ−2,1

and φ0,1 which in turn are given in terms of elementary theta functions by

φ−2,1(ρ, ν) =
θ21(ρ, ν)

η6(ρ)
(2.31)

φ0,1(ρ, ν) = 4[
θ2(ρ, ν)

2

θ2(ρ)2
+
θ3(ρ, ν)

2

θ3(ρ)2
+
θ4(ρ, ν)

2

θ4(ρ)2
] (2.32)

The coefficients for this linear combination can take values in the ring A(Γ(N))

of holomorphic modular forms of Γ(N). Basically, the coefficients have to be

1Strictly, it is enough that it is a ‘very weak’ Jacobi form as defined in [16] but from the

physical interpretation that we give in the next section, we expect and hence assume it to be a

weak Jacobi form to find a consistent solution.
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2.3 Multiplicative Lift for Φ6

chosen so as to get the correct weight. For our case, with N = 2, the relevant

holomorphic modular form, is the one of weight two

α(ρ) = θ43(2ρ) + θ42(2ρ). (2.33)

By virtue of the above-mentioned proposition, and using the definitions in (2.31)

and (2.33), we can then write our desired seed as the linear combination

φ6
0,1(ρ, ν) = Aα(ρ)φ−2,1(ρ, ν) +Bφ0,1(ρ, ν), (2.34)

where A and B are constants. To determine the constants we investigate the

behavior near the cusps. For Γ0(2), there are only two cusps, one at i∞ and the

other at 0 in the fundamental domain which we label by s = 1, 2 respectively.

Then the various relevant quantities required in the final expression (2.24) are

given in our case by

g1 =

(

1 0

0 1

)

h1 = 1, z1 = 0, n1 = 1 (2.35)

g2 =

(

0 −1

1 0

)

h2 = 2, z2 = 1, n2 = 2. (2.36)

The q expansion for φ−2,1 and φ0,1 at the cusp q = 0 is given by

φ−2,1 = (−2 + y + y−1) + q(−12 + 8y + 8y−1 − 2y2 − 2y−2) + ..... (2.37)

φ0,1 = (10 + y + y−1) + .... (2.38)

The Fourier expansion of α(ρ) at the cusps i∞ and 0 is given by,

α(ρ) = 1 + 24q + 24q2 + . . . (2.39)

near infinity and by

ρ−2α(−1/ρ) = −1

2
α(
ρ

2
) (2.40)

= −1

2
+ . . . (2.41)
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2.4 Physical Interpretation of the Multiplicative Lift

near zero. Demanding that the leading terms in the Fourier expansion of the linear

combination (2.34) match with those given by (2.30) determines the coefficients

A = 4/3 and B = 2/3 in (2.34). The constraints are actually over-determined

so the fact that a solution exists at all gives a check of the procedure. Our final

answer for the multiplicative lift is then

φ6
0,1(ρ, ν) =

4

3
α(ρ)φ−2,1(ρ, ν) +

2

3
φ0,1(ρ, ν). (2.42)

With this determination we can simply apply the formalism in the previous sec-

tion to determine

Φ6(Ω) = M[
4

3
α(ρ)φ−2,1(ρ, ν) +

2

3
φ0,1(ρ, ν)] (2.43)

by using the formula (2.24).

2.4 Physical Interpretation of the Multiplica-

tive Lift

Both exp(−Lφ) and the inverse of the Hodge anomaly H−1(ρ, ν) that appear in

the multiplicative lift in (2.2) have a natural physical interpretation using the

4d-5d lift, which we discuss in this section and also in terms of M-theory lift of

string webs which we discuss in the next section.

Let us recall the basic idea behind the 4d-5d lift [22]. Consider Type-IIA

compactified on a five-dimensional space M5 to five dimensions. Given a BPS

black hole in Type-IIA string theory in five dimensions, we can obtain a black

hole in four dimensions as follows. A five-dimensional black hole situated in an

asymptotically flat space R4 can be embedded into an asymptotically Taub-NUT

geometry of unit charge. Intuitively, this is possible because near the origin, the

Taub-NUT geometry reduces to R4, so when the Taub-NUT radius is much larger

than the black hole radius, the black hole does not see the difference between

R
4 and Taub-NUT. Asymptotically, however, the Taub-NUT geometry is R

3 ×
S1

tn
. We can dimensionally reduce on the Taub-NUT circle to obtain a four-

dimensional compactification. Now, Type-IIA is dual to M-theory compactified
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2.4 Physical Interpretation of the Multiplicative Lift

on the M-theory circle S1
m so we can regard four-dimensional theory as an M-

theory compactification on M5 ×S1

tn
× S1

m
. Now flipping the two circles, we can

choose to regard the Taub-NUT circle S1

tn
as the new M-theory circle. This in turn

is dual to a Type-IIA theory but in a different duality frame than the original one.

In this duality frame, the Taub-NUT space is just the Kaluza-Klein 6-brane of

M-theory dual to the D6-brane. Thus the Taub-NUT charge of the original Type-

IIA frame is interpreted in as the D6 brane charge in the new Type-IIA frame

and we obtain a BPS state in four dimensions with a D6-brane charge. Since we

can go between the two descriptions by smoothly varying various moduli such

as the Taub-NUT radius and choosing appropriate duality frames, the spectrum

of BPS states is not expected to change. In this way, we relate the spectrum

of four-dimensional BPS states with D6-brane charge to five-dimensional BPS

states in Type-IIA.

With this physical picture in mind, we now interpret the term exp(−Lφ)
in (2.25) as counting the degeneracies of the five dimensional BPS states that

correspond to the four-dimensional BPS states after the 4d-5d lift. For example,

in the familiar case (1, 10) of toroidally compactified heterotic string, the dual

Type-II theory is compactified on K3× S̃1 ×S1. In the notation of the previous

paragraph, we then have M5 = K3 × S̃1. The five-dimensional BPS state is

described by the D1-D5-P system. Its degeneracies are counted by the elliptic

genus of the symmetric product of K3. In this case, indeed exp(−Lφ) above gives
nothing but the symmetric product elliptic genus evaluated in [21].

In our case (2, 6), D-brane configuration in five dimensions corresponding

to our dyonic state in four dimensions is obtained simply by implementing the

CHL orbifolding action in the open string sector on the D1-D5-P system in five

dimensions. The term exp(−Lφ) in (2.25) then has a natural interpretation as a

symmetric product elliptic genus. Because of the shift in the orbifolding action,

the resulting orbifold is a little unusual and the elliptic genus is weak Jacobi form

not of SL(2,Z) but of Γ0(2).

The Hodge anomaly plays a special role in the 4d-5d lift. It is naturally

interpreted as the contribution of the bound states of momentum and the single
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2.5 M-theory lift of String Webs

Taub-NUT 5-brane in the Type-IIB description. A KK5-brane of IIB wrapping

K3 × S1 carrying momentum along the S1 is T-dual to an NS5-brane of IIA

wrapping K3 × S1 carrying momentum which in turn is dual to the heterotic

fundamental string wrapping the circle with momentum.1. These can be counted

in perturbation theory [26, 27, 28, 29] in both cases (1, 10) and (2, 6). The y(1−
y−1) term in the Hodge anomaly in (2.29) is more subtle and would require a

more detailed analysis.

2.5 M-theory lift of String Webs

The appearance in the dyon counting formulae of objects related to a genus two

Riemann surface such as the period matrix and the G0(N) subgroups of Sp(2,Z)

is quite surprising and demands a deeper physical explanation. We now offer such

an explanation combining earlier work of [30] and [22] in the toroidal (1, 10) case

and generalizing it to CHL orbifolds.

To start with, let us reinterpret the Hodge anomaly following Kawai [30]. It

can be written as

H(ρ, ν) = η8(ρ)η8(2ρ)
θ21(ρ, ν)

η6(ρ)
= Z(ρ)K2(ρ, ν), (2.44)

where Z(ρ) ≡ η8(ρ)η8(2ρ) is the one-loop partition function of the left-moving

chiral 24-dimensional bosonic string with the Z2 twist α of the CHL orbifold

action, and K(ρ, τ) is the prime form on the torus. Let us also expand

exp(−Lφ6
0,1(ρ, ν)) =

∞
∑

N=0

pNχN (2.45)

1In [25], the Hodge anomaly for the (1, 10) example is interpreted as a single 5-brane

contribution. This, however, is not dual to the heterotic F1-P system and would not give the

desired form of the Hodge anomaly. For the purposes of 4d-5d lift, it is essential to introduce

Taub-NUT geometry which appears like KK5-brane in IIB. In the 5d elliptic genus the bound

states of this KK5-brane and momentum are not accounted for. Therefore, the Hodge anomaly

is naturally identified as this additional contribution that must be taken into account.
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2.5 M-theory lift of String Webs

We can then write from (2.25),

1

Φ6(Ω)
=

1

p

1

H(ρ, ν)
exp(−Lφ6

0,1(ρ, ν)) (2.46)

=

∞
∑

N=0

pN−1 1

K(ρ, ν)2
χN (2.47)

∼ 1

p

1

K(ρ, ν)2
1

Z(ρ)
+ . . . (2.48)

In (2.48) above, we can identify K−2(ρ, ν) as the on-shell (chiral) tachyon prop-

agator, and Z(ρ) as the one-loop left-moving partition function. If we denote by

X the bosonic spacetime coordinate, then we have

< eik·X(ν)e−ik·X(0) >= K−2(ρ, ν), (2.49)

where k is the momentum of an on-shell tachyon and the correlator is evaluated

on a genus one Riemann surface with complex structure ρ. This is exactly the first

term in a factorized expansion where the subleading terms at higher N denoted

by . . . in (2.48) come from contributions of string states at higher mass-level

N − 1. Summing over all states gives the genus two partition function.

This reinterpretation of 1/Φ6 as the two-loop partition function of the chiral

bosonic string explains at a mathematical level the appearance of genus two

Riemann surface generalizing the results of Kawai to the (2, 6) case. Note that

the partition function Z(ρ) will be different in the two cases. In the (1, 10) case

it equals η−24(ρ) and in the (2, 6) case it equals η−8(ρ)η−8(2ρ). This precisely

captures the effect of CHL orbifolding on the chiral left moving bosons of the

heterotic string. To describe the N = 2 orbifold action let us consider the E8×E8

heterotic string. The orbifold twist α then simply flips the two E8 factors. We can

compute the partition function with a twist in the time direction Tr(αqH) where

H is the left-moving bosonic Hamiltonian. Then, the eight light-cone bosons will

contribute η−8(ρ) as usual to the trace, but the sixteen bosons of the internal

E8 × E8 torus will contribute η−8(2ρ) instead of η−16(2ρ). The power changes

from −16 to −8 because eight bosons of the first E8 factor are mapped by α to

the eight bosons of the second E8. Thus only those states that have equal number

of oscillators from the two E8 factors contribute to the trace, thereby reducing
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2.5 M-theory lift of String Webs

effectively the number of oscillators to 8. The argument on the other hand is

doubled to 2ρ because when equal number of oscillators from the two factors are

present, the worldsheet energy is effectively doubled. The tachyon propagator in

the two cases is unchanged because only light-cone bosons appear on shell which

are not affected by the orbifolding.

This mathematical rewriting does not explain at a fundamental level why the

chiral bosonic string has anything to do with dyon counting. This connection can

be completed using with the heuristic picture suggested in [7].

Under string-string duality, the SL(2,Z) S-duality group of the heterotic

string gets mapped to the geometric SL(2,Z) of the Type-IIB string [31, 32].

Thus, electric states correspond to branes wrapping the a cycle of the torus and

magnetic states correspond to branes wrapping the b cycle of the torus. A gen-

eral dyon with electric and magnetic charges (ne, nm) of a given U(1) symmetry

is then represented as a brane wrapping (ne, nm) cycle of the torus. If a state

is charged under more than one U(1) fields then one gets instead a (p, q) string

web with different winding numbers along the a and the b cycles. The angles and

lengths of the web are fixed by energetic considerations for a given charge assign-

ment [33, 34]. For our purpose, we can consider D5 and NS5 branes wrapping

the K3 resulting in two different kinds of (1, 0) and (0, 1) strings. A dyon in a

particular duality frame then looks like the string web made of these strings as in

the first diagram. In the M-theory lift of this diagram, both D5 and NS5 branes

correspond to M5 branes so the string in the web arises from M-theory brane

wrapping K3. To count states, we require a partition function with Euclidean

time. Adding the circle direction of time we can fatten the string web diagram

which looks like a particle Feynman diagram into a genus-two Riemann surface

representing a closed-string Feynman diagram. Now, K3-wrapped M5 brane is

nothing but the heterotic string. Furthermore, since we are counting BPS states

by an elliptic genus, the right-movers are in the ground state and we are left with

the two-loop partition function of the bosonic string. This partition function is

what we have constructed above using factorization.
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Chapter 3

Comments on the Spectrum of

CHL Dyons.

In this chapter based on [6], we address a number of puzzles relating to the

proposed formulae for the degeneracies of dyons in orbifold compactifications of

the heterotic string to four dimensions with N = 4 supersymmetry. The partition

function for these dyons is given in terms of Siegel modular forms associated

with genus-two Riemann surfaces. We point out a subtlety in demonstrating S-

duality invariance of the resulting degeneracies and give a prescription that makes

the invariance manifest. We show, using M-theory lift of string webs, that the

genus-two contribution captures the degeneracy only if a specific irreducibility

criterion is satisfied by the charges. Otherwise, in general there can be additional

contributions from higher genus Riemann surfaces. We analyze the negative

discriminant states predicted by the formula. We show that even though there

are no big black holes in supergravity corresponding to these states, there are

multi-centered particle-like configurations with subleading entropy in agreement

with the microscopic prediction and our prescription for S-duality invariance. The

existence of the states is moduli dependent and we exhibit the curves of marginal

stability and comment on its relation to S-duality invariance.
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Let Ω be a (2× 2) symmetric matrix with complex entries

Ω =

(

ρ v

v σ

)

(3.1)

satisfying

(Imρ) > 0, (Imσ) > 0, (Imρ)(Imσ) > (Imv)2 (3.2)

which parameterizes the ‘Siegel upper half plane’ in the space of (ρ, v, σ). It

can be thought of as the period matrix of a genus two Riemann surface. For a

genus-two Riemann surface, there is a natural symplectic action of Sp(2,Z) on

the period matrix. We write an element g of Sp(2,Z) as a (4× 4) matrix in the

block form as
(

A B

C D

)

, (3.3)

where A,B,C,D are all (2× 2) matrices with integer entries. They satisfy

ABT = BAT , CDT = DCT , ADT −BCT = I , (3.4)

so that gtJg = J where J =

(

0 −I
I 0

)

is the symplectic form. The action of g

on the period matrix is then given by

Ω → (AΩ +B)(CΩ+D)−1. (3.5)

The object of our interest is a Siegel modular form Φk(Ω) of weight k which

transforms as

Φk[(AΩ+B)(CΩ +D)−1] = {det (CΩ +D)}kΦk(Ω), (3.6)

under an appropriate congruence subgroup of Sp(2,Z) [5]. The subgroup as well

as the index k of the modular form are determined in terms of the order N of the

particular CHL ZN orbifold one is considering [5]. In a given CHL model, the

inverse of the Φk is to be interpreted then as a partition function of dyons.

To see in more detail how the dyon degeneracies are defined in terms of the

partition function, let us consider for concreteness the simplest model of toroidally
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3.1 S-Duality Invariance

compactified heterotic string as in the original proposal of Dijkgraaf, Verlinde,

Verlinde [4]. Many of the considerations extend easily to the more general orb-

ifolds with N = 4 supersymmetry. In this case the relevant modular form is the

well-known Igusa cusp form Φ10(Ω) of weight ten of the full group Sp(2,Z). A

dyonic state is specified by the charge vector Q = (Qe, Qm) which transforms

as a doublet of the S-duality group SL(2,R) and as a vector of the T-duality

group O(22, 6;Z). There are three T-duality invariant quadratic combinations

Q2
m, Q

2
e, and Qe · Qm that one can construct from these charges. Given these

three combinations, the degeneracy d(Q) of dyonic states of charge Q is then

given by

d(Q) = g

(

1

2
Q2
m,

1

2
Q2
e, Qe ·Qm

)

, (3.7)

where g(m,n, l) are the Fourier coefficients of 1/Φ10,

1

Φ10(ρ, σ, v)
=

∑

m≥−1,n≥−1,l

e2πi(mρ+nσ+lv)g(m,n, l) . (3.8)

The parameters (ρ, σ, v) can be thought of as the chemical potentials conjugate

to the integers
(

1
2
Q2
m,

1
2
Q2
e, Qe ·Qm

)

respectively. The degeneracy d(Q) obtained

this way satisfies a number of physical consistency checks. For large charges, its

logarithm agrees with the Bekenstein-Hawking-Wald entropy of the corresponding

black holes to leading and the first subleading order [4, 5, 35, 36, 37]. It is integral

as expected for an object that counts the number of states. It is formally S-

duality invariant [4, 5] but as we will see in the next section the formal proof is

not adequate. An appropriate prescription is necessary as we explain in detail in

the next section which also allows for a nontrivial moduli dependence.

3.1 S-Duality Invariance

The first physical requirement on the degeneracy d(Q) given by (3.7) is that it

should be invariant under the S-duality group of the theory. For the simplest

case of toroidal compactification that we are considering, the S-duality group is

SL(2,Z) and more generally for ZN CHL orbifolds its a congruence subgroup
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3.1 S-Duality Invariance

Γ1(N) of SL(2,Z). So, we would like to show for the N = 1 example, that the

degeneracy (3.7) is invariant under an S-duality transformation

Qe → Q′
e = aQe + bQm, Qm → Q′

m = cQe + dQm ,

(

a b

c d

)

∈ SL(2,Z) .

(3.9)

A formal proof of S-duality following [4, 5] proceeds as follows. Inverting the

relation (3.8) we can write

d(Q) =

∫

C

d3Ω e−iπQ
′t·Ω·Q 1

Φ10(Ω)
(3.10)

where the integral is over the contours

0 < ρ ≤ 1, 0 < σ ≤ 1, 0 < v ≤ 1 (3.11)

along the real axes of the three coordinates (ρ, σ, v). This defines the integration

curve C as a 3-torus in the Siegel upper half plane. Now we would like to show

d(Q′) =

∫

C

d3Ω e−iπQ
′t·Ω·Q′ 1

Φ10(Ω)
(3.12)

equals d(Q). To do so, we define

Ω′ ≡
(

ρ′ v′

v′ σ′

)

= (AΩ+B)(CΩ +D)−1, (3.13)

for

(

A B

C D

)

=













a −b b 0

−c d 0 c

0 0 d c

0 0 b a













∈ Sp(2,Z) . (3.14)

We can change the integration variable from Ω to Ω′. Using these transformation

properties and the modular properties of Φ10 we see that

d3Ω′ = d3Ω , (3.15)

Φ10(Ω
′) = Φ10(Ω) , (3.16)

Q′t · Ω′ ·Q′ = Qt · Ω ·Q (3.17)

25



3.1 S-Duality Invariance

Moreover, the integration contour C as defined in (3.11) is invariant under the

duality transformation on the integration variables (3.13). We therefore conclude

d(Q′) =

∫

C

d3Ω′ e−iπQ
′T ·Ω′Q′ 1

Φ10(Ω′)
= d(Q) . (3.18)

This formal proof is however not quite correct. The reason is that the partition

function 1/Φ10 has a double pole at v = 0 which lies on the integration contour

C. Thus the integral in (3.10) is not well-defined on the contour C and one must

give an appropriate prescription for the integration. The non-invariance can also

be seen explicitly from the Fourier expansion. To illustrate the point, let us look

at states with
1

2
Q2
m = −1,

1

2
Q2
e = −1, Qe ·Qm = N. (3.19)

Then according to (3.10), the degeneracy of such states can be read off from the

coefficient of yN/qp in the Fourier expansion (3.8). From the product represen-

tation of Φ10 given for example in [4], we see that we need to pick the term that

goes as p−1q−1yN in the expansion of

1

qp(y
1
2 − y−

1
2 )2

=
y

qp

1

(1− y)2
=

∞
∑

N=1

Nq−1p−1yN (3.20)

which implies that

d(−1,−1, N) = N. (3.21)

Let us now look at what is required for invariance under SL(2,Z) transfor-

mations. Consider, for example, the element

S =

(

0 1

−1 0

)

(3.22)

of the S-duality group which takes (Qe, Qm) to (Qm,−Qe). Hence (
1
2
Q2
m,

1
2
Q2
e, Qe·

Qm) goes to (
1
2
Q2
e,

1
2
Q2
m, −Qe·Qm). Invariance of the spectrum under this element

of the S-duality group would then predict d(−1,−1,−N) = d(−1,−1, N) = N .

However, from the expansion (3.20) we see that there are no terms in the Laurent

expansion that go as y−N and hence an application of the formulae (3.10) and

(3.8) would give d(−1,−1,−N) = 0 in contradiction with the prediction from

S-duality.
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3.1 S-Duality Invariance

This apparent lack of S-duality invariance is easy to fix with a more precise

prescription. Note that the function (y
1
2 − y−

1
2 )−2 has a Z2 symmetry generated

by the element S of the S-duality group that takes y to y−1. Under this transfor-

mation the contour |y| < 1 is not left invariant but instead gets mapped to the

contour |y| > 1. The new contour cannot be deformed to the original one without

crossing the pole at y = 1 so if we are closing the contour around y = 0 then

we need to take into account the contribution from this pole at y = 1. Alterna-

tively, it is convenient to close the contour at y−1 = 0 instead of y = 0. Then

we do not encounter any other pole and because of the symmetry of the function

(y
1
2 −y− 1

2 )−2 under y going to y−1, the Laurent expansion around y has the same

coefficients as the Laurent expansion around y−1. We then get,

1

pq(y
1
2 − y−

1
2 )2

=
y−1

pq

1

(1− y−1)2
=

∞
∑

N=1

Np−1q−1y−N . (3.23)

If we now define d(−1,−1,−N) as the coefficient of qpy−N in the expansion (3.23)

instead of in the expansion (3.20) then d(−1,−1,−N) = N = d(−1,−1, N)

consistent with S-duality.

States with negative N must exist if states with positive N exist not only

to satisfy S-duality invariance but also to satisfy parity invariance. The N = 4

super Yang-Mills theory is parity invariant. Under parity, our state with positive

N goes to a state with negative N and the asymptotic values χ of the axion also

flips sign at the same time. Hence if a state with N positive exists at χ = χ0

then a state with N negative must exist at χ = −χ0. Thus, the naive expansion

(3.20) would give an answer inconsistent with parity invariance and one must use

the prescription we have proposed, to satisfy parity invariance. Note that even

though S-duality and parity both take the states (−1,−1, N) to (−1,−1,−N)

they act differently on the moduli fields.

In either case, the important point is that to extract the degeneracies in an

S-duality invariant way, we need to use different contours for different charges.

The function 1/Φ10 has many more poles in the (ρ, σ, v) space at various divi-

sors that are the Sp(2,Z) images of the pole at y = 1 and in going from one

contour to the other these poles will contribute. Instead of specifying contours,
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3.1 S-Duality Invariance

a more practical way to state the prescription is to define the degeneracies d(Q)

by formulae (3.10) and (3.8) first for charges that belong to the ‘fundamental

cell’ in the charge lattice satisfying the condition 1
2
Q2
m ≥ −1, 1

2
Q2
e ≥ −1, and

Qe ·Qm ≥ 0. For these charges d(Q) can be represented as a contour integral for

a contour of integration around p = q = y = 0 that avoids all poles arising as

images of y = 1. This can be achieved by allowing (ρ, v, σ) to all have a large

positive imaginary part as noted also in [38]. For other charges, the degeneracy

is defined by requiring invariance under SL(2,Z). The degeneracies so defined

are manifestly S-duality invariant. This statement of S-duality invariance might

appear tautologous, but its consistency depends on the highly nontrivial fact that

an analytic function defined by Φ10(ρ, σ, v) exists that is SL(2,Z) invariant. Its

pole structure guarantees that one gets the same answer independent of which

way the contour is closed.

The choice of integration contour is possibly related to moduli dependence

of the spectrum. To see this let us understand in some detail what precisely is

required for S-duality. Given a state with charge Q that exists for the values of

the moduli ϕ, the statement of S-duality only requires that the degeneracy d(Q)

at ϕ be the same as the degeneracy d(Q′) at ϕ′ where Q′ and ϕ′ are S-duality

transforms of Q and ϕ respectively. In many cases, one can then invoke the BPS

property to assume that as we move around in the moduli space, barring phase

transitions, the spectrum can be analytically continued from ϕ′ to ϕ to deduce

d(Q′) = d(Q) at ϕ. This argument is known to work perfectly for half-BPS

states in theories with N = 4 supersymmetric but with lower supersymmetry

or for quarter-BPS states in N = 4, generically there can be curves of marginal

stability. In such cases, states with charges Q′ may exist for moduli values ϕ′

but not for ϕ and similarly states with charges Q may exist for moduli values

ϕ but not for ϕ′. Therefore, there are two possibilities for extracting the dyon

degeneracies.

• There are no curves of marginal stability in the dilaton-axion moduli space.

In this case if two charge configurations Q and Q′ are related by S-duality,

then d(Q) = d(Q′).
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3.2 Irreducibility Criterion and Higher Genus Contributions

• There are curves of marginal stability in the dilaton-axion moduli space. In

this case one can say at most that d(Q) at ϕ equals d(Q′) at ϕ′.

We will return later to a further discussion of these possibilities in the present

context after considering explicit examples of moduli dependence and lines of

marginal stability in 3.3.

3.2 Irreducibility Criterion and Higher Genus

Contributions

One way to derive the dyon partition function is to use the representation of

dyons as string webs wrapping the T2 factor in Type-IIB on K3 × T2. Using

M-theory lift, the partition function that counts the holomorphic fluctuations of

this web can be related to the genus-two partition function of the left-moving

heterotic string [3, 7, 39]. The appearance of genus-two is thus explained by the

topology of the string web. Such a derivation immediately raises the possibility

of contribution from higher genus Riemann surface because string webs with

more complicated topology are certainly possible. In this section we address this

question and show that the genus-two partition function correctly captures the

dyon degeneracies if the charges satisfy certain irreducibility criteria. Otherwise,

there are higher genus corrections to the genus-two formula.

There are various derivations of the dyon degeneracy formula, but often they

compute the degeneracies for a specific subset of charges, and then use duality

invariance to extend the result to generic charges. Such an application of duality

invariance assumes in particular that under the duality group SO(22, 6,Z) the

only invariants built out of charges would be Q2
e, Q

2
m, and Qe · Qm. This as-

sumption is incorrect. If two charges are in the same orbit of the duality group,

then obviously they have the same value for these three invariants. However the

converse is not true. In general, for arithmetic groups, there can be discrete

invariants which cannot be written as invariants of the continuous group.

An example of a non-trivial invariant that can be built out of two integral

charge vectors is I = gcd(Qe ∧ Qm), i.e., the gcd of all bilinears Qi
eQ

j
m −Qj

eQ
i
m.
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3.2 Irreducibility Criterion and Higher Genus Contributions

Figure 3.1: Charge conservation at a string junction

Our goal is to show that the genus-two dyon partition function correctly captures

the degeneracies if I = 1. Note that half-BPS states have I = 0 and hence are

naturally associated with a genus-one surface. If I > 1, then there are additional

zero modes for the dyon under consideration and it would be necessary to correctly

take them into account for counting the dyons.

The essential idea is to represent quarter-BPS states in the Type-IIB frame as

a periodic string network wrapped on the two-torus. Type-IIB compactified on a

K3 has a variety of half-BPS strings that can carry a generic set of (21, 5) charges

arising from D5 and NS5 branes wrapped on theK3, D3-branes wrapped on some

of the (19, 3) two-cycles as well as D1 and F1-strings. Several half-BPS strings

can join into a web that preserve a quarter of the supersymmetries [33, 34, 40, 41].

The supersymmetry condition requires that the strings lie in a plane, and that

their central charge vectors also lie in a plane. The strands must be oriented at

relative angles that mimic the relative angle of their central charge vectors. The

condition on the angles between strings guarantees the balance of tensions at the

junction of three strands of the web as shown in Fig.3.1.

The central charges are given in terms of the charges and the scalar moduli of

the theory as Z = Tq. The matrix T contains the scalar moduli of the theory, that

parameterize the way a vector in the Γ(21,5) Narain lattice of charges decomposes

into a left-moving and a right-moving part. The five-dimensional right-moving
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3.2 Irreducibility Criterion and Higher Genus Contributions

part is the vector of central charges for the string. For generic values of the scalar

moduli, one does not expect to have tensionless strings. Hence it follows that

TQ = 0 implies Q = 0. The condition that all central charges TQi should lie in

a plane, TQi = aiTQ1 + biTQ2 is then equivalent to Qi = aiQ1 + biQ2, i.e., the

charge vectors Qi of all strings should also lie in a plane. A periodic string web

can be wrapped on the torus of a K3×T2 compactification as shown in Fig.3.2.

After compactification on the torus, the strands of the web can carry ad-

ditional charges: momentum along the direction they wrap, and KK monopole

charge for the circle they do not wrap. The charges are organized in a (22, 6)

charge vector. The result is a quarter-BPS dyon in the four dimensional theory.

A dyon with generic charges Qe, Qm typically has a very simple realization as

a web with three strands. A simple possible choice of charges on the strands

would be Qe, Qm, Qe + Qm. This web comes from the periodic identification of

a hexagonal lattice. As the shape of the T 2 or the moduli in T change, the size

of one strand may become zero, and the web may degenerate into two cycles of

the torus meeting at a point. On the other side, of the transition the intersection

will open up in the opposite way and the configuration then smoothly become

a new three-strands web. For example, the web with strands Qe, Qm, Qe + Qm

may go to a web with strands Qe, Qm, Qe − Qm. This process has interesting

consequences on the stability of certain BPS states, that will be reviewed in 3.3.

It has been argued [7] that the partition function of supersymmetric ground

states for such webs can be computed by an unconventional lift to M-theory that

relates it to a chiral genus-two partition function of the heterotic string. The

genus-two partition function computed using this lift for CHL-orbifolds [3, 39]

indeed equals the dyon partition function obtained by other means.

A priori, the string junction need not to be stable against opening up into more

complicated configurations. For example, a strand may split into two or more

parallel strands, or the junction may open up into a triangle. Any complicated

periodic network made out of strands with charges that are linear combinations

of Qe and Qm, and such that the total charge flowing across one side of the funda-

mental cell is Qe, and through the other side Qm will give a possible realization of
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Qe Qm+
Qm

Qe

Figure 3.2: A quarter-BPS dyon carrying irreducible charges Qe and Qm with

gcd(Qe ∧Qm)= 1

the dyon as shown in Fig.3.3. If that is possible, the M-theory lift would predict

a more complicated expression for the dyon degeneracies. For simplicity, in the

following analysis we restrict to configurations with no momentum or KK charge.

To understand the relation between the value of I and the possible variety of

string webs that may describe a dyon with given charges, it is useful to consider

a graph in the space of charges that is topologically dual to the string web. A

dual graph is constructed as follows. For every face of the web associate a vertex

in the dual graph. If two faces A and B in the web share an edge then the

corresponding vertices A′ and B′ in the dual graph are connected by a vector

that is equal in magnitude to the central charge of the edge but rotated by π/2 in

orientation compared to the edge. Recall that each edge in the string web carries

a central charge and that the relative angles between the edges mimic the angles

between the corresponding central charge vectors. A junction has three faces and

three edges which maps to a triangle in the dual graph with three vertices and

three edges. Charge conservation at each junction means that the vector sum of

the three edge vectors is zero. This then guarantees that the sides of the dual

triangle actually close, as their vector sum is zero. A string web constructed from
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3.2 Irreducibility Criterion and Higher Genus Contributions

2
mQ

2
mQ

Qe

e+ QmQ

Figure 3.3: A quarter-BPS dyon carrying reducible charges Qe and Qm with

gcd(Qe ∧Qm)=2

a period array of junctions then corresponds to a triangulation in the dual graph.

Now, the vertices of the dual graph will sit at integral points of the charge

lattice, on the plane defined by the vectors Qe and Qm. The graph will have a

fundamental cell with sides Qe and Qm. Our invariant I counts the number of

integral points inside the fundamental cell. In this dual description, it is clear

geometrically that Qi
eQ

j
m−Qj

eQ
i
m are the various components of the area 2-form

associated with the fundamental cell. If all the components do not have common

factor then the fundamental parallelogram does not have any integral points either

on the edges or inside [42].

Let us see in more detail that I counts the number of integral points inside

the fundamental cell. If all Qi
eQ

j
m − Qj

eQ
i
m are multiples of I, then consider

any vector Q such that Q · Qe is not a multiple of I. If such a vector does

not exist, then Qe is a multiple of I and there are extra integral points on the

edges of the parallelogram. If on the other hand, such a vector exists, then
Q·Qe

I
Qi
m − Q·Qm

I
Qi
e is an integral charge vector that is a linear combination of Qe

and Qm with fractional coefficients. Up to shifts by Qe and Qm it will lie inside

the parallelogram. Conversely, if the lattice of integral points that are coplanar

with Qe and Qm has a smaller fundamental cell than the parallelogram with sides
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Qe and Qm, then Qe = aQ1 + bQ2, Qm = cQ1 + dQ2, ad − bc > 1. There will

be ad− bc points inside the parallelogram, and as Qe ∧Qm = (ad− bc)Q1 ∧Q2,

I = ad − bc is the number of points inside the parallelogram with sides Qe and

Qm.

We thus see that if I > 1, then the fundamental cell in the dual graph has

an internal integral point. Each of the internal points can be used as a vertex

for a triangulation. A generic periodic triangulation subdivides a fundamental

cell into at most 2I faces. 1 In the dual description, a string web on the torus

that carries charges Qe and Qm will have at most 2I three-strand junctions, and

I faces.

To put it differently, note that I = 1 without any internal faces is a genus

two surface after M-theory lift. Adding a face increases the genus by one. Hence

the genus of a M-theory lift of a string web with the invariant I will be a surface

with genus I + 1.

When a face opens up at a string junction, its size is a zero mode in that

the mass of dyon is independent of the size of the additional face. These zero

modes and the invariant I have been discussed earlier in a related context of

quarter-BPS dyons in field theory using their realization as string junctions going

between a collection D3-branes [43]. In that context, the zero mode is one of

the collective coordinates that must be quantized to determine the ground state

wavefunction. Similar comments might apply in our case. More work is need to

obtain a definite interpretation of the higher genus contribution.

3.3 States with Negative Discriminant

An important test of the dyon degeneracy formula is that for large charges, the

logarithm of the predicted degeneracy log d(Q) matches with Bekenstein-Hawking

entropy. To make this comparison, for a given a BPS dyonic state with electric

and magnetic charges (Qe, Qm), one would like to find a supersymmetric black

1This follows from Euler formula on the torus: a triangulation has 3/2 edges for each face,

hence the number of vertices is 1/2 the number of faces.
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3.3 States with Negative Discriminant

hole solution of the effective action with the same charges and mass and then

compute its entropy. It is useful to define the ‘discriminant’ ∆ by

∆(Q) = Q2
eQ

2
m − (Qe ·Qm)

2. (3.24)

which is the unique quartic invariant of the full U-duality group SO(22, 6;Z)×
SL(2,Z). For a black hole with charges (Qe, Qm), the attractor value of the

horizon area is proportional to the square root of the discriminant and the entropy

is given by

S(Q) = π
√

∆(Q) . (3.25)

On the microscopic side also, the discriminant is a natural quantity. It is useful to

think of SL(2,Z) as SO(1, 2;Z) which has a natural embedding into Sp(2,Z) ∼
SO(2, 3;Z). The dyon degeneracy formula depends on the T-duality invariant

vector of SO(1, 2;Z)








Q2
m/2

Q2
e/2

Qe ·Qm









(3.26)

The discriminant is the norm of this vector with the Lorentzian metric








0 2 0

2 0 0

0 0 −1









. (3.27)

With this norm, for a given state (Q2
m/2, Q

2
e/2, Qe ·Qm),the vector (3.26) is space-

like, lightlike, or timelike depending on whether ∆ is positive, zero, or negative.

We can accordingly refer to the state as spacelike, lightlike, or timelike.

Clearly, to obtain a physically sensible, nonsingular, supersymmetric, dyonic

black hole solution in supergravity, it is necessary that the discriminant defined

in (3.24) is positive and large so that the entropy defined in (3.25) is real. The

vector in (3.26) in this case is spacelike. This fact seems to lead to the following

puzzle regarding the dyon degeneracy formula. The formula predicts a large

number of states that can have vanishing or negative discriminant. Since there

are no big black holes in supergravity in that case, there does not appear to
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3.3 States with Negative Discriminant

be a supergravity realization of these states predicted dyon degeneracy. This

raises the following question. Do the lightlike and timelike states predicted by the

dyon degeneracy formula actually exist in the spectrum and if so what is their

macroscopic realization? It is important to address this question to determine

the range of applicability of the dyon degeneracy formula.

3.3.1 Microscopic Prediction

To start with, let us emphasize that the lightlike or timelike states are not nec-

essarily pathological even though there is no supergravity solution corresponding

to them. The simplest example of a lightlike state is the half-BPS purely elec-

tric state in the heterotic frame with winding w along a circle and momentum

n along the same circle [26, 27]. For such a state, Q2
e = 2nw is nonzero but

since it carries no magnetic charge, both Q2
m and Qe ·Qm are zero and hence the

discriminant is zero. The supergravity solution is singular but higher derivative

corrections generate a horizon with the correct entropy [44, 45, 46]. We would like

to know if similarly there exist quarter-BPS states that are timelike or lightlike in

accordance with the predictions of the dyon degeneracy formula and what their

supergravity realization is.

In general, it is not easy to extract closed form asymptotics from the degener-

acy formula in this regime when the discriminant is negative or zero. But we have

already encountered a simple example of a timelike state in 3.1. The states with

(Q2
m/2, Q

2
e/2, Qe ·Qm) equal to (−1,−1, N) have discriminant 1−N2 which can

be arbitrarily negative and we have determined the degeneracy of this state to be

d(−1,−1, N) = N . Do such states exist in the physical spectrum, and if so what

is their supergravity realization that can explain the degeneracy?

It is easy to construct such a state from a collection of winding, momentum,

KK5, NS5 states in heterotic description. We choose a convenient representative

that makes the supergravity analysis in the following section simpler. We consider

heterotic string compactified on T4 × S1 × S̃1. Let the winding and momentum

around the circle S1 be w and n and around the circle S̃1 be w̃ and ñ. Similarly,

K andW are the KK-monopole and NS5-brane charges associated with the circle
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3.3 States with Negative Discriminant

S1 whereas K̃ and W̃ are the KK-monopole and NS5-brane charges associated

with the circle S̃1. Note that the state with charge W can be thought of as

an NS5 brane wrapping along T4 × S̃1 whereas the states with charges W̃ is

wrapping along T4 × S1. While the state that magnetically dual to n is K in

terms of Dirac quantization condition, the state that is S-dual to n is W . Similar

comment holds for other states. With this notation, we then choose the charges

Γ = (Qe|Qm) = (n, w; ñ, w̃|W,K; W̃ , K̃) to be

Γ = (1,−1; 0, N |0, 0; 1,−1). (3.28)

This state clearly has (Q2
m/2, Q

2
e/2, Qe ·Qm) = (−1,−1, N). We will show in the

appendix 3.3.2 that the supergravity solution corresponding to this state with the

required degeneracy has two centers instead of one. One center is purely electric

with charge vector

Γ1 = (1,−1; 0, N |0, 0; 0, 0), (3.29)

and the other purely magnetic with charge vector

Γ2 = (0, 0; 0, 0|0, 0; 1,−1), (3.30)

both separated by a distance L. The corresponding supergravity solution exists

for charge configuration with a positive, nonzero value for the distance L both

for positive and negative N in a large regions of the moduli space but not for all

values of the moduli. We discuss the explicit solution and as well as the moduli

dependence and lines of marginal stability in the next subsections.

It is easy to see that such a two-centered solution has the desired degeneracy

in agreement with the prediction from the dyon partition function. Each center

individually contributes no entropy because for example the electric center by

itself has Q2
e/2 = −1 and hence carries no left-moving oscillations. However,

because the charges are not mutually local, there is a net angular momentum

j = N/2 in the electromagnetic field. For large N , the angular momentum

multiplet has 2j+1 or N states in agreement with the dyon degeneracy formula.

We thus see that at least some of the states with negative discriminant predicted

by the dyon degeneracy formula can be realized physically but as multi-centered

configurations.
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3.3 States with Negative Discriminant

3.3.2 Supergravity Analysis

For the supergravity analysis of the dyonic configurations, it is convenient to use

the N = 2 special geometry formalism. Consider Type-II string compactified on

a Calabi-Yau threefold with Hodge numbers (h1,1, h2,1) which results in a N = 2

supergravity in four dimensions with h1,1 vector multiplets and h2,1 + 1 hyper-

multiplets. The hypermultiplets will not play any role in our analysis. The vector

multiplet moduli space is a special Kähler geometry parameterized by h1,1 + 1

complex projective coordinates {XI} with I = 0, 1, . . . , h1,1 and {λXI} ∼ {XI}.
The low energy effective action of the vector multiplets is completely summarized

by a prepotential which is a homogeneous function F (XI) of degree two,

F (λXI) = λ2F (XI). (3.31)

In particular, the Kähler potential K is determined in terms of the prepotential

by

e−K = i(X̄IFI −XIF̄I), (3.32)

where

FI =
∂F

∂XI
. (3.33)

In our case, since we have a special Calabi-Yau K3 × T2, we actually get

N = 4 supersymmetry which has two additional gravitini multiplets. With our

charge assignment, the vector fields in the gravitini multiplets are not excited

and we can restrict our attention to the N = 2 sector. In the heterotic frame,

we have excited electric and magnetic charges (3.28) which couple only to gauge

fields associated with the T2 part and to the metric and the dilaton-axion. As

a result, the sigma model corresponding to the black hole configuration in R4

is completely factorized into the T4 conformal field theory and the sigma model

involving T2×R4 parts. This implies that for analyzing our charge configuration,

we can restrict our attention to the moduli fields associated with T2 and the

dilaton-axion. The prepotential in this case can be chosen to be

F (XI) = −X
1X2X3

X0
, (3.34)

38



3.3 States with Negative Discriminant

which corresponds to the so called STU model. Here

S = X1/X0 = a+ ie−2Φ (3.35)

is the dilaton-axion field, where a is the axion and Φ is the dilaton in the heterotic

frame. Similarly T = X2/X0 is the complex structure modulus of the T2 and

U = X3/X0 is the Kähler modulus of the T2 in the heterotic frame. All other

moduli fields do not vary in the geometry corresponding to our charge configu-

ration. Restricting to the STU model greatly simplifies the analysis. Indeed this

motivates the choice of the charges as in (3.28).

Given the prepotential (3.34) specifying the special geometry, there is a nat-

ural symplectic action Sp(4,R) on (XI , FI). Similarly, the charges (pI , qI) trans-

form as a symplectic vector. These charges are more naturally defined in the

Type-IIA frame, where qI are the electric charges arising from D0-brane and

wrapped D2-branes, and pI are the magnetic charges arising from D6-brane and

wrapped D4-branes.

A general supersymmetric multi-centered dyonic solution has a metric of the

form

−e−2G(~r)(dt+ ωidx
i)2 + e2G(~r)(dr2 + r2dΩ2

2). (3.36)

The four complex moduli fields XI that solve the equations of motion are deter-

mined in terms of the function G and harmonic functions HI and HI by the eight

real equations

e−G(XI − X̄I) = HI(~r) (3.37)

e−G(FI − F̄I) = HI(~r), (3.38)

in the gauge

e−K =
1

2
(3.39)

with the Kähler potential given by (3.32). For a configuration with s charge

centers with charges Γa = (pIa, qIa), a = 1, . . . s localized at the centers ~r = ~ra

respectively, the harmonic functions HI and H
I are given by [47]

HI = hI +
s
∑

a=1

pIa
|~r − ~ra|

, HI = hI +
s
∑

a=1

qIa
|~r − ~ra|

. (3.40)
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3.3 States with Negative Discriminant

The constants of integration hI and h
I will be determined in terms of the moduli

fields shortly. Let Σ(Q) be the entropy of the black hole which in our case equals

π
√

∆(Q). Then geometry of the solution is completely determined in terms of

these harmonic functions [47]. The moduli are given by

XA

X0
=
∂AΣ(H)− iHA

∂0Σ(H)− iH0
(3.41)

with A = 1, 2, 3 and ∂A = ∂/∂HA. The metric is given by

e−2G = Σ(H), (3.42)

∇× ω = HI∇HI −HI∇HI . (3.43)

Taking divergence of both sides then implies the Denef’s constraint [48]

HI∇2HI −HI∇2HI = 0. (3.44)

This is a consistency condition for a solution with s centers to exist, where ∇2 is

the flat space Laplacian in R3. This implies the following s equations

(hIp
I
a − hIqIa) +

s
∑

b=1

(pIaqIb − qIap
I
b)

|~ra − ~rb|
= 0, (3.45)

where sum over repeated I index is assumed. Summing over the index a in the

equation above gives the summed constraint

(hIp
I − hIqI) = 0, (3.46)

where pI =
∑

pIa and qI =
∑

qIa are the total charges.

The values of the moduli fields S = S1+iS2, T = T1+iT2 and U = U1+iU2 at

asymptotic infinity are specified by six real constants. The solutions on the other

hand are determined by eight real constants of integration (hI , hI), I = 0, 1, 2, 3

which however must satisfy two real constraints (3.39) and (3.46). Thus, they

can be determined in terms of the six asymptotic values of the moduli fields and

the complete supersymmetric solution for all fields is then determined by (3.37),

(3.36), and (3.40).
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3.3 States with Negative Discriminant

Specializing to our case, we will consider a two-centered solution so s = 1, 2.

We restrict ourselves to a region of moduli space where T2 is factorized into two

circles S1 × S̃1 and there is no B field on the torus. In other words, we work on

the submanifold of the moduli space with T1 = U1 = 0. Let R1 and R2 be the

radii of the circles S1 and S̃1 respectively, χ be the asymptotic expectation value

of the axion, and g2 be the string coupling given by the asymptotic value of e2Φ.

A nonzero value of χ will be essential to obtain a well defined solution. Given

this asymptotic data

S∞ = χ+
i

g2
, T∞ = i

R1

R2

, U∞ = iR1R2, (3.47)

we now proceed to determine the constants of integration (hI , hI).

At asymptotic infinity, G(~r) vanishes, so the solutions (3.37) reduce to

2Im(XI) = hI , 2Im(FI) = hI . (3.48)

Let X0
∞ = α + iβ. Then from (3.37) and (3.47) we see that the constants of

integration are given by

h0 = 2β h0 = −2α
R2

1

g2
− 2R2

1βχ (3.49)

h1 = 2α
1

g2
+ 2βχ h1 = 2βR2

1 (3.50)

h2 = 2α
R1

R2

h2 = 2β
R1R2

g2
− 2αχR1R2 (3.51)

h3 = 2αR1R2 h3 = 2β
R1

R2g2
− 2αχ

R1

R2
. (3.52)

The two constants α and β that we have introduced are in turn determined in

terms of the charges by plugging (3.49) into the two constraint equations (3.39)

and (3.46). Equation (3.39) in particular implies

|X0|2 = α2 + β2 =
1

16S2T2U2
=

g2

16R2
1

. (3.53)
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3.3.3 Moduli Dependence and Lines of Marginal Stability

So far our analysis is valid for any charge assignment but with the specific choice

of the asymptotic moduli as in (3.47). The remaining equations (3.46) as well

as (3.49) depend on the specific charge assignment of the configuration under

study. To use the attractor equations to analyze the geometry for our charge

configuration (3.29) and (3.30), we first translate the charges given in the heterotic

frame to purely D-brane charges in the Type-IIA frame. The charges (pI , qI) in

the Type-IIA arise from various D-branes wrapping even-cycles. We label charges

so that q0 is the number of D0-branes, q1 is the number of D2-branes wrapping the

T2, q2 is the number of D2-branes wrapping a 2-cycle Σ2 in K3, q3 is the number

of D2-branes wrapping a 2-cycle Σ̃2 that has intersection number one with the

cycle Σ2. Similarly, p0 is the number of D6-branes wrapping K3× T2, p1, p2, p3

are the number of D4-branes wrapping K3, Σ̃2×T2 and Σ2×T2 respectively. By

the duality chain in appendix B, these charges in the Type-IIA frame are related

to the electric and magnetic charges (Qe, Qm) in the heterotic frame by

Qe = (n, w; ñ, w̃) ≡ (q0,−p1, q2, q3) (3.54)

Qm = (W,K; W̃ , K̃) ≡ (q1, p
0, p3, p2) . (3.55)

Now we are ready to apply the N = 2 formalism to our two-centered configuration

with the charge assignment (3.29) and (3.30). The electric center has charges

Γ1 = (1,−1, 0, N |, 0, 0, 0, 0) (3.56)

and the magnetic center has charges

Γ2 = (0, 0, 0, 0|0, 0, 1,−1). (3.57)

The constraint (3.46) then reads

h1 − h0 −Nh3 + h3 − h2 = 0 . (3.58)
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Substituting the values of the integration constants hI and hI in terms of α and

β from (3.49) into this equation, we obtain one equation for the two unknowns α

and β in terms of charges and asymptotic moduli

β(R2
1 − 1 +

R1

R2g2
(1−R2

2)) + α(−NR1R2 − χ
R1

R2
+ χR1R2) = 0 (3.59)

Combining this with the second equation (3.53) that comes from the gauge fixing

constraint e−K = 1
2
(3.39), we can now solve for the two unknowns to obtain

α =
(R2

1 − 1 + R1

R2g2
(1−R2

2))g

4R1(NR1R2 + χR1

R2
− χR1R2)Λ

, β =
g

4R1Λ
, (3.60)

where

Λ2 = 1 +

(

R2
1 − 1 + R1

R2g2
(1−R2

2)

−NR1R2 − χR1

R2
+ χR1R2

)2

. (3.61)

We have thus determined the integrations constants (3.49) that appear in the

solution (3.40) completely in terms of the asymptotic moduli and the charges. The

geometry of the solution is in tern determined entirely in terms of the harmonic

functions. In particular the separation L between the two centers can be obtained

by solving Denef’s constraint (3.45), which for our configuration becomes

h2 − h3 =
N

L
(3.62)

we have,

2
R1

R2
(R2

2 − 1)(
β

g2
− αχ) =

N

L
(3.63)

Since L is the separation between the two centers, it must be positive. This

requires that ( β
g2
−αχ) must be positive. It is clear that this can be ensured for a

large region of moduli space. The locus in the moduli space where this quantity

becomes negative determines the line of marginal stability in the upper half S

plane by the equation

1

g2
− (

R2
1 − 1 + R1

R2g2
(1−R2

2)

NR1R2 + χR1

R2
− χR1R2

)χ = 0, (3.64)

which simplifies to

χ = N
R1R2

R2
1 − 1

1

g2
. (3.65)
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This equation defines a straight line in the complex S∞ plane with S∞ = χ+i/g2.

Note that the slope of the line is proportional to N . For fixed R1 and R2, this

defines a curve of marginal stability in the complex S∞ plane. For positive N , the

desired two-centered solution exists if χ+ i/g2 lies to the left of the line defined

by the equation (3.65). In this region, the distance between the two centers

determined by Denef’s constraint (3.63) is positive and finite. After crossing the

line of marginal stability, the solution ceases to exist because then there is no

solution with positive L to the constraint (3.63). As one approaches the line of

marginal stability from the left, the distance L between the electric and magnetic

centers goes to infinity. In other words, the total state with charge vector Γ

decays into two fragments with charge vectors Γ1 and Γ2. The mass M of the

state with charge Γ is given in terms of the central charge by the BPS formula

M = |Z(Γ)| with
Z = eK/2(pIFI − qIX

I). (3.66)

At the curve of marginal stability, it is easy to check that Z(Γ) = Z(Γ1)+Z(Γ2).

Hence the state with charge vector Γ can decay into its fragments with charge

vectors Γ1 and Γ2 by a process that is marginally allowed by the energetics and

charge conservation.

Similarly, if N is negative, the straight line defined by (3.3.3) has negative

slope and a solution with positive L exists only to the right of this line. As we

have noted, the S-transformation maps the configuration with N positive to N

negative. Hence the line with positive slope gets mapped to a line with negative

slope and thus the curves of marginal stability move under S-duality. The fact

that a two centered solution exists for both signs and with the correct degeneracy

is consistent with our prescription for extracting an S-duality invariant spectrum.

In the wedge between the two lines defined the two lines of marginal stability for

N positive and N negative, both states coexist. In other regions, only one or the

other state exists.

The simplicity of the line of marginal stability defined by (3.65) has a simple

and beautiful interpretation from the string web picture. Indeed a string web

made out of strands with certain charges exists only if these charges can be carried
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by a supersymmetric string in six dimensions. If one crosses a line of degeneration

in the moduli space, across which a strand with charges, say, Qe+Qm shrinks to

zero length and is replaced by a strand with charge Qe − Qm, the quarter-BPS

state will decay if no supersymmetric string with charge Qe−Qm exists. The line

of degeneration is simply the line at which a string of charge Qe along one cycle

of the torus and a string of charge Qm along the other can be simultaneously

supersymmetric. This is equivalent to the requirement that the phase of S is

the same as the angle between the central charge vectors for Qe and Qm, that

defines a straight line in the S plane. In the present case Qe = (1,−1, 0, N) and

Qm = (0, 0, 1,−1), hence Qe±Qm = (1,−1,±1, N ∓ 1). 1
2
(Qe±Qm)

2 = −1±N ,

but a BPS string with charge Q must have Q2/2 ≥ −1. Hence the line of

degeneration of the string web is indeed a line of marginal stability.

It is not surprising that the existence of quarter-BPS dyons depends on the

moduli and that there are lines of marginal stability which separate the regions

where the state exists from where it does not exist. This phenomenon is well

known in the field theory context [49]. Moduli dependence of the spectrum

of quarter-BPS dyons and the lines of marginal stability in the present string-

theoretic context have been observed and analyzed from a different perspective

also in the forthcoming publication [50].
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Chapter 4

Degeneracy of Decadent Dyons.

A quarter-BPS dyon in N = 4 super Yang-Mills theory is generically ‘decadent’

in that it is stable only in some regions of the moduli space and decays on sub-

manifolds in the moduli space. Using this fact, and from the degeneracy of the

system close to the decay, a new derivation for the degeneracy of such dyons is

given. The degeneracy obtained from these very simple physical considerations

is in precise agreement with the results obtained from index computations in all

known cases. Similar considerations apply to dyons in N = 2 gauge theories. The

relation between the N = 4 field theory dyons and those counted by the Igusa

cusp form in toroidally compactified heterotic string is elucidated.

In this chapter, we consider the exact degeneracies of quarter-BPS dyons in

N = 4 supersymmetric gauge theories. For a gauge group of rank r, the gauge

group is broken to U(1)r on the Coulomb branch which is 6r-dimensional for

N = 4. At a generic point in this Coulomb branch moduli space, there is a

rich spectrum of such dyons in this theory whose degeneracy is known exactly

in many cases from index computations and vanishing theorems as well as from

direct computations. Unlike the half-BPS dyons in N = 4 gauge theories which

are stable in all regions of the moduli space, these dyons exist as stable single

particle states only in some regions of moduli space. These dyons are prone to

decay, or are ‘decadent’, on certain submanifolds of the moduli space, which can

be of real codimension one or higher in N = 4 theories. We would like to know
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how ‘degenerate’ these decadent dyons are.

The stability criterion for the decadent dyons follows from the usual consid-

erations of charge and energy conservation using the BPS mass formula. For a

dyon of electric charge vector Q and magnetic charge vector P we denote the

total charge vector by Γ = [Q;P ]. The BPS mass formula then gives the mass

M of such a state, in the N = 2 notation, by the relation

M = |Z(Γ)| . (4.1)

where Z(Γ) is the central charge that depends on the moduli fields and linearly

on the charge vector Γ . If the dyon with charge Γ decays into two dyons with

smaller charges Γ1 and Γ2 then one has Z(Γ) = Z(Γ1) +Z(Γ2) which by triangle

inequality implies that

M = |Z(Γ)| ≤ |Z(Γ1)|+ |Z(Γ2)| =M1 +M2. (4.2)

Hence, by energy conservation, the only way the decay can proceed is if M be-

comes equal to M1+M2 at some point in the moduli space saturating the bound

above. In N = 2 theories, this defines a codimension one surface or a ‘wall’ in the

moduli space. On one side of the wall where M < M1+M2, the dyon with charge

Γ is stable. At the wall it is marginally unstable and decadent. Upon crossing

the wall it no longer exists as a single particle stable state. In N = 4 theories,

there are more than one central charges which have to be aligned for the decay

to occur and hence the submanifold of decadence can have codimension one or

higher. As a result, this submanifold is not a wall since one can just avoid it by

going around it and access other regions of the moduli space. It is therefore more

accurate it to call it the ‘surface of decadence’ in the N = 4 case.

Given such a dyon of charge Γ that is stable in some region of the moduli space,

we would like to know its degeneracy Ω(Γ) in that region. One can compute it

applying standard methods of semiclassical quantization of solitons in gauge the-

ories, viewing the dyon as a charged excitation of a monopole system. Collective

coordinate quantization then reduces the problem of computing the degeneracy

Ω(Γ) to counting the number of eigenvalues of the Hamiltonian of supersymmet-

ric quantum mechanics of the bosonic and fermionic collective coordinates. This
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counting problem then becomes roughly equivalent to a cohomological problem

of counting harmonic forms on the monopole moduli space which can be handled

using index formulae1. Applying these methods, the degeneracy of quarter-BPS

dyons has been computed by Stern and Yi [51, 52, 53, 54] for a special class

of charge assignments. The same formula has been derived from another quiver

dynamics in [55].

We will give here a new derivation of the degeneracy of these dyons using

a very simple physical argument that makes use of the fact that the dyons are

decadent near the surface of decadence. We will utilize the known degeneracies

of half-BPS dyons and an argument similar to the one used by Denef and Moore

[56] in their discussion of the wall-crossing formula. The results are in perfect

agreement with the known degeneracies of Stern-Yi dyons computed using much

more sophisticated techniques mentioned above. Moreover, this method can be

naturally generalized to more complicated charge assignments as well as to arbi-

trary gauge groups giving predictions for situations that have not hitherto been

considered using the index methods.

This chapter is organized as follows.After we derive the degeneracies of these

dyons from their behavior near the surface of decadence, we present the basic

physical argument, discuss the case of SU(3) Stern-Yi dyons and of SU(N) Stern-

Yi dyons and show that the degeneracy obtained using these arguments precisely

agrees with the results known in these cases from index computations both in

N = 4 and N = 2 case. We then discuss the relation of these dyons to the

dyons in the field theory limit of string theory. Finally, we explain in particular,

why only some of the decadent dyons considered here are accounted for by the

partition function for string theory dyons given by the inverse of the Igusa cusp

form [4, 6, 7, 22, 25, 38, 57].

1For quarter-BPS dyons, unlike in the half-BPS dyons, the problem is a little more subtle

involving a potential on the moduli space as discussed in [51].
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4.1 Computing degeneracies near the surface of decadence

4.1 Computing degeneracies near the surface of

decadence

For simplicity and also for comparison with known results, we consider in this

section dyons in SU(N) gauge theories but these considerations are more general

and would apply to other groups.

It is well known that dyons in SU(N) gauge theory have a nice geometric

realization in terms of (p, q) strings stretching between N D3-branes. The low

energy world volume theory of N D3-branes is a U(N) Yang-Mills theory with

N = 4 supersymmetry. Factoring out an overall center-of-mass U(1) degree of

freedom, one obtains an SU(N) gauge theory. Simple roots of SU(N) are {αi}
with i = 1, . . . N −1 with the usual Cartan inner product αi ·αi = 2, αi ·αj = −1

for i = j ± 1, and 0 otherwise. Giving expectation values to the six Higgs

scalars in the adjoint representation corresponds to placing the D-branes at non-

coincident positions in the transverse R6 space which breaks the gauge symmetry

to U(1)N−1.

Consider a dyon with electric charge Q and magnetic charge P expanded in

the basis of simple roots as

Q = qiαi, P = piαi. (4.3)

If the electric and magnetic charge vectors are parallel to each other then the

dyonic configuration preserves half the supersymmetries. Since it breaks eight

supersymmetries, there are four complex fermionic zero modes for the center of

mass motion giving rise to a 16-dimensional ultra-short multiplet. If the electric

and magnetic charge vectors are nonparallel, the dyon preserves only a quarter

of the supersymmetries. Since now it breaks twelve supersymmetries, there are

six complex fermionic zero modes for the center of mass motion giving rise to

a 64-dimensional short multiplet. In N = 2 theories by contrast, in both cases,

the dyon is half-BPS and there are four broken supersymmetries. Hence there

are always two complex fermionic zero modes giving rise to a 4-dimensional half-

hypermultiplet for the center of mass motion.
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4.1 Computing degeneracies near the surface of decadence

4.1.1 Basic physical argument

Let us first summarize the argument for N = 2 dyons of the type considered by

Stern and Yi [51]. Given a dyon with charge Γ = [Q;P ] of the Stern-Yi type, we

would like to compute its degeneracy in a region of moduli space where it exists.

Now, as we will discuss in the next sections, there exist surfaces of decadence

for such a dyon where it decays into two dyons with charges Γ1 = [Q1;P1] and

Γ2 = [Q2;P2] respectively.

Very close to the surface of decadence, the products of the decay are arbitrarily

far away. In this case, one would expect that the degeneracy of the total con-

figuration would be just the product of the degeneracies of individual fragments

if the interactions between them were short-ranged. However, this configuration

has angular momentum in the long-ranged electromagnetic field

J =
1

2
(〈Γ1,Γ2〉 − 1), (4.4)

from the Saha effect as for a electron in the magnetic field of a magnetic monopole,

where 〈Γ1,Γ2〉 = Q1·P2−Q2·P1 is a symplectic product of charges that is invariant

under SL(2,Z) electric-magnetic duality. Note that there is a shift of −1/2 to

the angular momentum of the electromagnetic field above, which has to do with

the contribution of fermion zero modes [55]. Taking into account this additional

degeneracy of (2J + 1) one concludes that the degeneracy of the original dyon is

given by

Ω(Γ) = | 〈Γ1,Γ2〉 |Ω(Γ1) Ω(Γ2). (4.5)

Note that the formula above counts the internal degeneracies, and hence does

not include the overall multiplicity of four coming from the fermionic oscillators

associated with the center of mass coordinate. To get the total number of states,

we must multiply (4.5) by this factor of 4.

In the N = 4 case there is an additional complication. In this case, we will

be considering a decay in which one center, say Γ1, is half-BPS. This center

breaks eight supersymmetries. Since the overall state is quarter-BPS, the total

configuration must break twelve supersymmetries. This can happen in two ways.

Either, the center Γ2 is quarter-BPS and breaks twelve supersymmetries by itself
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which includes the eight supersymmetries broken by the first center. Or, the

center Γ2 is half-BPS but breaks a different half of the supersymmetries such that

altogether there are twelve broken supersymmetries. In either case, additional

four supersymmetries are broken in the internal theory of the two charge centers

Γ1 and Γ2. These broken supersymmetries give rise to two complex fermion zero

modes that furnish a 4-dimensional multiplet with the same spin content as the

half hypermultiplet of N = 2. The degeneracy then is similar to (4.5) with an

additional multiplicative factor of 4:

Ω(Γ) = 4| 〈Γ1,Γ2〉 |Ω(Γ1) Ω(Γ2). (4.6)

To deduce this by a slightly different argument, one can think of the total angular

momentum of the system to be given by the tensor product of the half hyper-

multiplet with the spin j of the electromagnetic field given by (4.4). The half

hypermultiplet has spin content of one (1
2
) + 2(0). The total system of the elec-

tromagnetic field and the relative zero modes has spins (j + 1) + 2(j) + (j - 1)

with j given by (4.4). The multiplicity from these four representation is then

4| 〈Γ1,Γ2〉 |.
Let us now see how these formulae can be applied to compute the degeneracies

of decadent dyons, for example, in the N = 4 case. The formula (4.6) effectively

reduces the task of finding the degeneracy of Ω(Γ) of a state with charge Γ to

finding the degeneracies Ω(Γ1) and Ω(Γ2) of the subsystems. This in itself would

not be useful in general unless we knew how to compute Ω(Γ1) and Ω(Γ2) inde-

pendently which is indeed the problem at hand. However, we will be considering

the situation when at least one of the dyons with charge Γ1 is half-BPS and sta-

ble so that its electric and magnetic charges are parallel and are relatively prime.

Such a dyon we call irreducible, otherwise it is reducible.

Now, an irreducible dyon can be shown to have unit degeneracy using duality

as follows. Since the electric and charge vectors are parallel, we must have Q1 =

aV1 and P1 = cV1 a primitive charge vector V . Further, since the dyon is an

absolutely stable single particle half-BPS state, the integers a and c must be

relatively prime for otherwise the dyon can split into subsystems without costing

any energy. Now, a primitive vector V1 corresponds to a purely electric state and
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4.1 Computing degeneracies near the surface of decadence

hence is proportional to the charge vector of a massive gauge boson of the theory.

In this case, by an SL(2,Z) electric-magnetic duality transformation, the state is

dual to a purely electric gauge boson of the theory

(

a b

c d

)(

Q1

P1

)

=

(

V1

0

)

. (4.7)

Since a massive gauge boson of the theory is known to have unit degeneracy,

by duality it then follows that the half-BPS dyon with charge Γ1 also has unit

degeneracy. This conclusion can be explicitly checked also by a calculation similar

to the one in [58].

The other decay product with charge Γ2 can be either reducible or irreducible.

If it is irreducible, then no further decay is possible. We then know the degeneracy

of both decay products and hence of the original dyon using (4.6). An example of

such a decay when a quarter-BPS dyons goes directly into irreducible fragments

will be discussed in for SU(3) dyons.

If the dyon with charge Γ2 is reducible, then its degeneracy is a priori not

known. However, one can now apply the reasoning in the previous paragraph

iteratively. We can consider the surface of decadence of this dyon with charge

Γ2 where at least one of the decay products is irreducible. Continuing in this

manner, one can relate the degeneracy of the original dyonic configurations to

the degeneracies of the irreducible fragments up to factors coming from angular

momentum degeneracies. An example of such a decay will be discussed in the

subsection for SU(N) dyons with N > 3.

The reasoning outlined here is similar to the one used by Denef and Moore

to derive the wall crossing formula for dyons in N = 2 string compactifications

[56]. But there are differences. First, here we are using an additional input

in the N = 2 case that on one side of the wall the degeneracy is zero. This

can be ascertained for these field theory dyons from their realization as string

webs. Second, for N = 4 dyons, the surface of decadence is generically surface of

codimension bigger than one and is not really a wall. So we are not crossing any

wall but merely approaching a surface of decadence. In N = 2 string theories,

the dyon degeneracies are not known explicitly for a generic compactifications
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and there is no independent way of checking the validity of this reasoning. Here,

in the context of supersymmetric gauge theories, explicit formulae are known for

the degeneracies in the work of Stern and Yi. Our rederivation of the Stern-Yi

degeneracies that we now describe in the following sections can thus be viewed

as a check of the heuristic reasoning outlined above.

4.1.2 Two-Centered Stern-Yi Dyons in SU(3) Gauge The-

ories

Consider an SU(3) dyon in an N = 4 theory which has electric and magnetic

charge vectors given by

Q = q1α1 + q2α2 (4.8)

P = p1α1 + p2α2 (4.9)

Following earlier work of [52] and [53], Stern and Yi [51] considered a simple

charge configuration with magnetic charge vector P = α1 + α2. A quarter-BPS

dyon can be viewed as a quantum charged excitation of a half-BPS monopole

configuration. Now if q1 = q2, then the electric and magnetic charge vectors of

the dyon would be parallel, both along α1 + α2. Such a configuration would give

a half-BPS state. To break the supersymmetry further and obtain a quarter-BPS

dyon it is necessary that s = q1 − q2 is nonzero so that the electric and magnetic

charge vectors are misaligned. It is then useful to write the electric charge vector

as

Q = (n+ s)α1 + (n− s)α2. (4.10)

Dirac quantization condition then demands that n± s must be integral although

n and s could individually be half-integral[52]. At some point in moduli space

these states could decay into dyonic states into irreducible states

[(n+ s)α1 + (n− s)α2;α1 + α2] → [(n+ s)α1;α1] + [(n− s)α2;α2] , (4.11)

so that V1 = α1 and V2 = α2 in the notation of the discussion in and both decay

products are irreducible.
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Indeed in the string web picture [33, 34, 40, 41, 42, 43, 49, 59, 60, 61, 62], the

dyons are realized as a two-centered configuration. Near the surface of decadence

the distance between the two centers becomes very large. Note that the decay

process across the wall is well described by semi-classical field configurations

purely in terms of the low energy effective action on the Coulomb branch even

when it occurs at strong coupling as would be the case for N = 2 dyons [60].

Now since, both centers are half-BPS dyons, they have unit degeneracy. The

contribution from the angular momentum degeneracy factor is given by

| 〈Γ1,Γ2〉 | = |(n+ s)α1 · α2 − (n− s)α2 · α1| = 2|s| (4.12)

Hence the degeneracy of a SU(3) quarter-BPS dyon with charge vectors P =

α1 + α2 and Q = (n+ s)α1 + (n− s)α2 is given by an application of the formula

(4.6)

4 · 2|s| · 1 · 1 = 8|s|, (4.13)

in precise agreement with the results of Stern and Yi. To get the total number of

states, we multiply by a factor of 16 coming from the center of mass multiplicity.

4.1.3 Multi-centered Stern-Yi Dyons in SU(N)Gauge The-

ory

We now consider more general Stern-Yi dyons in a SU(N) N = 4 gauge theory

where a cascade of decays is necessary to get to decay products that are all

half-BPS. The charge vector is Γ = [Q;P ] with

Q = (n+s1+. . .+sn−2)α1+(n−s1+. . .+sn−2)α2+. . . (n−s1 . . . sn−2)αn−1 (4.14)

P = α1 + α2 + . . .+ αn−1. (4.15)

In the string web picture, these dyons are realized as multi-centered configura-

tions.

We now approach the surface of decadence in the moduli space where the

dyon breaks up into half-BPS dyon with charge Γ1 and a quarter-BPS dyon with
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charge Γ2 given by

Γ1 = [(n+ s1 + s2 + . . .+ sn−2)α1;α1] , Γ2 = [Q−Q1;P − P1] . (4.16)

The angular momentum factor 〈Γ1,Γ2〉 equals 2s1. The Γ2 charge center can

further decay and we can iterate the process until we are left as the decay products

with irreducible dyons of unit multiplicities. This iteration gives the degeneracy

to be

16 ·
N−2
∏

i<j

|8si| , (4.17)

precisely what Stern and Yi obtained using their index computation.

For the N = 2 dyons, similar reasoning using the formula (4.5) gives

4 ·
N−2
∏

i<j

|2si|, (4.18)

once again in agreement with Stern and Yi.

4.2 Relation to string theory dyons

The partition function that counts the degeneracies of quarter-BPS dyons in

heterotic string theory compactified on a six-torus T6 is given in terms of the

Igusa cusp form which is a modular form of weight ten of the group Sp(2,Z). It

depends on three complex variables with a Fourier expansion given by

1

Φ10(p, q, y)
=
∑

c(m,n, l)pmqnyl, (4.19)

where the sum is over m,n ≥ −1 and l ∈ Z. A quarter-BPS dyons in this

theory is specified by a charge vector Γ = (Qe;Qm) where here both Qe and Qm

are Lorentzian vectors that take values in the Γ22,6 Narain lattice. There are

three quadratic combinations Q2
e, Q

2
m, Qe ·Qm with respect to a Lorentzian inner

product invariant under the O(22, 6, ;Z). For a given vector Qe in this lattice, one

can define the right-moving part QeR to be the projection onto the 22 space-like
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directions and QeL to be the projection onto the 6 time-like directions. The inner

product is then defined by

Q2
e = Q2

eR −Q2
eL. (4.20)

The degeneracy d(Γ) is then given in terms of the Fourier coefficients by

d(Γ) = c(Q2
e/2, Q

2
m/2, Qe ·Qm). (4.21)

This formula was proposed in [63] and derived in [25, 38] using the 4d-5d lift

and using a genus-two partition function in [7]. Generalization to CHL orbifolds

have been discussed in [3, 5, 39, 64, 65, 66]. Note that according to the prescrip-

tion above, we can have nonzero degeneracies apparently only for states that have

Q2
e ≥ −2, Q2

m ≥ −2. (4.22)

A more careful treatment of the degeneracy formula extends them by analytic

continuation to all other states related by electric-magnetic duality to those that

satisfy Q2
e ≥ −2 and Q2

m ≥ −2 in a way that the spectrum is duality invariant

[6, 57, 67].

Since the low energy effective action for the heterotic string contains the action

for supersymmetric nonabelian Yang-Mills theory, it is natural to ask if the dyon

partition function above also counts degeneracies of these decadent dyons that we

have considered in the previous sections. Indeed, our work was partly motivated

by this question. If this is true, it would give a nontrivial check of the degeneracies

predicted by the dyon partition function.

If the dyon partition function could count the field theory dyons like the Stern-

Yi dyons then it would lead to many puzzles. Firstly, the degeneracies derived

from the dyon partition function depend only on the three integers Q2
e, Q

2
m, Qe·Qm

and not on the components of the charges as the Stern-Yi degeneracy (4.17) seems

to depend on. Second, the Stern-Yi degeneracies only grow polynomially as a

function of charges, whereas the stringy dyon degeneracy grows exponentially if

the discriminant

∆ = Q2
eQ

2
m − (Qe ·Qm)

2, (4.23)

is positive.
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We will show that these puzzles get resolved by the fact that the field theory

dyons are in a different duality orbit than the ones that are counted by the dyon

partition function. Hence one cannot apply the dyon partition function to count

the Stern-Yi dyons except for special ones when the gauge group is SU(3).

To see this clearly, we need to think more carefully about the field theory limit

of string theory. To be able to analyze a dyon in field theory we would like to

decouple stringy states and gravity from the consideration. At the same time, we

would like to have a nonabelian structure in the gauge theory so that we do not

have to deal with a Dirac monopole which is a singular field configuration but

have instead a t’Hooft-Polykov monopole. In this case, the monopole is smooth

solitonic configuration with a finite core which can be analyzed in field theory

using semiclassical quantization. Such a limit is easily achieved if we consider the

gauge group like SU(3) to be embedded in the left-moving E8×E8 symmetry for

example and consider Higgs expectation value v that is much smaller compared

to the string mass scale Λ. In this case massive string states can be ignored.

Moreover, the mass M of dyons will go as v/g2 where g is the string coupling

and gravitation backreaction will go as GM2 = v2/Λ2 using the fact Newton’s

constant G goes as g2/Λ2. Thus, gravitational back reaction can also be ignored

as long as v is much smaller than Λ and one can analyze the dyons in a field

theory limit.

It is crucial for a useful field theory limit that the charges are purely left-

moving, that is Q2
e < 0 and Q2

m < 0. This is because, in the heterotic string,

which consists of a right-moving superstring and a left-moving bosonic string,

only the left-moving U(1) gauge symmetries can get enhance at special points in

the moduli space of toroidal compactification. For example, for a circle compact-

ification, at a generic radius of the circle we have U(1)L × U(1)R which couples

to the charges

qL,R =

√

α′

2
(
m

R
± α′wR), (4.24)

where m is the Kaluza-Klein momentum and w the winding number along the

circle. At the self-dual radius of the circle however where R2 = α′, only U(1)L

gets enhanced to a nonabelian SU(2)L but the U(1)R remains abelian. This
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is a consequence of the fact that the left-moving ground state energy is −1 as

the bosonic string whereas the right-moving ground state energy is 0 as for the

superstring. As a result, while certain states carrying left-moving momentum be-

come massless at the self-dual radius, all states carrying right-moving momentum

remain massive.

This implies that dyons coupling to both right-moving and left-moving U(1)

fields cannot be analyzed in a field theory limit as nonsingular solitonic configura-

tion and stringy corrections would have to taken into account. For this reason we

should embed our field theory gauge group into the purely left-moving symmetry.

Following, this reasoning, we can embed an SU(N) gauge group into the

SO(32) gauge group of the heterotic string for N ≤ 16. In this case Qe = Q and

Qm = P with Q2
e = −Q2 and Q2

m = −P 2 with the understanding that the Q2
e

and Q2
m are defined using the Lorentzian inner product (4.20) whereas Q2 and

P 2 are defined using the positive definite Euclidean Cartan metric on the root

space of the gauge group as we have used in the previous sections 1. We refer

to the charge vector as spacelike, timelike, or lightlike depending on whether the

Lorentzian norm is positive, negative, or zero respectively. With the embedding

above, we conclude that the field theory dyons must correspond to states with

timelike charge vectors in the Narain lattice.

To understand the main issues, let us first focus on the SU(3) Stern-Yi dyons.

For the degeneracy of a string theory dyon that satisfies the bound(4.22) to match

with a Stern-Yi dyon, the two charge configurations must lie in the same U-duality

orbit. Now, the U-duality group G(ZZ) of the string theory is

G(ZZ) = O(22, 6, ;Z)× SL(2,ZZ). (4.25)

The U-duality orbit of the charges can be characterized by various invariants. To

start with, we have the discriminant defined in (4.23) which is the unique quartic

invariant of the continuous duality group G(IR). In addition, as noted in [6], there

1Once we turn on Wilson lines to break the gauge group we will have more accurately

Qe = Q+ k where k is a light-like vector with Q · k = 0 so that Q2
e still equals −Q2. Moreover,

the charge vector is not strictly left-moving. This does not change the main point of the

argument and hence we will ignore it.
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is a discrete invariant

I = gcd(Qe ∧Qm). (4.26)

The wedge product gives the antisymmetric area tensor of the parallelogram

bounded by the vectors Qe and Qm. The invariant I then counts the number of

lattice points inside this parallelogram [6]. See also [68, 69].

For an SU(3) Stern-Yi dyon with charge vectors are

P = α1 + α2, Q = (n+ s)α1 + (n− s)α2. (4.27)

Using the embedding described above, we see that the two invariants for such an

configuration are given by

∆ = 12s2, I = 2s (4.28)

We note that ∆ > 0 as it must be for a BPS configuration. Now, starting

from spacelike Q2
e and Q

2
m, one can show that its impossible to go by U-duality to

a configuration with both electric and magnetic charges timelike. To prove this

we consider a general S-duality transformation acting on Qe and Qm as

Q′
e = aQe + bQm (4.29)

Q′
m = cQe + dQm (4.30)

Now, if Qe and Qm are positive norm vectors then aQe ± bQm is a positive norm

vector. So, Q′
e
2 ≥ 0 and similarly Q′

m
2 ≥ 0. Thus, the only string dyonic

configurations which can be U-dual to a field theory dyon will be those with

timelike Qe and Qm
1. By definition of Φ10, the only such charges it counts are

those with Q2
e = −2 and Q2

m = −2. Taking Qe · Qm = M to be arbitrary, we

obtain a dyonic charge configuration with invariants I = 1 and ∆ = 4 − M2.

Hence the two sets of invariants match only for s = 1
2
and M = ±1 which

corresponds to Q2
e = −2, Q2

m = −2 and |Qe ·Qm| = 1. Consequently, only these

string dyonic configurations lie in the duality orbit of SU(3) Stern-Yi dyons.

1The other possibility is having the electric(magnetic) charge to be timelike and the mag-

netic(electric) charge to be spacelike. But this will yield ∆ < 0 and breaks supersymmetry.
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It is easy to see that in fact all Stern-Yi dyons with electric charge 4.10 are

counted by the dyon degeneracy formula for all values n with s = 1/2. This fol-

lows from the fact that one can change the value of n by a duality transformation

of the form
(

1 n− 1
2

0 1

)

(4.31)

Note that n must be half-integral for configuration with s = 1/2.

For an SU(N) Stern-Yi dyonic configuration with N > 3 given by

Qe =

N−1
∑

i=1

(n +

N−2
∑

j=1

Pijsj)αi (4.32)

Qm =
N−1
∑

i=1

αi (4.33)

where Pij = −1 for j < i and Pij = 1 for i ≥ j, the U-duality invariants are

∆ = 4(2
∑N−2

i=1 si
2 +

∑N−2
i,j=1 sisj) and I = gcd(2s1, 2s2, ..2sN−2). For matching to

the configurations whose degeneracy is counted by Φ10 we must have I = 1 which

translates to the condition that the various 2si are mutually coprime. Further,

we can easily see that ∆ > 3 for these Stern-Yi dyons1. Hence the string theory

dyons do not lie in the U-duality orbit of any field theory SU(N) dyon with N > 3.

We therefore conclude that with the exception of the SU(3) dyons with I = 1,

the field theoretic dyons considered earlier are outside the realm of applicability

of the dyon partition function of string theory dyons in terms of the Igusa cusp

form. A similar analysis has been carried out independently in [70, 71]. For other

values of I > 1, a different partition function is required. For a recent proposal

for the dyons with I=2 see [72].

1This follows easily from the inequality (si
2 + sj

2) > 2sisj .

60



Chapter 5

Duality Symmetry and Cardy

Limit.

In this chapter, we study supersymmetric and non-supersymmetric extremal black

holes obtained in Type IIA string theory compactified on K3× T 2, with duality

group O(6, 22,Z)×SL(2,Z). In the Cardy limit an internal circle combines with

the AdS2 component in the near horizon geometry to give a BTZ black hole

whose entropy is given by the Cardy formula. We study black holes carrying

D0−D4 and D0−D6 brane charges. We find, both in the supersymmetric and

non-supersymmetric cases, that a generic set of charges cannot be brought to

the Cardy limit using the duality symmetries. In the non-supersymmetric case,

unlike the supersymmetric one, we find that when the charges are large, a small

fractional change in them always allows the charges to be taken to the Cardy

limit. These results could lead to a microscopic determination of the entropy

for extremal non-supersymmetric black holes, including rotating cases like the

extreme Kerr black hole in four dimensions.

5.1 Motivations.

The microscopic descriptions of blackholes that have been developed so far are

usually in terms of a 1+1 dim. Conformal Field Theory (CFT). Furthermore the
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microscopic counting has been done most reliably in the thermodynamic limit

of the CFT, see e.g., [1], [73], [74], and the reviews, [75], [76], [77], [78], and

references therein; some papers which discus the microscopic counting for non-

supersymmetric black holes are1, [82], [83], [84]. In terms of the energy, L0, and

central charge of the CFT, C, the condition for the thermodynamic limit to be

valid takes the form,

L0 ≫ C. (5.1)

For a supersymmetric or non-supersymmetric extremal black hole, L0 and C are

determined by the charges carried by the black hole. The entropy in this limit is

given by the well known Cardy formula,

S = 2π

√

CL0

6
. (5.2)

In the discussion below, we will often refer to the thermodynamic limit as the

Cardy limit. We see from eq.(5.2) that in this limit a knowledge of the central

charge and the energy, L0, is sufficient to determine the entropy. Moreover, the

central charge is a robust quantity which can often be determined quite easily by

anomaly considerations. This makes it easy to carry out a microscopic calculation

of the entropy, [85], [86], [87].

In addition, when the condition, eq.(5.1) is valid subleading corrections to

the entropy can also often be easily calculated. These continue to have the form,

eq.(5.2). The subleading corrections arise due to corrections to the central charge,

C and can be determined by anomaly considerations[88], [89], [90], [91].

Since so much can be understood in the Cardy limit, it is natural to ask

whether any charge configuration can be put in the Cardy limit using the duality

symmetries of string theory. This is the main question we will explore in this pa-

per. Our focus is on big black holes. These carry large charges, Q≫ 1, and have

a horizon radius which is large compared to the Planck and string scales, so that

their horizon geometry is well described by the supergravity approximation. We

are interested in both supersymmetric and non-supersymmetric extremal black

holes of this type.

1For recent developments on rotating black holes, see, [79], [80],[81].
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One comment is worth making at this stage 1. Sometimes the condition

eq.(5.1) is not necessary and a much weaker condition suffices. This happens for

example in the D1-D5-P system when the CFT is at the orbifold point. At this

point in the moduli space the twisted sectors can be thought of as multiply wound

strings. In the singly wound sector the relevant condition is given by eq.(5.1). In

contrast in the maximally wound sector the effective central charge is order one

and energy is given by replacing L0 by,

L0 → L0Q1Q5, (5.3)

where Q1, Q5 are the D1, D5 brane charges. Thus the condition, eq.(5.1), is

automatically met for large charges in the maximally wound sector.

Away from the orbifold point though the different twisted sectors mix. The

only condition which can now guarantee the validity of the Cardy formula is

eq.(5.1), which ensures that the system is in the thermodynamic limit. It is well

known that the CFT dual to the Black hole is not at the orbifold point. Thus

a microscopic calculation of the entropy using the Cardy formula would require

this condition to be valid. In the supersymmetric case, where one is calculating

an index, one can still justify working at the orbifold point, where the dominant

contribution comes from the maximally wound sector, and hence one would not

need to impose the condition, eq.(5.1). However, for non-supersymmetric black

holes, which are the ones of primary interest in this paper, the entropy can

change as one moves in moduli space. A legitimate microscopic calculation in

this case would have to be done away from the orbifold point and would require

the condition, eq.(5.1), to hold for the Cardy formula to be valid.

It should be mentioned that the mass gap for excitations above the BTZ black

hole can be calculated in the gravity side and is well known to go like,

Egap ∼ 1/(LC), (5.4)

where L is the length of the circle on which the CFT lives. This shows that an

effective picture in terms of one multiply wrapped long string must continue to

1We thank S. Mathur and A. Strominger for emphasising this point to us.
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hold even away from the orbifold point. However a first principles argument of

why this happens is still missing especially in the non-supersymmetric case. In

the absence of such an argument it is appropriate to require, at least in a first

principles calculation of the microscopic entropy, that for the Cardy formula to

be valid the condition, eq.(5.1), holds. This chapter explores how restrictive this

condition is, once the duality symmetries of string theory are taken into account.

5.2 Cardy Limit.

We now turn to discussing the Cardy limit. Consider a Black hole carrying

D0 − D4 brane charge. In our notation the non-zero charges are, q0, p
1, pi, i =

2, · · · 23. This solution can be lifted to M-theory, and the near horizon geometry

in M-theory is given by a BTZ black hole in AdS3 × S2. The AdS3 space-time

admits a dual description in terms of a 1+1 dim. CFT living on its boundary. The

central charge, C, of the CFT can be calculated from the bulk, it is determined

by the curvature of the AdS3 spacetime. For large charges we get,

C = 3|p1dijpipj|, (5.5)

where dij is the matrix ηij, eq.(1.1), restricted to the 22 dimensional subspace of

charges given by D4-branes wrapping two-cycles of K3 and T 2. This corresponds

to the second, third and fourth factor of H and the two E8’s in eq.(3.27).

The BTZ black hole is a quotient of AdS3 obtained by identifying points

separated by a space-like direction. The symmetry of AdS3 is SO(2, 2); this is

broken by the identification of points in the BTZ black hole to SO(2, 1)× U(1).

The size of the circle obtained by this identification, L, is given in terms of the

radius of AdS3, RAdS, by
L

RAdS
∼ |q0|

C
, (5.6)

where q0 is the zero-brane charge carried by the Black hole.

In the Cardy limit the condition,

|q0| ≫ C, (5.7)
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is satisfied. From eq.(5.6) we see that this leads to the condition, L
RAdS

≫ 1.

From, eq.(5.5) we see for this limit to be valid, the condition,

|q0| ≫ |p1dijpipj|, (5.8)

must hold. Since, L
RAdS

≫ 1, in the Cardy limit, the distance between points

which are identified in the BTZ background is much bigger than RAdS. As a

result, the effect of the reduced symmetry in the BTZ background, due to taking

the quotient, can be neglected in the Cardy limit. The partition function in the

bulk can then be calculated using the full symmetries of AdS3. The resulting

answer is the well known Cardy formula,

S = 2π

√

C|q0|
6

. (5.9)

The Cardy limit corresponds to the thermodynamic limit of the microscopic 1+1

dim. CFT. In this limit the dimensionless temperature T of the CFT satisfies

the condition,

T ≫ 1. (5.10)

Away from the Cardy limit the breaking of SO(2, 2) to SO(2, 1) becomes impor-

tant and there is no way to calculate the partition function or entropy without

knowing more details of the bulk, or the dual boundary conformal field theory.

So far we have considered a system with D0 − D4 brane charge. What

about including other charges? If a D6-brane charge is also present, we show

in §5, that on lifting to M-theory one does not get an AdS3 space-time. All

other charges are allowed by the requirement that the M-theory lift gives an

AdS3 spacetime in the near-horizon limit. So a general configuration which ad-

mits an AdS3 lift can also include D2-brane charges, and non-zero values for

n1, n2, w1, w2, NS1, NS2, KK1, KK2, besides having D0−D4 brane charges. The

resulting central charge of the 1 + 1 dim. CFT after lifting to M-theory is 1

C = 3|p1 ~Q2
m|. (5.11)

1 The central charge is determined by all the branes which are extended strings in the

AdS3. One can see from eq.(1.4), eq.(1.5), that this formula gives a dependence on all of them.

Localised excitations, like momentum modes or wrapped 2-branes, correspond to states and do

not change the central charge.
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5.2 Cardy Limit.

In the more general case, the condition for the Cardy limit is,

|q̂0| ≫ C. (5.12)

Where, |q̂0| is,

|q̂0| =
| ~Q2

e
~Q2
m − ( ~Qe · ~Qm)

2|
2|p1 ~Q2

m|
. (5.13)

Using eq.(1.7), eq.(5.11) and eq.(5.13) this can be written in the form,

I ≫ 6(p1)2( ~Q2
m)

2. (5.14)

To summarise, for a charge configuration to be in the Cardy limit, two conditions

must hold. First the D6-brane charge, p0, must vanish. Second, eq.(5.12) or

equivalently, eq.(5.14), must be valid. We refer to these two conditions as the

Cardy conditions below.

Before proceeding let us note that we are neglecting 1/Q corrections in the

formula for the central charge, eq.(5.11). For these to be small, the BTZ black

hole should be a state in a weakly coupled AdS3 background. The Radius of the

AdS3 space, RAdS, in units of the three dimensional Planck scale, l
(3)
P l , is given by,

RAdS

l
(3)
P l

∼ C. (5.15)

For the BTZ black hole to be a state in a weakly coupled AdS3 spacetime, RAdS

l
(3)
Pl

≫
1, yielding the condition1,

C ≫ 1. (5.16)

The conditions on the charges for the Cardy limit are not duality invariant.

This raises the question, when can a charge configuration be brought to the Cardy

limit after a duality transformation? This is the central question we address in

this paper. In §3 we first address this question for the case where the starting

1The stronger conditions are, RAdS

l11
≫ 1,

R
S2

l11
≫ 1, and V6

l611
≫ 1, where RS2 , V6 are the

Radius of the S2 and volume of the internal space respectively. From these, and the relation,

l
(3)
Pl =

l911
R2

S2V6
, the condition, RAdS

l
(3)
Pl

≫ 1, follows.
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configuration, has D0−D4 brane charges. Our analysis includes both the super-

symmetric and non-supersymmetric cases. Following this in §4, we address this

question when the starting configuration carries D0−D6 brane charges.

There is one potentially confusing point that we would like to address before

going further. In asking whether a system of charges can be brought to the Cardy

limit, we are really asking whether any of the internal circles of the compactifi-

cation can combine with the AdS2 component of the near horizon geometry and

give rise to a three-dimensional BTZ black hole and whether this black hole has

charges which lie in the Cardy limit. There are six internal circles for example

in the Heterotic description, corresponding to the 6 Hyperbolic lattices, H in

eq.(3.27), and we allow for the internal circle to be any one of them. Our results,

mentioned in the introduction, which say that generically this is not possible,

mean that for generic charges there is no internal circle which can combine in

this manner, yielding the Cardy limit.

There are two ways to carry out the analysis. We can keep the charges fixed

and ask whether a suitable circle can be found. This corresponds to a passive

transformation, under which the charges are kept fixed but the basis in the charge

lattice, with respect to which the components were written in eq.(1.4), eq.(1.5),

is changed. Alternatively, we can keep the basis fixed and change the charges,

and ask whether the transformed charges meet the required conditions. This

corresponds to an active transformation. We will adopt this latter active of point

of view in the paper. In this point of view the internal circle which combines and

potentially gives rise to a BTZ black hole is kept fixed and in our conventions is

the M-theory circle in the IIA description.

5.3 The D0−D4 System

In this section we analyse the D0 − D4 system. Subsection 3.1 discusses the

supersymmetric case, and subsections 3.2, 3.3, discuss the non-supersymmetric

case. In both cases we find that a generic set of charges cannot be brought to the

Cardy limit. Subsection 3.4, discuss what happens if starting with generic charges
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5.3 The D0−D4 System

we now allow the charges to vary. We find that in the non-supersymmetric case

a near-by charge configuration can always be found which can be brought to the

Cardy limit. Additional relevant material is in appendices A and B.

Our starting configuration for the D0 − D4 case has non-zero values for

q0, p1, pi, in the notation of eq(1.4), eq.(1.5), and all other charge are vanishing.

It is easy to see from eq.(1.6) that

~Qe · ~Qm = 0, (5.17)

in this case.

In our analysis we are interested in the case of large charges, |q0|, |p1|, |pi| ≫
1. The Cardy condition for the starting configuration takes the form, eq.(5.8).

We see that for a generic set of initial charges this condition will not be met.

Generically all charges will be roughly comparable, |q0| ∼ |p1| ∼ |pi| ∼ Q ≫ 1

Now the LHS of eq.(5.8) is linear in Q while the RHS is cubic in Q, so generically,

for Q≫ 1, the inequality, eq.(5.8), will not be met.

Below we formulate a set of necessary condition which must be met, for the

final configuration to be in the Cardy limit. For generic initial charges, we find

that these conditions are not met. And so we learn that generically a system with

D0 − D4 charge cannot be brought to the Cardy limit. In some special, non-

generic cases, these necessary conditions are met. We construct some examples of

this type and explicitly find a duality transformation bringing them to the Cardy

limit 1.

Let us denote the final configuration which is obtained after carrying out a

duality transformation on the initialD0−D4 charges by ( ~Q′
e,
~Q′
m). As was pointed

out above, the D6-brane charge, p0
′

, in the final configuration must vanish for

this to happen, and eq.(5.14) must be met.

We can restate eq.(5.14) in the slightly weaker form as,

|I| ≫ (p1
′

( ~Q′
m)

2)2. (5.18)

1Of course a trivial way in which this could happen is if the initial configuration, while

being non-generic, is itself in the Cardy limit, and meets condition, eq.(5.8). In the example

we construct, the initial charges while being rather special are not in the Cardy limit. We find

explicitly the duality transformation bringing them to this limit.
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This gives rise to the condition,
∣

∣

∣

∣

∣

( ~Q′
m)

2

√

|I|

∣

∣

∣

∣

∣

≪ 1

|p1′| . (5.19)

Since |p1′ | > 1 eq.(5.19) leads to the condition,
∣

∣

∣

∣

∣

( ~Q′
m)

2

√

|I|

∣

∣

∣

∣

∣

≪ 1. (5.20)

The final configuration, ( ~Q′
e,
~Q′
m) is obtained from the initial one, by the

action of a combined SL(2,Z) transformation and an O(6, 22,Z) transformation.

Denote the element of SL(2,Z) by

A =

(

a b

c d

)

. (5.21)

By definition, a, b, c, d,∈ Z and ad − bc = 1. The SL(2,Z) transformation acts

on the charges as follows,

~Qe → a~Qe + b ~Qm

~Qm → c ~Qe + d ~Qm. (5.22)

TheO(6, 22) transformation does not change the value of the bilinears, eq.(1.6),

also the initial charges satisfy the condition, ~Qe · ~Qm = 0. This leads to,

( ~Q′
m)

2 = c2 ~Q2
e + d2 ~Q2

m. (5.23)

Using eq.(5.20), now gives,
∣

∣

∣

∣

∣

c2
~Q2
e

√

|I|
+ d2

~Q2
m

√

|I|

∣

∣

∣

∣

∣

≪ 1. (5.24)

This condition will play an important role in the discussion below.

5.3.1 The Supersymmetric Case

Since eq.(5.17) is true for the D0 −D4 system, it follows from eq.(1.7) that the

duality invariant, I, is,

I = ~Q2
e
~Q2
m. (5.25)
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For a supersymmetric system, I > 0, so we see that ~Q2
e,
~Q2
m have the same sign.

From, eq.(5.23) it follows that ( ~Q′
m)

2 must also have the same sign as ~Q2
e,
~Q2
m.

Thus eq.(5.20) takes the form,

c2
| ~Q2

e|√
I

+ d2
| ~Q2

m|√
I

≪ 1. (5.26)

Now by doing an SL(2,Z) transformation if necessary we can always take the

initial charges to satisfy the condition,

∣

∣

∣

∣

∣

~Q2
e

~Q2
m

∣

∣

∣

∣

∣

≥ 1. (5.27)

(Either this condition is already met or we do the SL(2,Z) transformation ( ~Qe, ~Qm) →
(−~Qm, ~Qe) after which it is true).

Using the expression for I in eq.(5.25), eq. (5.27) leads to,

| ~Q2
e|√
I

≥ 1. (5.28)

Now since c, d are integers, we see that the only way, eq.(5.26) can be met is if,

c = 0. The resulting SL(2,Z) matrix must then take the form,

A =

(

1 b

0 1

)

. (5.29)

From eq.(5.23) it now follows that,

( ~Q′
m)

2 = ~Q2
m. (5.30)

The condition, eq.(5.20), using eq.(5.25), eq.(5.30) then leads to,

| ~Q2
e| ≫ | ~Q2

m| (5.31)

A few points are now worth making. Eq.(5.31) is a necessary condition on

the initial charges ( ~Qe, ~Qm) which must be met, to be able to go to the Cardy

limit. It is easy to see that this condition will not be met generically. If all the

initial charges, q0, p
1, pi are of the same order, Q ≫ 1, then, ~Q2

m = 2dijp
ipj and
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~Q2
e = −2q0p

1 are both quadratic in Q and will generically be roughly comparable,

so that eq.(5.31) is not met. On the other hand this condition is somewhat less

non-generic than the condition required for the initial configuration to be in the

Cardy limit, since both sides of the inequality scale like Q2 in eq.(5.31), while in

eq.(5.8) the rhs scales relative to the lhs by a factor of Q2. Thus one can find

initial charges which are not in the Cardy limit, but which meet the condition

eq.(5.31). We will present some explicit examples below and show that they can

be sometimes brought to the Cardy limit by duality transformations.

Before doing so let us comment that the eq.(5.31) can in fact be somewhat

tightened. Let gcd( ~Qe) stand for the greatest common divisor of all the integer

charges in ~Qe. Then the stronger form of this condition is,

| ~Q2
e| ≫ (gcd ~Qe)

2| ~Q2
m| (5.32)

In the appendix , we discuss how eq.(5.32) can be derived.

In the example we present next, the starting configuration is not in the Cardy

limit, but condition, eq.(5.32) is met. We will present the explicit duality trans-

formation that brings this configuration to the Cardy limit.

5.3.1.1 An Explicit Example

We start with the charges,

~Qe = (−p1 + 1,−p1, 0, 0, 0, 0, 0, · · · , 0) (5.33)

~Qm = (0, 0, p2, p2, 0, 0, 0, · · · , 0) (5.34)

with,

(p1)2 ≫ 3(p2)2 ≫ 1. (5.35)

The quadratic bilinears, eq.(1.6), take the values,

~Q2
e = 2(p1 − 1)p1

~Q2
m = 2(p2)2

~Qe · ~Qm = 0 (5.36)
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The invariant, I, eq.(1.7), takes the value,

I = 4p1(p1 − 1)(p2)2 (5.37)

Note that this starting configuration is not in the Cardy limit as these charges do

not satisfy the condition, eq.(5.14). But the starting configuration does satisfy

eq.(5.32) since, gcd( ~Qe) = gcd(p, p− 1) = 1, and eq.(5.35) holds.

Now we carry out the transformation, B ∈ O(3, 3,Z) ⊂ O(6, 22,Z), given by,

B =

























0 1 0 0 0 0

1 −1 1 −1 2 1

0 −1 0 1 0 0

0 0 1 0 1 0

0 −1 0 0 1 0

0 −1 0 −1 0 1

























. (5.38)

B acts non-trivially on the 6 dimensional sublattice of Γ6,22, with an inner product

given by first three H ⊕H ⊕H factors in eq.(1.1), and acts trivially on the rest

of the lattice. The resulting charges are given by,

~Q′
e = (−p1, 1, p1, 0, p1, p1, 0, · · · , 0) (5.39)

~Q′
m = (0, 0, p2, p2, 0,−p2, 0, · · ·0) (5.40)

Since the second entry in ~Q′
m vanishes, there is no D6-brane charge. From,

eq.(5.39) we see that p1
′

= −1. Also,

~Q′
m

2
= 2(p2)2. (5.41)

Now the Cardy condition requires that,

I ≫ 6
(

p1
′ ~Q′

m

2
)2

. (5.42)

Using eq.(5.37), eq.(5.41) and eq.(5.35), we see that this condition is indeed met.

An example where all the final charges are much bigger than unity can be

obtained by scaling all the charges above, by λ≫ 1 and taking

(p1)2 ≫ 3(λ)2(p2)2. (5.43)
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5.3.2 The Non-supersymmetric Case

In the Non-supersymmetric D0 − D4 system, I also takes the form, eq.(5.25).

By doing an SL(2,Z) transformation if necessary we can assume, without loss of

generality that
| ~Q2

m|
| ~Q2

e|
≤ 1. (5.44)

For subsequent discussion it is useful to define the parameter, α, as follows,

α =
| ~Q2

m|
√

|I|
=

√

|I|
| ~Q2

e|
=

√

| ~Q2
m|

| ~Q2
e|
. (5.45)

where the last two equalities follows from eq.(5.25). We see from eq.(5.44) that

α ≤ 1. (5.46)

Since I is negative, we learn from eq.(5.25) that ~Q2
e,
~Q2
m must have opposite

signs. There are then two possibilities, either ~Q′
m

2
has the same sign as ~Q2

e, or it

has the opposite sign as ~Q2
e. In both cases, eq.(5.24) takes the form,

0 <

∣

∣

∣

∣

−d2α +
c2

α

∣

∣

∣

∣

≪ 1. (5.47)

The requirement | − d2α + c2

α
| > 0 arises from the condition that ~Q′2

m is non-

vanishing, and this in turn arises from the requirement that the central charge,

C, eq.(5.11), does not vanish.

The analysis and conclusions are similar in the two cases. Below we give

details for the case when ~Q′2
m and ~Q2

e have the same sign and also state the

conclusions for the case when ~Q′2
m and ~Q2

e have the opposite sign.

In the case when ~Q′2
m,
~Q2
e, have the same sign, eq.(5.47) takes the form,

0 < −d2α +
c2

α
≪ 1. (5.48)

It is interesting to compare this with the condition that arose in the susy case,

eq.(5.26). This constraint required the charges to be non-generic and to satisfy

the condition, eq.(5.31), in the susy case. In terms of α, defined in eq.(5.45), this

condition takes the form,

α2 ≪ 1. (5.49)
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At first sight it might seem that the difference in relative sign between the two

terms makes eq.(5.48) easier to satisfy in the non-susy case. To explore this

question we will take, α < 1, but not much less than unity and ask whether

such a set of charges can be brought to the Cardy limit. We will find that in

fact eq.(5.48) cannot be met for generic initial charges. Also, we will see that

the nature of the non-genericity which allows eq.(5.48) to be met is interestingly

different from the susy case, and this has interesting consequences which we will

discuss further in the next subsection.

Conditions, eq.(5.46) and eq.(5.47), and the fact that c takes integer values,

imply that d cannot vanish. We can then write eq.(5.48) as follows,

0 <
d2

α

(

−α2 +
c2

d2

)

≪ 1. (5.50)

Since d2 ≥ 1 and α ≤ 1, this gives rise to a weaker condition,

0 <
(

−α +
∣

∣

∣

c

d

∣

∣

∣

) (

α +
∣

∣

∣

c

d

∣

∣

∣

)

≪ 1. (5.51)

Now if α is not very much less than unity, as we are assuming, then (α + | c
d
|)

cannot be very much less than unity. Thus the only way to meet the condition,

eq.(5.51), is for

0 <
∣

∣

∣

c

d

∣

∣

∣
− α≪ 1. (5.52)

In general we see from eq.(5.45) that α is an irrational number and | c
d
| is a rational

number. We know that any irrational number can be approximated arbitrarily

well by a rational number, therefore one can meet condition eq.(5.52) for a general

α.

Let us however go back to the stronger condition, eq.(5.50), we will see that

this cannot be met generically. We state the condition in eq.(5.50) as follows:

0 <
d2

α

(

−α2 +
c2

d2

)

< δ, (5.53)

where, δ is a small number satisfying,

δ ≪ 1. (5.54)
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Eq.(5.52) then takes the form,

0 <
∣

∣

∣

c

d

∣

∣

∣
− α < δ. (5.55)

As was mentioned above, since any irrational number can be approximated ar-

bitrarily well by a rational number, c, d can always be found so that eq.(5.55) is

met. However, for a generic irrational number, α, the integers, d, c that satisfy

eq.(5.55) will have to be of order O(1/δ) 1. Approximating,

α +
∣

∣

∣

c

d

∣

∣

∣
∼ 2α, (5.56)

we see that
d2

α

(

−α2 +
c2

d2

)

≃ 2d2
(

−α + | c
d
|
)

∼ O(1/δ). (5.57)

It then follows that eq.(5.50) will not be generically met, since δ satisfies the

condition, eq.(5.54).

In other words, while α can be approximated arbitrarily well by the ratio of

two integers, |c/d|, in general doing so to better accuracy by choosing δ to be

smaller will make the condition, eq.(5.50), harder to meet.

The condition in eq.(5.50) can be met if α is a non-generic irrational number

for which eq.(5.55) can be met by taking

c, d ∼ O

(

1

δ1/2−ǫ

)

. (5.58)

with ǫ > 0. In this case one finds that,

d2

α

(

−α2 +
c2

d2

)

∼ O(δ2ǫ), (5.59)

and thus eq.(5.50) can be met if δ ≪ 1.

An example is provided by

α =

√

p− 1

p
. (5.60)

1 For example to approximate 1/
√
2 = 0.707106..., to n significant figures, c, d would have

to be O(n).
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It is easy to see that eq.(5.50) is met in this case if c = d = 1 and p ≫ 1.

This example, fits in with the discussion above. The irrational number α, in this

case, is well approximated to O(1/p) by two integers which are unity, and which

therefore satisfies the condition, eq.(5.58).

The example above can be easily generalised to the case,

α =
m

n

√

p− 1

p
(5.61)

where m < n and mn ≪ p. Once again eq.(5.50) can be met, by taking, c =

m, d = n. We will have more to say about what these examples are teaching us

in the following subsection, where we consider varying the charges.

To summarise the discussion above, we have learned that eq.(5.50) can be

met, but only for rather special values of the initial charges. These charges are

such that α is of the form,

α =
m

n
− ǫ, (5.62)

where 0 < ǫ≪ 1, and the integers, m,n are not very big, and meet the condition,

2n2ǫ≪ 1. (5.63)

In this case, by taking, c = m, d = n eq.(5.50) can be met 1.

There is another way to characterise the non-genericity of α. Suppose we

choose the initial charges such that α took a special value, eq.(5.62), and integers,

c, d exist meeting conditions, eq.(5.50). We could ask by how much can the initial

charges be varied so that integers c, d continue to exist, meeting the condition

eq.(5.53). If all the initial charges are of order Q and they are varied by a small

amount ∆Q, we have that,
∆α

α
∼ ∆Q

Q
. (5.64)

Using, eq.(5.56), we can write the condition, eq.(5.53) as,

0 <
d2

α

(

−α2 +
c2

d2

)

≃ 2d2
(

−α +
c

d

)

< δ. (5.65)

1For the matrix eq.(5.21) to exist c, d must be coprime. This requires that we cancel off

any common factors in m,n and take them to be coprime.
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Now, when

∆α ∼ δ

2d2
, (5.66)

c, d will have to change from their initial values for, the inequality, eq.(5.65) to

continue to hold. But for a generic small variation, new integers, c, d, cannot be

found meeting condition, eq.(5.58), rather the new integers will be of order O(1/δ)

and as a result eq.(5.53) will not be met. Therefore the maximum variation for

the initial charges is of order,
∆Q

Q
∼ δ

2d2
. (5.67)

Since δ satisfies eq.(5.54), and d is a non-vanishing integer, we see that this

variation is small.

To summarise, in this subsection we have seen that a non-supersymmetric

system carrying generic D0−D4 brane charges cannot be brought to the Cardy

limit after a duality transformation. The case when α is rational needs to be

treated somewhat differently, we analyse this case below. Some examples, of

non-generic charges, which can be brought to the Cardy limit using the duality

symmetry are discussed in the appendix.

5.3.3 Rational α

Since we saw that α had to be close to a rational number for the integers c, d

to exist meeting the condition in eq.(5.50), it might seem at first that for any α

which is rational one can always meet this condition. We show here that this is

not true, eq.(5.50) can be met by rational α but again of a rather special form.

Suppose that

α =
m

n
(5.68)

so that ǫ in eq.(5.62) vanishes. We will again take the case where α < 1, α 6≪ 1
1. Without loss of generality, we can take m,n to be co-prime. One could now

choose d = m, c = n so that
∣

∣

∣

∣

d

c

∣

∣

∣

∣

− α = 0 ≪ 1. (5.69)

1 We impose this restriction since if α ≪ 1, the charges are be non-generic to start with.
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However in this case we see that eq.(5.50) is not met at the other end, since,

(|d
c
| − α) 6> 0.

We need to find integers, c, d such that |d
c
| is close to α, but does not exactly

cancel it. This will not be generically possible for exactly the same reason as the

case of irrational α. To meet the condition eq.(5.55), c, d will generically be of

order 1/δ , while to meet eq.(5.50) they would need to meet condition eq.(5.58).

These two requirements are not compatible.

To understand when the condition in eq.(5.50) can be met more precisely, let

us write this equation as,

0 <
1

α
(α|d|+ |c|)(−α|d|+ |c|) ≪ 1. (5.70)

Now since, |c| > α|d| we have, |c| + |d|α > 2|d|α, and it follows from eq.(5.70)

that,

0 <
2|d|
n

(n|c| −m|d|) ≪ 1. (5.71)

Since, the minimum non-vanishing value of (n|c|−m|d|) is unity, one consequence
of eq.(5.71) is that, n/|d| ≫ 1. Given that α is not much smaller than unity it

follows then that,

m,n≫ 1. (5.72)

Also since, 2|d| > 1, it follows from eq.(5.71) that

0 <
n|c| −m|d|

n
≪ 1. (5.73)

In summary, if α is a rational number, α = m/n, an SL(2,Z) transformation

can be found bringing the charges to a form where condition, eq.(5.50) is met,

if two integers, c, d exist which are coprime, and which satisfy the condition,

eq.(5.71). Generically, we have argued above, such integers do not exist, and

thus eq.(5.50) will not be met.

One final comment before we move on. In the analysis above we considered

the case where ~Q′2
m had the same sign as ~Q2

e. If instead
~Q′2
m has the opposite sign

as ~Q2
e, the condition, eq.(5.48) is replaced by,

0 < d2α− c2

α
≪ 1. (5.74)
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The discussion above, for the irrational and rational values of α, then goes through

essentially unchanged leading to similar conclusions. For generic values of the

charges, condition eq.(5.47) will not be satisfied. The condition in eq.(5.62) in

this case is replaced by the requirement that

α =
m

n
+ ǫ, (5.75)

with ǫ > 0, such that,

2n2ǫ≪ 1. (5.76)

If this requirement is met, eq.(5.74) can be met by taking, c = n, d = m. For

rational, α, eq.(5.71) is replaced by,

0 <
2|c|
m

(m|d| − n|c|) ≪ 1. (5.77)

5.3.4 Changing The Charges

In our discussion above for the non-supersymmetric case we saw that for rather

special values of α the condition, eq.(5.50) can be met. An example is given in

eq.(5.61). This prompts one to ask the following question: Although a generic

charge configuration cannot be brought to the Cardy limit, can we find a charge

configuration lying near by, which can be brought to the Cardy limit ? In this

subsection we will answer the question. For large charges, Q ≫ 1, we show that

such a near-by charge configuration does exist in the non-supersymmetric case.

In contrast, in the supersymmetric case, such a near-by configuration does not

exist.

Before proceeding let us state more clearly what we mean by a charge config-

uration lying near the starting D0 − D4 configuration. Suppose we carry out a

change in the charges,

~Qe → ~Qe +∆ ~Qe (5.78)

~Qm → ~Qm +∆ ~Qm. (5.79)

The change is small, and the new charge configuration is near the original one, if
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the conditions,

∣

∣

∣

∣

∣

~Qe ·∆ ~Qe,m

( ~Qe,m)2

∣

∣

∣

∣

∣

≪ 1

∣

∣

∣

∣

∣

~Qm ·∆ ~Qe,m

( ~Qe,m)2

∣

∣

∣

∣

∣

≪ 1

∣

∣

∣

∣

∣

∆ ~Qe,m ·∆ ~Qe,m

( ~Qe,m)2

∣

∣

∣

∣

∣

≪ 1, (5.80)

are met 1. In these inequalities, ∆ ~Qe,m in the numerator stands for either, ∆ ~Qe,

or ∆ ~Qm, the inequality holds in both cases. Similarly, ~Qe,m in the denominator

stands for either ~Qe or ~Qm. Note that it follows from these conditions that the

change in the duality invariant, I, eq.(1.7), and therefore also the change in the

entropy, eq.(1.8), eq.(1.9), is small.

Let us first consider the supersymmetric case. The required condition for

an SL(2,Z) transformation, eq.(5.21), to exist is that α, eq.(5.45), satisfies the

condition, eq.(5.49). Suppose we start with generic charges, where α ≤ 1, but

where condition eq.(5.49) is not met, and now carry out the change in the charges,

eq.(5.78). The initial charges, ~Qe, ~Qm, are both either space-like or time-like, and

since condition eq.(5.49) is not met, are roughly comparable in magnitude. It is

then clear, and straightforward to verify explicitly, that small changes, meeting

conditions, eq.(5.80), will not allow, eq.(5.20) to be met. We learn then that in

the supersymmetric case there is no near by configuration - obtained by a small

change in charges- which brings the charges to the Cardy limit.

Next we come to the non-supersymmetric case. Here one of the two vectors,

~Qe, ~Qm is space-like and the other time-like, and this makes the analysis more

involved, as we have already seen above. We will explicitly construct a new

set of charges, close to the original one and show that it can be taken to the

Cardy limit after a duality transformation. The construction will be based on

the example, eq.(5.61), and will proceed in two steps. We will first find an

1These conditions are manifestly invariant under the O(6, 22,Z) group. Once we choose a

particular basis to write the initial charges as, ( ~Qe, ~Qm), there is no residual SL(2,Z) invariance

left. The conditions, eq.(5.80), are written in this basis, and are in-effect also SL(2,Z) invariant.
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altered set of charges for which an SL(2,Z) transformation meeting condition,

eq.(5.50), exists. Then in the second step we will further alter these charges so

that the SL(2,Z) transformation we have identified in the first step, followed by

an appropriate O(6, 22,Z) transformation, brings this final set of altered charges

to the Cardy limit. At both stages we will ensure that the changes in the charges

are small and that the conditions, eq.(5.80), are met.

In the starting configuration, the D0−D4 brane charges are large, of order,

Q, and roughly comparable, so that α satisfies condition, eq.(5.46), but α 6≪ 1.

The First Step:

In the first step, we then change the D0 − D4 charges (no new charges are

excited at this stage) so that the new value of α is a rational, m/n. The change

in α can be kept small,
∣

∣

∣
α− m

n

∣

∣

∣
< ǫ, (5.81)

with,

ǫ < 1, (5.82)

if we take the integers, m,n to be sufficiently large,

m,n ∼ O(1/ǫ). (5.83)

The required change in the charges is of order ∆Q where,

∆Q

Q
∼ ∆α

α
∼ ǫ (5.84)

Next, we change one of the D4-brane charges by order unity, this gives rise to a

final value of1 α,

α =
m

n

√

1− 1

Q
. (5.85)

Now choosing,

c = m, d = n, (5.86)

eq.(5.53) is met, if the condition,

mn

Q
< δ, (5.87)

1 For example, if only , p2, p3 6= 0, in the basis, eq.(1.5), then changing p2 by unity would

give, α = m
n

√

1− 1
p2 = m

n

√

1− 1
Q
, if p2 = Q.
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is valid. Using eq.(5.83) this gives,

ǫ >
1√
δQ

. (5.88)

We will see below, that δ which was introduced first in eq.(5.53), can be taken

to be a fixed small number, meeting condition, eq.(5.54), and not scaling like an

inverse power of Q. Then by taking Q to be sufficiently big, so that

Q≫ 1

δ
≫ 1, (5.89)

condition eq.(5.88) can be made compatible with eq.(5.82). To keep the shift in

the charges small, it is best to take ǫ to be as small as possible, subject to the

condition, eq.(5.88). We will take,

ǫ ∼ 1√
δQ

. (5.90)

It is useful in the subsequent discussion to distinguish between the altered

charges obtained at this stage and the original charges we started with. We denote

the altered charges by the tilde superscript. In the basis, eq.(1.4), eq.(1.5), we

have,

~̃Qe = (q̃0,−p̃1, 0, 0, · · · , 0)
~̃Qm = (0, 0, p̃i, 0, 0, 0, 0). (5.91)

Before proceeding further it is worth examining condition eq.(5.87) more care-

fully. The inequality, eq.(5.50), arose from eq.(5.20). It’s stronger form is given

by the condition in eq.(5.19). Here, p1
′

is the charge that arised due to the

D4-branes wrapping the K3, in the final configuration which lies in the Cardy

limit and which is obtained by starting with the altered charges and doing the

duality transformation. From eq.(5.19), eq.(5.53) we see that δ must satisfy the

condition,

δ ≪ 1

|p1′ | . (5.92)

Now if p1
′ ∼ Q we see that eq.(5.92), eq.(5.88), together imply that the condition

in eq.(5.82) cannot be met. We will see below that the final charge configuration
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has a value for p1
′

which is much smaller than Q. In fact p1
′

can be taken to be

O(1) and not O(Q). Thus, as was mentioned above, δ can be taken to be a small

number not scaling like an inverse power of Q. One can then choose Q to meet

the condition, eq.(5.89), and this will then suffice to meet eq.(5.88) and eq.(5.82).

From eq.(5.84) and eq.(5.90) we see that the required change in the charges

are of the order,
∆Q

Q
∼ ǫ ∼ 1√

δQ
. (5.93)

This gives,

∆Q ∼
√

Q

δ
. (5.94)

We see that while, ∆Q≫ 1, from eq.(5.93), eq.(5.89), it follows that,

∆Q

Q
∼ 1√

δQ
≪ 1, (5.95)

so that the fractional change in the charges are small. Condition eq.(5.95) ensures

that the requirements in eq.(5.80) are met, so that the changes in charge are small.

We have now completed the first step. The SL(2,Z) transformation that takes

the altered charges to the Cardy limit has the form,

A =

(

a b

m n

)

(5.96)

The integers m,n have been determined in terms of α for the altered charges

above eq.(5.85). As discussed in the appendix , a, b, can be chosen so that they

satisfy the conditions,

a ∼ O(m)

b ∼ O(n). (5.97)

The relations in eq.(5.97) will be important in the following discussion.

The Second Step:

We now proceed to the second step and construct the O(6, 22,Z) transfor-

mation. This will require a further change in the charges. We will excite extra

charges which lie in the last two H⊕H subspaces in eq.(3.27). These are charges
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which arises from the T 2. The altered charges at the first stage are given in

eq.(5.91). We now change them further, so that the final altered charges take the

form,

~̃Qe = (q̃0,−p̃1, 0, 0, · · · ,−b, 0, n, 0)
~̃Qm = (0, 0, p̃i, a, 0,−m, 0). (5.98)

Here a, b,m, n are elements of the SL(2,Z) matrix, eq.(5.96). Note that, q̃0, p̃
i ∼

O(Q). From eq.(5.83), eq.(5.97), we see that a, b,m, n ∼ 1/ǫ. From, eq.(5.90) we

then learn that

a, b,m, n ∼ 1

ǫ
∼
√

δQ. (5.99)

The changes in charges that give eq.(5.98) then meet the condition

∆Q

Q
∼
√

δ

Q
≪ 1, (5.100)

where the last inequality follows from the fact that the charge Q meets the con-

dition, eq.(5.89). This ensures that the conditions in eq.(5.80) are met.

The SL(2,Z) transformation, eq.(5.96), followed by an O(6, 22,Z) transfor-

mation that we describe explicitly in the appendix , now brings the charges,

eq.(5.98) to the form,

~Q′
e = (aq̃0, 1, bp̃

i, 0,−maq̃0p̃1, 1,−aq̃0(ap̃1 + 1))

~Q′
m = (mq̃0, 0, np̃

i, 1,−m2q̃0p̃
1, 0,−m(ap̃1 + 1)q̃0). (5.101)

These charges are in the Cardy limit. Since the second entry in ~Q′
m vanishes, the

D6-brane charge vanishes. From the second entry in ~Q′
e we see that |p1

′ | is unity,
as was promised above. Finally, the extra charges excited in going from eq.(5.91)

to eq.(5.98) does not change the value of ( ~̃Qm)
2. Thus,

( ~Q′
m)

2

√

|I|
≃
(

mn

Q

)

≃ δ ≪ 1, (5.102)

where we have used eq.(5.83) for m,n and eq.(5.90) for ǫ. It then follows that

eq.(5.19) is met and the final charges are in the Cardy limit.
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Two comments before we end. First, there is some leeway in the O(6, 22, Z)

transformation which acting on the charges, eq.(5.98), brings them to the Cardy

limit. For example, an O(6, 22,Z) transformation can be found that results in p1
′

being a number much large than unity, but not scaling with Q. Second, we have

seen in subsection 3.2 that in the vicinity of one set of charges which can brought

to the Cardy limit, are other near by charges meeting condition, eq.(5.67), which

can also be taken to the Cardy limit. Using, eq.(5.86), eq.(5.83), we see that

eq.(5.67) takes the form,
∆Q

Q
∼ δǫ2. (5.103)

Since, δ ≪ 1, ǫ < 1, the size of this variation, ∆Q
Q

≪ ǫ. Thus starting from one

of the special charge configurations which can be brought to the Cardy limit, a

variation of order, eq.(5.103), takes us to charges of the generic kind which can

no longer be taken to the Cardy limit by a duality transformation. These charges

will have to be changed by an amount of order, eq.(5.84), to be able to bring

them to the Cardy limit.

5.4 The D0−D6 System

In this section we consider theD0−D6 system, where only q0, p
0 6= 0, and all other

charges vanish, eq.(1.4), eq.(1.5). We show that such a charge configuration can

never be brought to the Cardy limit. For this set of charges we have the following

relations,

~Q2
e = 0

~Q2
m = 0

~Qe · ~Qm = q0p
0. (5.104)

The invariant I, eq.(1.7), is,

I = −(q0p
0)2, (5.105)

It is negative, and the state breaks supersymmetry.

Let us assume that there is an SL(2,Z) transformation, eq.(5.21) which fol-

lowed by an O(6, 22,Z) transformation brings the charges to the Cardy limit.
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Denoting the final charges by ~Q′
e,
~Q′
m, we have that,

~Q′2
m = 2cdq0p

0. (5.106)

If the final charges are in the Cardy limit, it follows from eq.(5.14), and the fact

that |p1′| ≥ 1 that,

|( ~Q′
m)

2|
√

|I|
≪ 1. (5.107)

From, eq.(5.106) and eq.(5.105), this leads to the condition,

|cd| ≪ 1. (5.108)

Now note that c, d are integers. Thus the only way in which eq.(5.108) can be

met is if cd = 0. This will mean that ~Q′2
m = 0 and hence the central charge,

eq.(5.11), for the final charges vanishes. We do not want the central charge to

vanish since the resulting AdS3 space-time would not be described by weakly

coupled supergravity. As a result we find that there is no duality transformation

which can bring the D0−D6 system to the Cardy limit.

In parallel with our discussion of section 3.4 we now ask if there are near

by charges which can be brought to the Cardy limit. The following construction

shows that such a set of charges does exits, as in the non-supersymmetric D0−D4

system. TheD0−D6 system we start with has charges which in the basis, eq.(1.4),

eq.(1.5), are given by,

~Qe = (q0, 0, · · · , 0)
~Qm = (0, p0, 0, · · · , 0). (5.109)

The charges meet the condition,

| ~Qe · ~Qm| = |q0p0| ≫ 1. (5.110)

For the change in the charges to be small the condition, analogous to eq.(5.80)

in the D0−D4 case, is given by,
∣

∣

∣

∣

∣

~Qe ·∆ ~Qe,m

~Qe · ~Qm

∣

∣

∣

∣

∣

≪ 1
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∣

∣

∣

∣

∣

~Qm ·∆ ~Qe,m

~Qe · ~Qm

∣

∣

∣

∣

∣

≪ 1

∣

∣

∣

∣

∣

∆ ~Qe,m ·∆ ~Qe,m

~Qe · ~Qm

∣

∣

∣

∣

∣

≪ 1. (5.111)

Now consider the altered charges,

~Qe = (q0, 0, 1, 0, · · · , 0)
~Qm = (0, p0,−1, 1, · · · , 0). (5.112)

It is easy to see that conditions, eq.(5.111), are met and the changes in the charges

are small.

In eq.(5.112), we have activated additional charges lying in the second Hy-

perbolic sublattice, H, defined in eq.(3.27). We could have instead activated the

additional charges to lie in any of the other Hyperbolic sublattices (or infact the

E8 sublattices), and a similar discussion would go through.

Now consider an O(2, 2) transformation acting on the two H sublattices in

which the charges lie, of the form,












1 0 0 0

0 1 p0 0

0 0 1 0

−p0 0 0 1













. (5.113)

This brings the altered charges, eq.(5.112), to the form,

~Q′
e = (q0, p

0, 1,−p0q0, 0, · · · , 0)
~Q′
m = (0, 0,−1, 1, 0, · · ·0). (5.114)

These charges are in the Cardy limit. The second entry in ~Q′
m vanishes, therefore,

p0
′

= 0. Also, p1
′

= p0, ( ~Q′
m)

2 = −2, so that the condition, eq.(5.14), is met, as

long as

|q0| ≫ 1. (5.115)

Note that the central charge, C ∼ |p1′( ~Q′
m)

2| ∼ (p0)2. This meets the con-

dition, C ≫ 1 if |p0| ≫ 1. Alternatively, if p0 ∼ O(1), we can excite additional

charges in eq.(5.112) so that, for example, p1
′ ≫ 1, and thus C ≫ 1.
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5.5 Absence of Magnetic Monopole Charge

We have mentioned above that lifting a configuration with D6 brane charge to

M-theory cannot give a locally AdS3 spacetime in the near-horizon limit. We

prove this statement here.

We start with a general extremal black hole, carrying charges given in eq.(1.4),

eq.(1.5), in four dimensions in IIA theory. The near horizon geometry is AdS2 ×
S2. An AdS2 space-time has SO(2, 1) symmetry. This gets enhanced to SO(2, 2)

in the AdS3 case 1. In the special case where the black hole carries no D0-brane

charge, N units of D6-brane charge, and arbitray values of the other charges, it

is well known that one does not get the SO(2, 2) symmetry of AdS3 in the near

horizon limit geometry. The D6-brane charge is KK monopole charge along the

M direction. This charge results in the M-direction being fibered over the S2

resulting in the near horizon geometry of form, AdS2 × S3/ZN .

Here we will examine what happens if the black hole carries both D0 and

D6 brane charges, besides having arbitrary values of the other charges, and find

that the symmetries of the near horizon geometry are SO(2, 1)× SO(3)× U(1)

and are therefore not enhanced to SO(2, 2). This proves that the only way to

get a locally AdS3 geometry on lifting to M-theory is for the D6-brane charge to

vanish.

Lifting the AdS2 × S2 near-horizon geometry to M-theory, gives,

ds2 = R2(− cosh2 θ1dφ
2
1 + dθ21) +R2(dθ22 + sin2 θ2dφ

2
2)

+ gψψ(dψ + α sinh θ1dφ1 + β cos θ2dφ2)
2 (5.116)

Here we are using Global coordinates θ1, φ1 for AdS2, polar coordinates, θ2, φ2

for the S2, and denoting the M-theory direction as ψ. The metric component,

gψψ, is a constant. α, β are proportional to the D0 and D6 brane charges and are

non-vanishing if these charges are non-vanishing. We seek the Killing vectors for

this metric.

1Our analysis of the symmetries in this section will be local. So the breaking of SO(2, 2)

symmetry due to identifications which are made in the BTZ geometry will not be relevant.
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It is convenient to analytically continue the AdS2 metric to that of S2 as

follows,

θ1 → i
(π

2
− θ1

)

(R2)AdS → −R2

α → −iα. (5.117)

This gives,

ds2 = R2(dθ21 + sin2 θ1dφ
2
1) +R2(dθ22 + sin2 θ2dφ

2
2)

+ gψψ(dψ + α cos θ1dφ1 + β cos θ2dφ2)
2. (5.118)

We show that the isometry group of this metric is, SO(3) × SO(3) × U(1), it

will then follow by analytic continuation that the isometry group of eq.(5.116) is,

SO(2, 1)× SO(3)× U(1).

By rescaling the ψ coordinate, α and β, this metric can be written as,

ds2 = R2[(dθ21 + sin2 θ1dφ
2
1) + (dθ22 + sin2 θ2dφ

2
2)

+ (dψ′ + α′ cos θ1dφ1 + β ′ cos θ2dφ2)
2]. (5.119)

α′, β ′ are proportional to α, β and only vanish when the latter do. Next we drop

the overall factor of R2, and rescale φ1, φ2 as follows,

α′φ1 → φ1, β ′φ2 → φ2. (5.120)

Note this rescaling is well defined only if α′, β ′, and hence α, β, are non-vanishing.

This gives for the metric,

ds2 = dθ21 + dθ22 + (1 + (α̃)2 sin2 θ1)dφ
2
1 + (1 + (β̃)2 sin2 θ2)dφ

2
2 + dψ2

+2 cos θ1dψdφ1 + 2 cos θ2dψdφ2 + 2 cos θ1 cos θ2dφ1dφ2, (5.121)

where,

(α̃)2 =
1

α′2
− 1 (5.122)

(β̃)2 =
1

β ′2
− 1. (5.123)
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To save clutter we will henceforth drop the tildes on α, β and denote the metric

in eq.(5.121) as,

ds2 = dθ21 + dθ22 + (1 + α2 sin2 θ1)dφ
2
1 + (1 + β2 sin2 θ2)dφ

2
2 + dψ2

+2 cos θ1dψdφ1 + 2 cos θ2dψdφ2 + 2 cos θ1 cos θ2dφ1dφ2. (5.124)

The reader should note that α, β, in eq.(5.124) are different from α, β, as appear-

ing in eq.(5.118).

We now turn to studying the isometries of the metric, eq.(5.124). First note

that ∂φ1 , ∂φ2 , ∂ψ, are commuting isometries of this metric. They can be taken to be

part of the Cartan generators of the full isometry group. Any other killing vector,

ξ, can then be taken to carry definite charges with respect to these generators,

and satisfies the relations,

[∂φ1 , ξ] = im1ξ, (5.125)

[∂φ2 , ξ] = im2ξ, (5.126)

[∂ψ, ξ] = im3ξ, (5.127)

where m1, m2, m3 are the eigenvalues with respect to these three isometries.

The killing vector, ξ, must satisfy the Killing conditions,

∂αξ
γgγβ + ∂βξ

γgγα + ξγ∂γgαβ = 0 (5.128)

for all values of α, β.

These Killing conditions are studied in more detail in the appendix . One

finds that there are only four more non-trivial Killing vectors, corresponding to

m1 = ±
√
1 + α2, m2 = m3 = 0 and m2 = ±

√

1 + β2, m1, m3 = 0. Altogether

there are then seven Killing vectors, given by,

ξ1 = ei
√
1+α2φ1

[

∂θ1 +
i√

1 + α2
cot θ1∂φ1 −

i√
1 + α2

1

sin θ1
∂ψ

]

ξ2 = e−i
√
1+α2φ1

[

∂θ1 −
i√

1 + α2
cot θ1∂φ1 +

i√
1 + α2

1

sin θ1
∂ψ

]

ξ3 = ∂φ1
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ξ4 = ei
√

1+β2φ2

[

∂θ2 +
i

√

1 + β2
cot θ2∂φ2 −

i
√

1 + β2

1

sin θ2
∂ψ

]

ξ5 = e−i
√

1+β2φ2

[

∂θ2 −
i

√

1 + β2
cot θ2∂φ2 +

i
√

1 + β2

1

sin θ2
∂ψ

]

ξ6 = ∂φ2

ξ7 = ∂ψ (5.129)

The first three give rise to an SO(3) isometry, the second three to another SO(3)

and the last to an U(1) isometry, giving the total symmetry group, SO(3) ×
SO(3)×U(1). After analytic continuation this implies that the metric we started

with has isometries, SO(2, 1)× SO(3)× U(1).

We refer the reader to the appendix for more details.
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Chapter 6

Appendix.

6.1 Hecke Operators and the Multiplicative Lift

In this section we summarise the construction of Hecke operators and the multi-

plicative lift, following [16]. Let us define ∆N(t) as

∆N (t) = {g =
(

a b

cN d

)

; a, b, c, d ∈ Z, det(g) = t}. (6.1)

The action of the Hecke operator Tt on a weak Jacobi form φk,m is then given by

Tt(φk,m)(τ, z) = tk−1
∑









a b

c d









∈Γ0(N)\∆N (t)

(cτ+d)−k exp (−2πimcz2

cτ + d
)φk,m(

aτ + b

d
, az).

(6.2)

To compute everything concretely, we need to define representatives of Γ0(N)\∆N (t).

Choose the complete set of cusps {s} of Γ0(N) represented by the set of repre-

sentative matrices {gs}. Let

gs ǫ SL(2,Z) =

(

xs ys

zs ws

)

(6.3)

Define a natural number hs by
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g−1
s Γ0(N)gs ∩ P (Z) = {±

(

1 hsn

0 1

)

;n ∈ Z}

where P (Z) is the set of all upper-triangular matrices over integers with unit

determinant. We can then write

Γ0(N)\∆N(t) = ∪s{gs
(

a b

0 d

)

; a, b, d ∈ Z, ad = t, azs = 0modN, b = 0, ..., hsd− 1}.

(6.4)

For each cusp we define ns =
N

g.c.d(zs,N)
. We define

φs(τ, z) = φ(
xsτ + ys
zsτ + ωs

,
z

zsτ + ωs
), (6.5)

with Fourier expansion

φs(τ, z) =
∑

n,l

cs(n, l) exp(2πi(nτ + lz)). (6.6)

As usual, one can show that cs(n, l) depends only on 4n − l2 and l mod 2 so we

write cs(n, l) = cs,l(4n − l2) following the notation in [16]. In general n ∈ h−1
s Z

need not be an integer. If 4 does not divide hs, which is true for all cases of our

interest, then l mod 2 is determined only by 4n− l2 and in that case we can write

simply cs(4n− l2) = cs,l(4n− l2).

For Γ0(N) with N prime, there are only two cusps, one at i∞ and the other

at 0 in the fundamental domain. Hence the index s runs over 1 and 2. For this

case, various objects with the subscript s defined in the formula for the lift above

take the following values:

g1 =

(

1 0

0 1

)

h1 = 1, z1 = 0, n1 = 1 (6.7)

g2 =

(

0 −1

1 0

)

h2 = N, z2 = 1, n2 = N (6.8)

In this case we can then write

Γ0(N)\∆N (t) = {
(

a b

0 d

)

∈ GL(2,Z); ad = t, b = 0, ..., d− 1} (6.9)

∪ {g2
(

a b

0 d

)

∈ GL(2,Z); ad = t, a ≡ 0modN, b = 0, ...., Nd− 1}.(6.10)

93



6.2 Consistency Check

Given a weak Jacobi form φ of weight 0 and index 1, we can define

Lφ(ρ, ν, σ) =

∞
∑

t=1

Tt(φ)(ρ, ν) exp (2πiσt). (6.11)

Using the explicit representation of the Hecke operators, one can then show [16]

Lφ =
∑

s

∞
∑

t=1

∑

ad=t
azs=0modN

hsd−1
∑

b=0

φs(
aρ+ b

d
, aν) exp(2πitσ) (6.12)

=
∑

s

∞
∑

t=1

∑

ad=t
a∈nsZ

(ad)−1dhs
∑

n,l∈Z
cs,l(4nd− l2) exp(2πi(anρ+ alν + tσ))(6.13)

=
∑

s

hs

∞
∑

a=1

1

ans

∞
∑

m=1

∑

n,l∈Z
cs,l(4nd− l2) exp(2πi(anρ+ alν +mσ))(6.14)

=
∑

s

hs
ns

log







∏

l,m,n∈ Z

m≥1

(1− ens(nρ+lν+mσ))cs,l(4mn−l
2)






. (6.15)

6.2 Consistency Check

As a consistency check we compare the coefficients of the leading powers of p, q, y

in the multiplicative lift with the Fourier expansion of Φ6 obtained using the

additive lift in [5]. The leading terms, corresponding to a single power of p, in

the expansion are

−pqy
∏

n

(1− qn)c1(0)(1− qny)c1(−1)(1− qny−1)c1(−1)(1− q2n)c2(0). (6.16)

Substituting the values of the c1 and c2 coefficients and collecting terms with the

same powers in q and y together, we obtain

Φ6(Ω) = [(2−y− 1

y
)q+(−4+

2

y2
)q2+(−16− 1

y3
)− 4

y2
+
13

y
+13y−4y2−y3)q3]p+. . .

(6.17)

To compare, we now read off the coefficients from its sum representation derived

in [5] by the additive lift. The seed for the additive lift is

φ6,1 = η2(τ)η8(2τ)θ21 =
∑

l,n≥0

C(4n− l2)qnyl (6.18)
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The lift is then given by

Φ6(Ω) =
∑

m≥1

Tm[φ6,1(ρ, ν)]p
m, (6.19)

with the Fourier expansion

Φ6(Ω) =
∑

m>0,
n≥0,r∈Z

a(n,m, r)qnpmyr. (6.20)

Given the action of the Hecke operators, a(n,m, r) can be read off from this

expansion knowing C(N) as in (6.18). These are in precise agreement with the

same coefficients in the expansion of the product representation given above in

(6.17).

6.3 Tightening the Conditions in the Supersym-

metric Case

A supersymmetric D0−D4 system, which can be taken to the Cardy limit, must

meet the condition, eq.(5.31). In this appendix we show that this condition can

be somewhat strengthened, leading to eq.(5.32).

This comes about as follows. In general the SL(2,Z) transformation, eq.(5.29),

will be followed by an O(6, 22,Z) transformation, B ∈ O(6, 22,Z), to obtain the

final configuration, ( ~Q′
e,
~Q′
m) which is given by,

~Q′
e = B ~Qe + bB ~Qm (6.21)

~Q′
m = B ~Qm. (6.22)

We will see shortly that this final configuration is in the Cardy limit if and

only if the configuration, ( ~̃Qe,
~̃Qm), defined by,

( ~̃Qe,
~̃Qm) = (B ~Qe, B ~Qm) (6.23)

is in the Cardy limit. Note that the charges, ( ~̃Qe,
~̃Qm), are obtained by apply-

ing only the transformation, B ∈ O(6, 22,Z) on ( ~Qe, ~Qm). Applying condition
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eq.(5.18) to the charges, ( ~̃Qe,
~̃Qm), we learn that for them to be in the Cardy

limit,

|I| ≫
(

p̃1
(

~̃Qm

)2
)2

. (6.24)

From eq.(6.23) we see that
(

~̃Qm

)2

= ~Q2
m. Now since ~̃Qe is obtained by applying

an O(6, 22,Z) transformation to ~Qe, the minimum value p̃1 can take is gcd( ~Qe).

Eq.(5.32) then follows, after using eq.(5.25) for I.

To complete the argument let us show that ( ~Q′
e,
~Q′
m) can be in the Cardy

limit if an only if ( ~̃Qe,
~̃Qm) is in the Cardy limit. To see this we note that from

eq.(6.21) and eq.(6.23) it follows that,

~Q′
e =

~̃Qe + b ~̃Qm, (6.25)

and,

~Q′
m = ~̃Qm. (6.26)

If ~Q′
m is in the Cardy limit theD6-brane charge for this configuration must vanish,

so, p0
′

= 0. From eq.(6.26) we see this implies that p̃0 also vanishes. Eq.(6.26)

also implies that ( ~Q′
m)

2 = ( ~̃Qm)
2. And eq.(6.25) implies that p1

′

= p̃1. The

second condition for the Cardy limit, eq.(5.14), is

I ≫ 6(p′1
~Q′2
m)

2. (6.27)

Since I is a duality invariant, it then follows that the condition eq.(6.27) is the

same as the corresponding condition in terms of the tilde variables,

I ≫ 6

(

p̃1

(

~̃Qm

)2
)2

. (6.28)

6.4 Some Non-supersymmetric Examples

In this appendix we present some examples of charges in th non-supersymmetric

case, which can be brought to the Cardy limit after a duality transformation.

We take,

~Qe = (p− 1,−1, 0, 0, 0, · · ·0) (6.29)
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~Qm = (0, 0, 1, p, 0, · · ·0), (6.30)

with,

p≫ 1. (6.31)

The quartic invariant, I, eq.(1.7) is,

I = −4p(p− 1). (6.32)

The value of p1 = 1, and ~Q2
m = 2p, so we see that condition, eq.(5.14) is not met

and the starting configuration is not in the Cardy limit. In this example, | ~Q2
e| <

| ~Q2
m|, so that α > 1 to begin, we therefore carry out the SL(2,Z) transformation,

(

(

0 1

−1 0

)

), which gives,

~Qe = (0, 0, 1, p, 0, · · · ) (6.33)

~Qm = −(p− 1,−1, 0, 0, 0, · · · , 0). (6.34)

The resulting value of α is,

α =

√

p− 1

p
. (6.35)

This is of the form discussed above in eq.(5.60). Starting with the charges,

eq.(6.33), we now carry out SL(2,Z) × O(6, 22,Z) transformations which bring

it in the Cardy limit. The SL(2,Z) transformation is,

A = (

(

(p− 1) −p
1 −1

)

) (6.36)

with resulting charges,

~̃
eQ = (p(p− 1),−p, p− 1, (p− 1)p, 0 · · · , 0) (6.37)

~̃
mQ = (p− 1,−1, 1, p, 0, · · · , 0) (6.38)

This is followed by an O(6, 22,Z) transformation,

B = (













1 0 0 0

0 1 1 0

0 0 1 0

−1 0 0 1













) (6.39)
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By this we mean that B acts non-trivially on the 4 dimensional sublattice of

charges where the inner product is given by the first two factors of H in eq.(1.1),

and acts trivially on the rest of the lattice. The transformation B gives the final

charges,

~Q′
e = (p(p− 1),−1, p− 1, 0, 0, · · · , 0) (6.40)

~Q′
m = (p− 1, 0, 1, 1, 0, · · ·0). (6.41)

Since the second entry in ~Q′
m vanishes, the D6 brane charge in the final configu-

ration vanishes as is needed for the Cardy limit. From the second entry in ~Q′
e we

see that |p1′| = 1, and we also have that, | ~Q′2
m| = 2. Since I is given by, eq.(6.32),

we see that condition eq.(5.14) is now met and the final set of charges are in the

Cardy limit.

To obtain an example with all final charges which are non-zero being much big-

ger than unity we can scale the initial charges, so that ( ~Qe, ~Qm) → (λ~Qe, λ ~Qm), λ≫
1, and now take,

p≫ λ. (6.42)

Another example is as follows. We take,

~Qe = (q0,−p1, 0, 0, · · · , 0) (6.43)

~Qm = (0, 0, p2, p2, 0, · · · , 0), (6.44)

with

|q0| ∼ |p1|. (6.45)

This system is not in the Cardy limit.

Applying the O(6, 22) transformation which acts non-trivially only on the 4

dimensional sublattice gives by the first two factors of H in eq.(1.1) and has the

form,

B = (













1 0 0 0

1 1 1 −1

1 0 1 0

−1 0 0 1













), (6.46)
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gives the final charges,

~Q′
e = (q0, q0 − p1, q0,−q0, 0 · · ·0) (6.47)

~Q′
m = (0, 0, p2, p2, 0, · · · ). (6.48)

As long as the condition,

|q0p1| ≫ 6(p1 − q0)
2(p2)2 (6.49)

is met this final configuration satisfies eq.(5.14) and is in the Cardy limit.

6.5 More Details on Changing the Charges

Two results of relevance to section 3.4 will be derived here.

First, we show that an SL(2,Z) matrix of the form, eq.(5.96), can always be

found where a, b meet the conditions, eq.(5.97).

The integers, m,n are determined in terms of the value of α for the altered

charges, eq.(5.85). These can be taken to be coprime. Thus an SL(2,Z) matrix

can always be found of the form,

A′ = (

(

a′ b′

m n

)

) (6.50)

The integers, a′, b′ satisfy the condition,

det(A) = a′n− b′m = 1. (6.51)

From here it follows that,
[

a′

m

]

=

[

b′

n

]

(6.52)

where [a
′

m
] denotes the integer part of | a′

m
|, and similarly for [ b

′

n
]. Now, the allowed

values of integers, a′, b′, which satisfy eq.(6.51) are not unique. One can see that

if a′, b′ satisfy eq.(6.51) then so do,

a = a′ −
[

a′

m

]

m (6.53)

b = b′ −
[

a′

m

]

n (6.54)
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From eq.(6.52) it follows that the relations in eq.(5.97) are valid. The resulting

SL(2,Z) transformation is then given in eq.(5.96).

Next we show that starting with the charges, eq.(5.98), and applying the

SL(2,Z) transformation, eq.(5.96), followed by an O(6, 22,Z) transformation,

gives rise to the charges, eq.(5.101). The SL(2,Z) transformation acting on

eq.(5.98) gives the charges,

~̂
Qe = (aq̃0,−ap̃1, bp̃i, 0, 0, 1, 0)

~̂
Qm = (mq̃0,−mp̃1, np̃i, 1, 0, 0, 0). (6.55)

Next, we determine the O(6, 22,Z) transformation. Consider a four dimen-

sional subspace of the charge lattice, where the metric, eq.(3.27), is, H⊕H. The

following matrix is an element of O(2, 2,Z),

(













1 0 0 0

0 1 q 0

0 0 1 0

−q 0 0 1













), (6.56)

for any q ∈ Z. Now starting with the charges, eq.(6.55), consider such a trans-

formation, with q = mp̃1, acting on the charges lying in the first Hyperbolic

subspace and the second last Hyperbolic subspace, as defined in eq.(3.27). And

next such a transformation, with q = (ap̃1 + 1), acting on the charges in the first

Hyperbolic subspace and the last Hyperbolic subspace, as defined in eq.(3.27).

This takes the charges in eq.(6.55) to their final values in eq.(5.101).

6.6 Some more details on the Isometry Analysis

of Section 5

In this section we will derive all the isometries preserved by the metric eq.(5.124).

The Killing vectors must satisfy the conditions given by eq.(5.128). The (θ1, θ1), (θ2, θ2), (θ1, θ2)

components of this equation take the form,

∂θ1ξ
θ1 = 0
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∂θ2ξ
θ2 = 0

∂θ1ξ
θ2 + ∂θ2ξ

θ1 = 0. (6.57)

The (φ1, φ1), (φ2, φ2), (φ1, φ2), components are,

im1ξφ1 + α2ξθ1 sin θ1 cos θ1 = 0

im2ξφ2 + β2ξθ2 sin θ2 cos θ2 = 0

im1ξφ2 + im2ξφ1 − sin θ1 cos θ2ξ
θ1 − sin θ2 cos θ1ξ

θ2 = 0 (6.58)

The (ψ, ψ), (ψ, φ1), (ψ, φ2), components are,

im3ξψ = 0

im1ξψ + im3ξφ1 − sin θ1ξ
θ1 = 0

im2ξψ + im3ξφ2 − sin θ2ξ
θ2 = 0 (6.59)

The (θ1, φ1), (θ2, φ2), (θ1, φ2), (θ2φ1), components are,

∂θ1ξ
γgγφ1 + im1ξ

θ1 = 0

∂θ2ξ
γgγφ2 + im2ξ

θ2 = 0

∂θ1ξ
γgγφ2 + im2ξ

θ1 = 0

∂θ2ξ
γgγφ1 + im1ξ

θ2 = 0 (6.60)

Finally the (θ1, ψ), (θ2, ψ), components are,

∂θ1ξ
γgγψ + im3ξ

θ
1 = 0

∂θ2ξ
γgγψ + im3ξ

θ
2 = 0 (6.61)

Setting m1 = m2 = m3 = 0 we have from the (ψ, φ1) and (ψ, φ2) components

that, ξθ1 = ξθ2 = 0. It then follows from the remaining equations that there are

only three Killing vectors of this type. These are, ∂ψ, ∂φ1, ∂φ2 , which have already

been identified above.

Next setting m1 6= 0, m2 6= 0, m3 6= 0 we have, from the equation for (ψ, ψ),

(φ1, φ1) and (ψ, φ1) components that,

−α
2 cos θ1
m1

ξθ1 =
1

m3
ξθ1 , (6.62)
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from which we conclude that

ξθ1 = 0. (6.63)

Similarly we learn that ξθ2 = 0. From the (φ1, φ1), (φ2, φ2), (ψ, ψ), components it

then follows that,

ξµ = 0 ∀ µ, (6.64)

leading to the conclusion that there is no Killing vector of this type.

We will now set m1 = m2 = 0 and m3 6= 0. The (φ1, φ1) and (φ2, φ2) compo-

nents give, respectively, ξθ1 = 0 and ξθ2 = 0. The (ψ, γ) components for γ = ψ, φ1

and φ2 give ξψ = 0, ξφ1 = 0 and ξφ2 = 0 respectively. Thus we have no killing

vector with m1 = m2 = 0 and m3 6= 0.

Let us now setm2 = m3 = 0 andm1 6= 0. Considering the (φ2, φ2) component,

we get ξθ2 = 0. From the (φ1, φ1), (φ1, φ2) and (ψ, φ1) components we get,

ξφ1 = −
(

ξθ1

im1

)

α2 sin θ1 cos θ1

ξφ2 =

(

ξθ1

im1

)

sin θ1 cos θ2

ξψ =

(

ξθ1

im1

)

sin θ1 . (6.65)

The contravariant components of ξ can be shown to be

ξφ1 = −
(

ξθ1

im1

)

cot θ1

ξψ =

(

ξθ1

im1

)

cosec θ1 , (6.66)

and ξφ2 = 0. We still have to satisfy the remaining nontrivial equations. The

(θ1, φ1) component of the killing equation

∂θ1ξ
φ1gφ1φ1 + ∂θ1ξ

ψgψφ1 + im1ξ
θ1 = 0 , (6.67)

gives

− 1

m1

(1 + α2) +m1 = 0 . (6.68)

Thus we must have

m1 = ±
√
1 + α2 . (6.69)
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6.6 Some more details on the Isometry Analysis of Section 5

It is straightforward to check that the (θ1, φ2) and (θ1, ψ) components of the killing

equation are satisfied. All other components are satisfied trivially provided ξθ1 is

independent of θ1, θ2. As a result we get two linearly independent killing vectors

corresponding to the two roots of m1:

ξ1 = ei
√
1+α2φ1

(

∂θ1 +
i√

1 + α2
cot θ1∂φ1 −

i√
1 + α2

cosec θ1∂ψ

)

,

ξ2 = ξ∗1 . (6.70)

In a similar way we can obtain two more linearly independent killing vectors upon

setting m1 = m3 = 0 and m2 6= 0. We find

ξ3 = ei
√

1+β2φ1

(

∂θ2 +
i

√

1 + β2
cot θ2∂φ2 −

i
√

1 + β2
cosec θ2∂ψ

)

,

ξ4 = ξ∗3 . (6.71)

Let us now set m1 6= 0, m2 6= 0 and m3 = 0. The (ψ, φ1) and (ψ, φ2) compo-

nents together gives

im1ξψ − sin θ1ξ
θ1 = 0

im2ξψ − sin θ2ξ
θ2 = 0 . (6.72)

Eliminating ξψ from the above two equations, we find

ξθ1

ξθ2
=
m1 sin θ2
m2 sin θ1

. (6.73)

Since ξθ1 is independent of θ1 and ξ
θ2 is independent of θ2, the above equation can

be met only if ξθ1 is proportional to sin θ2 and vice versa. From ∂θ1ξ
θ2+∂θ2ξ

θ1 = 0

we find ∂θ1∂θ2ξ
θ2 = 0, indicating the proportionality constants must be zero. From

the above discussion, we get ξθ1 = ξθ2 = ξψ = 0. It is now easy to see from the

(φ1, φ1) and (φ2, φ2) components of the killing equation that ξφ1 = ξφ2 = 0.

And hence we don’t have any killing vector for the above choice of m1, m2, m3.

In a similar manner, we can show hat we don’t have any nontrivial solution

to the killing equations when m1 6= 0, m3 6= 0 and m2 = 0 as well as when

m2 6= 0, m3 6= 0 and m1 = 0.

In summary, the metric, eq.(5.124), has seven Killing vectors, given in eq.(5.129).
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6.7 General canonical form of charge vector in Γ6,6

6.7 General canonical form of charge vector in

Γ6,6

We start with a charge vector ~Q ∈ Γ2,2, where Γ2,2 = H⊕H, is the 4-dimensional

lattice made out of two 2-dimensional Hyperbolic lattices, H. In components, ~Q

takes the form,

~Q = (a,−b, c, d). (6.74)

The lattice, Γ2,2, is invariant under the action of O(2, 2,Z). We show that using

an SL(2,Z)× SL(2,Z) ∈ O(2, 2, Z) the vector, ~Q, can be brought to the form,

~Q = (gcd( ~Q),
~Q2

gcd( ~Q)
, 0, 0), (6.75)

where,

gcd( ~Q) = gcd(a, b, c, d), (6.76)

and

~Q2 = ~Q · ~Q. (6.77)

Note that the only non-vanishing components in eq.(6.75) lie in the first H sub-

lattice.

It is useful for this purpose to represent ~Q as a 2× 2 matrix,

Q = (

(

a −b
c d

)

). (6.78)

The first SL(2,Z), which we denote as SL(2,Z)T , acts on the left and performs

row operations, while the second SL(2,Z), which we denote as SL(2,Z)U , acts

on the right and carries out column operations. If A ∈ SL(2,Z)T , B ∈ SL(2,Z)U ,

then under their action,

Q→ AQB. (6.79)

Note that ~Q2 = det(Q). We will show that A,B can be found which bring Q to

the form,

Q = (

(

gcd( ~Q) 0

0 det(Q)

gcd(~Q)

)

) (6.80)

104



6.7 General canonical form of charge vector in Γ6,6

This is equivalent to ~Q taking the form, eq.(6.75).

It is enough to prove this result for the case when gcd( ~Q) = 1, in which case,

eq.(6.80) becomes,

Q = (

(

1 0

0 det(Q)

)

). (6.81)

The more general result, eq.(6.80), then follows, by considering the vector, 1

gcd(~Q)
~Q,

which has unit value for its gcd. In the discussion below we will sometimes use

to the notation,

gcd(Q) ≡ gcd( ~Q) = gcd(a, b, c, d). (6.82)

The proof is as follows. Given any 2 integers, Euclid gives us an algorithm

to arrive at their gcd in the following fashion. Subtract the smaller of the 2

numbers from the larger and then if the result is still larger than the smaller

number continue this operation till the result becomes otherwise. Then start

subtracting the new smaller number from the new larger number and continue

this set of steps till one of the numbers becomes zero at which point the other

number is the gcd. If the two integers are a, c, the two elements of the first column

of matrix, Q, eq.(6.78), then this sequence of operations can be implemented by

an element of Sl(2,Z)T which acts on the left and carries out row operations.

The resulting form of Q is,

Q = (

(

a′ b′

0 d′

)

), (6.83)

where a′ = gcd(a, c). Note that gcd(Q) is preserved by this operation. Since

gcd(Q) = 1, to begin with, we learn that,

gcd(a′, b′, d′) = 1. (6.84)

Now we come to the crucial step. Let {p1, · · · pr}, be the set of distinct primes

which divide d′ but do not divide b′. Let m = Πpi, be the product of all these

primes. One can show that the two numbers, d′, and, a′m+ b′, are coprime. Let

p′ be a prime that divides d′, then if it does not divide b′ it must divide m (by

construction) and thus cannot divide a′m + b′. If on the other hand p′ divides

b′, it cannot divide m (again by construction) and also it cannot divide a′ (since
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6.7 General canonical form of charge vector in Γ6,6

eq.(6.84) is valid), and therefore p′ cannot divide a′m + b′. Thus, we learn that

gcd(d′, a′m+ b′) = 1 and these two numbers are coprime.

We use this result to bring Q, eq.(6.83), to the form, eq.(6.81). First, an

SL(2,Z)U transformation can be carried out,

Q→ Q(

(

1 m′

0 1

)

) = (

(

a′ a′m+ b′

0 d′

)

). (6.85)

Since gcd(a′m + b′, d′) = 1, we can use Euclid’s algorithm as in the discussion

above to now find an SL(2,Z)U transformation which bring Q to the form,

Q = (

(

a′′ 1

c′′ d′′

)

). (6.86)

Next, further SL(2,Z)T×SL(2,Z)U tranformations can be carried out to subtract

the second column from the first a′′ times, and the first row from the second d′′

times. This followed by a row- column interchange operation gives Q in the

form, (

(

1 0

0 u

)

). Since these operations preserve the determinant, we learn that

u = det(Q), leading to eq.(6.81).

We end by making a few points. First, note that this argument holds for space-

like, time-like and null charge vectors, Q. Second, it follows from our analysis

that there are two independent invariants for SL(2,Z) × SL(2,Z). These are

det(Q) and gcd(Q). Of these det(Q) is an invariant of the continuous group,

while gcd(Q) is a discrete invariant. Third, if instead of Γ2,2 we start with a

lattice which is the direct sum of more than two copies of H, a similar argument

can be used sequentially on the first two H sublattices, then the first and third

H sublattices etc, to finally bring the charge vector to the form,

~Q = (gcd( ~Q),
~Q2

gcd( ~Q)
, 0, 0, · · · , 0, 0). (6.87)

In particular this is true for Γ6,6 which consists of six copies of H. Finally, if

there are two charge vectors, ~Qe, ~Qm, then the above argument can be used to

put one of them, say ~Qe, in the form, eq.(6.87). Further transformations which
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6.7 General canonical form of charge vector in Γ6,6

act trivially on the first Hyperbolic sublattice will keep ~Qe invariant. Using these

transformations ~Qm can now be brought to the form,

~Qm = (α, β, γ, δ, 0, 0 · · · , 0, 0), (6.88)

so that only the components in the first two Hyperbolic sublattices are non-

vanishing. These results apply in general to the cases when ~Q2
e,
~Q2
m, have space-

like, time-like or null norms.
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Chapter 7

Conclusions and Open Questions

Herein, we list the conclusions of the various lines of inquiry that have been

pursued in the four chapters after the introduction, with each point in the list

labeled by the corresponding chapter number:

1. The exact spectrum of dyons in four dimensions and of spinning black

holes in five dimensions in CHL compactifications can be determined us-

ing a Borcherds product representation of level N Siegel modular forms

of Sp(2,Z). Various elements in the Borcherds product have a natural

interpretation from the perspective of 4d-5d lift. The Hodge anomaly is

identified the contribution of bound states of Type-IIB KK5-brane with

momentum. The remaining piece is interpreted as arising from the sym-

metric product of the orbifolded D1-D5-P system. The appearance of an

underlying chiral bosonic string on a genus two Riemann surface in this con-

struction has a natural interpretation as the Euclidean worldsheet of theK3

wrapped M5 brane on a string web in orbifolded theory. By factorization,

this connection with the Siegel modular form can be made precise. Fur-

ther, we have seen that a very rich and interesting mathematical structure

underlies the counting of BPS dyons and black holes. Given the relation of

Siegel modular forms to Generalized Kac-Moody algebras [18, 19, 23, 92],

their appearance in the counting is perhaps indicative of a larger under-

lying symmetry of string theory. If so, investigating this structure further
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might prove to be a fruitful avenue towards uncovering the full structure of

M-theory.

2. the interpretation of the proposed dyon degeneracy formula presents many

subtleties. It is unlikely that the formula is valid in all regions of moduli

space for all charges in a way envisioned in [4, 5] that depends only on the

three invariants Q2
e/2, Q

2
m/2, and Qe ·Qm. We summarize below our obser-

vations and what we believe would be the consistent physical interpretation

of the dyon degeneracy formula.

• It is clear that the three invariants (Q2
e/2, Q

2
m/2, Qe · Qm) do not

uniquely specify the state and the degeneracy will depend on addi-

tional data. This is natural because the arithmetic duality group has

many more invariants than the continuous duality group. We have

identified a particular invariant I which determines when the genus-

two partition function is adequate but this is not the end of the story.

To illustrate this point, let us consider an even more striking example

of a quarter-BPS lightlike state for which additional data is required to

specify the degeneracy of states.1 Consider a perturbative BPS state

that is purely electric in the Type-IIA frame carrying winding w along

a circle of the T2 factor and momentum n along the same circle. In

the heterotic frame it corresponds to a state with w NS5-branes wrap-

ping T4 × S1 with momentum n along the S1. For nonzero n and w

the state carries arbitrary left-moving oscillations NL = nw and has

entropy 2π
√
2
√
nw. Unlike a similar heterotic electric state which is

half-BPS, these states are quarter-BPS because both right and left

movers carry supersymmetry for the Type-II string. Now, for all such

states, all three invariants (Q2
e/2, Q

2
m/2, Qe · Qm) vanish and so does

the discriminant. Thus there is a large set of legitimate quarter-BPS

states with the same values for the three invariant, namely zero, but

very different entropy depending on the values of n and w. The de-

1We thank Boris Pioline for discussions on this point.
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generacy of such states cannot possibly be captured by the genus-two

partition function. This example illustrates that additional data might

be required to determine the degeneracy of states, although alternative

explanations are possible. The difference might also be attributed to

a difference between the absolute degeneracy of states and the super-

symmetry index computed by the dyon degeneracy formula.

• The states with negative discriminant appear problematic at first be-

cause there is no black hole corresponding to them. We have seen that

they can nevertheless have a sensible physical realization. In the spe-

cific example considered here the states are described as a two-centered

configuration in supergravity. These configuration have the right de-

generacy coming from the angular momentum multiplicity consistent

with the prediction of the dyon degeneracy formula. We would like

to propose that other negative discriminant states also exist and can

be realized as complicated multi-centered configurations. The super-

gravity analysis also indicates that existence of these states is moduli

dependent. The states exist over a large region of the moduli space

but cannot exist in certain regions of the moduli space because the dis-

tance between the two centers determined by Denef’s constraint goes

to infinity. This shows that generically there are walls of marginal sta-

bility in the moduli space that separate regions where the states exist

from regions where they do not. This is not surprising since even in

field theory, quarter-BPS states in N = 4 theories are known to have

curves of marginal stability [49, 61]. It is possible that this moduli

dependence is related to the need to change the choice of contour to

obtain an S-duality invariant answer. As these lines of marginal sta-

bility have a simple description in the string web picture, it might be

possible to understand the change of contour from the M-theory lift of

the string web.

• Despite these subtleties, it is also true that the dyon partition func-

tion has been derived from various points of views for specific charge
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configurations and in specific regions of moduli space. Considering

the caveats above, a conservative interpretation of these results in our

view is that the dyon degeneracy formula given in terms of the genus-

two Siegel modular forms is exact and valid for specific charges in

the specific regions of moduli spaces as well as for all charges related

by a duality transformations in the dual regions of the moduli space.

This already contains highly nontrivial information about the degen-

eracies of quarter-BPS bound states of various branes in the theory.

This can be seen quite generally from the point of view of the string

web picture. For a given charge configuration, and in a given region

of the moduli space, if a string web is stable and can be lifted to a

wrapped K3-wrapped M5-brane with a genus-two world sheet, then

one can derive the degeneracy from the genus-two partition function

of the left-moving heterotic string as has been done in [3, 7, 39]. How-

ever, as one moves around in the moduli space, the string web can

become unstable. Once the string web is unstable, the dyon degenera-

cies can no longer be obtained from the genus-two partition function.

Thus the derivation of the dyon partition function is valid in only a

certain region of the moduli space for a given charge configuration.

Moreover, for some quarter-BPS state, it may not be possible at all

to represent the state as a string web that lifts to a K3-wrapped M5-

brane. For example, the Type-II perturbative states discussed above

lift to a circle-wrapped M2-brane with genus-one topology and not to

a K3-wrapped M5-brane with genus-two topology. A circle-wrapped

M2-brane is nothing but the Type-II string and hence for these states

the counting is correctly done using the genus-one partition function

of the Type-II string and not using a genus-two partition function of

the heterotic string. These examples clearly delineate the range of

applicability of the dyon degeneracy formula.

3. We have seen that a simple physical argument allows one to compute the

degeneracies of decadent dyons in N = 2 and N = 4 supersymmetric Yang-
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Mills theory with little work. These results are in agreement with the

known results obtained using much more elaborate and sophisticated index

computations. Our results could also be viewed as a test of the reasoning

underlying the wall-crossing formula inN = 2 theories and of the degeneracy

formula near the curve of decay in N = 4 theories. This method of course

allows one to count decadent dyons with more general charges in general

gauge groups not hitherto considered in the field theory literature. It would

be interesting to test such predictions using index computations.

It may seem surprising that this almost classical computation is capable of

capturing the quantum degeneracies precisely. In this context, we note that

a number of essentially quantum ingredients have implicitly gone into our

reasoning. First, the shift of −1/2 to the classical field angular momentum

from the fermionic zero modes in 4.4 is essentially quantum. Second, the

angular momentum multiplicities of 2J + 1 are also quantum. What is in-

teresting is that after incorporating this information into an almost classical

reasoning, one can determine the degeneracies exactly.

Finally, we have also seen that the dyons counted in field theory are not

accounted for by the dyon partition functions recently derived in the context

of string theory dyons except for one special case. This is because they lie

in a different duality orbit than the dyons for which the dyon partition

function has been derived.

4. This chapter dealt with two main results. First, we have shown that a

generic supersymmetric or non-supersymmetric system of charges cannot be

brought to the Cardy limit using the duality symmetries. Second, we have

found that the required non-genericity to be able to bring a set of charges

to the Cardy limit is interestingly different in the supersymmetric and the

non-supersymmetric cases. For large charge, in the non-supersymmetric

case but not the supersymmetric one, we can always find a set of charges

lying close by which can be brought to the Cardy limit. The required shift
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in the charges satisfy the condition 1,

∆Q

Q
∼ 1√

Q
. (7.1)

These results were proved for the D0−D4 system and the D0−D6 system.

We expect them to be more general.

For example, our analysis of the D0−D4 system, leading to the conclusion

that generic charges cannot be brought to the Cardy limit, immediately

applies to all charges which satisfy the condition,

~Qe · ~Qm = 0. (7.2)

Similarly, the analysis of the D0−D6 system applies to all charges meeting

the condition,

~Q2
e =

~Q2
m = 0. (7.3)

with the conclusion that all such charges can never be brought to the Cardy

limit. Also, all the results immediately apply to other charges which lie in

the same duality orbit as the D0-D4 or D0-D6 systems.

In our analysis we did not determine all the necessary and sufficient condi-

tions that need to be met to be able to bring a set of charges to the Cardy

limit. To obtain a more complete understanding of these conditions, for a

general set of charges, it would be useful to start with a classification of all

the discrete invariants of SL(2,Z) × O(6, 22,Z). It should be possible to

express the required conditions, for any charge configuration to be brought

to the Cardy limit, in terms of these invariants. We leave such an analysis

for the future.

Another approach would be to bring the charges to a canonical form and

then carry out the analysis for general charges of this form. As long as the

charges lie in the Γ(6,6) sublattice, made out of the 6 Hyperbolic sublattices,

1More correctly, the condition in the D0−D4 case is given in eq.(5.93), where δ is a small

number that does not scale with Q, and in the D0 −D6 case, with q0, p
0 ≫ 1, it is given by,

∆Q

Q
∼ 1

Q
.
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H in eq.(3.27), one can show using the duality symmetries that the electric

charges, ~Qe, can always be made to lie only in first hyperbolic sublattice,

while the magnetic charges, ~Qm, take non-trivial values in the first two

hyperbolic sublattices. These results are discussed in appendix E. One

expects these results to be further generalized, when charges lying in the

E8×E8 sublattice are also excited. For example, it has shown that a general

time-like vector can always be made to lie in one Hyperbolic sublattice, (see

the discussion in 1 [93]). Further analysis along these lines is also left for

the future.

Our conclusions in the supersymmetric case are in accord with recent results

obtained for the subleading corrections to the entropy, going like 1/Q. If the

system could be brought to the Cardy limit these corrections would be of

the form, eq.(5.9), with the central charge receiving 1/Q corrections. The

results for the first subleading corrections, which have been obtained by

directly counting the dyonic degeneracy and computing the four derivative

corrections using the Gauss-Bonnet term, are now known not to be generally

of this form- See [35], [94], [95].

One of the main motivations of this investigation was to ask how far the

AdS3/CFT description can take us in understanding the entropy of non-

supersymmetric black holes. If the charges lie in the Cardy limit, then at

least in some region of moduli space, the black hole with these charges can

be viewed as a BTZ black hole in AdS3 space. The microscopic states which

account for the black hole entropy can then be understood as states in a

1 + 1 dim. CFT, and their entropy can be easily found in terms of the

Cardy formula. Our result, that in the non-supersymmetric case a generic

set of charges, after a small shift, can be brought to the Cardy limit is quite

promising in this context. It tells us that such a microscopic counting for

the leading order entropy is available for generic charges, at least in some

region of moduli space.

The main complication in determining the entropy microscopically is then

1Also, V.V.Nikulin, Math.USSR Izvestija,14(1980),pg.103.
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it’s possible moduli dependence. This is a particularly important issue in

the non-supersymmetric case. In the Cardy formula the entropy is de-

termined by the central charge. Now, the central charge is protected by

anomaly considerations and is therefore moduli independent. Thus for the

charges which can be brought to the Cardy limit, the entropy must be

moduli independent, at least for small shifts of moduli 1. Since the required

fractional shift to get to such a configuration is small, of order, O(1/
√
Q),

eq.(7.1), one would hope that this is enough to prove that the leading en-

tropy is generally moduli independent.

Once the moduli independence of the entropy is established, it is easy to

furnish an argument, as follows, leading to the determination of the entropy

microscopically. The entropy must now be a function only of the charges.

And the dependence on the charges must enter through invariants of the

discrete duality group, which is an exact symmetry of string theory. For the

case we are studying here, one of these invariants, I, eq.(1.7), is also an in-

variant of the full continuous group, SL(2,R)×O(6, 22,R). The others are

discrete invariants. Now the discrete invariants are not continuous functions

of charge and typically undergo big jumps when the charges are changed

only slightly 2 It is physically reasonable to demand that for large charges

the leading order entropy does not undergo such discontinuous jumps. This

would mean that any dependence on the discrete invariants must be sub-

dominant at large charge 3. The resulting functional dependence on the

continuous invariant can then be determined by taking any convenient set

of charges, which gives rise to a non-vanishing value for this invariant. In

particular one can always find charges in the Cardy limit for which this in-

1Larger shifts might result in a jump, akin to a phase transition, where the formula for the

entropy gets significant corrections.
2For example consider the discrete invariant, gcd(Qi

eQ
j
m − Qj

eQ
i
m, Qk

eQ
l
m −

Ql
eQ

k
m), ∀i, j, k, l ∈ {1, 2, · · · , 28}. Since the gcd can vary discontinuously, this invariant

can change by big jumps.
3This argument was given to us by Shiraz Minwalla, we thank him for the discussion on

this point and related issues.
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variant does not vanish. For such a set of charges a microscopic calculation

of the entropy is often possible as was mentioned above, and this would

then determine the entropy for all general charges.

These arguments should also apply when one includes angular momentum

in four dimensions, ~J . In this case there are now two invariants of the

continuous duality symmetries, and the Rotation group, I and ~J2. An

argument along the above lines would fix the dependence on both these

invariants. Note that the resulting expression for the entropy would then

also be valid when I, and more generally all the charges, ~Qe, ~Qm vanish,

leading to microscopic determination of the entropy of an extreme Kerr

black hole in four dimensions. It is easy to check that the resulting answer

is in agreement with the Bekenstein-Hawking entropy in this case.

The arguments above, whose purpose is to provide a microscopic under-

standing of the entropy, are already known to have counterparts on the

gravity side. This makes us hopeful that they can be more fully fleshed out

on the microscopic side as well. We end with a brief discussion of these

issues from the gravity point of view.

Recent advances have now established that the attractor mechanism is valid

for all extremal black holes, supersymmetric as well as non-supersymmetric

ones (See [96], [97], [98], [99], for early work. More recent advances are

in, e.g, [100],[101], [102], [103], [104], [105], [106], [107], [108], [109], [110],

[111], [112], [113], [114], [115], see also, [116], and references therein). This

shows that the entropy is not dependent on the moduli 1. Once the moduli

independence is established the duality symmetries allow the entropy for

general charges to be related to the entropy which arise for a set of charges

in the Cardy limit. In the supergravity approximation, which is valid at

large charge, the duality group is enhanced to the full continuous group,

1More correctly this shows that the entropy is independent of small shifts in the moduli.

There can be discontinuous jumps in the entropy as the moduli are varied, see ref Moore and

Denef for related recent developments. However, this might be less of a worry if we are interested

in the entropy of a single-centered black hole.
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in the case we are considering here to SL(2,R) × O(6, 22,R). A duality

transformation will act on both the charges and the moduli, and to begin

with the entropy could have been a duality invariant function of the moduli

and charges. However, once we have established that the entropy is moduli

independent it must be an invariant of the charges alone. Since there is

only one duality invariant of the continuous group 1, I, the entropy for a

general set of charges can be related to the entropy for charges in the Cardy

limit, with the same value of this invariant.

In sum, in this dissertation, we have explored various aspects of dyonic black hole

entropy counting in N = 4 string theories. We have arrived at an exact counting

formula for certain classes of supersymmetric black holes and this has enabled

us to investigate non-perturbative aspects such as lines of marginal stability in

these theories. We have also made preliminary advances in arriving at a full

microscopic understanding of non-supersymmetric extremal black holes in these

theories. Needless to say, interesting new questions are ripe in this field and offer

the promise of rich new areas of research.

1We are neglecting angular momentum, ~J , here.

117



References

[1] A. Strominger and C. Vafa, Microscopic origin of the bekenstein-hawking

entropy, Phys. Lett. B379 (1996) 99–104, [hep-th/9601029]. vi, 62

[2] A. Castro and S. Murthy, Corrections to the statistical entropy of five

dimensional black holes, JHEP 06 (2009) 024, [0807.0237]. vi

[3] A. Dabholkar and S. Nampuri, Spectrum of dyons and black holes in chl

orbifolds using borcherds lift, hep-th/0603066. vi, 29, 31, 56, 111

[4] R. Dijkgraaf, E. P. Verlinde, and H. L. Verlinde, Counting dyons in n = 4

string theory, Nucl. Phys. B484 (1997) 543–561, [hep-th/9607026]. vii,

24, 25, 26, 48, 109

[5] D. P. Jatkar and A. Sen, Dyon spectrum in chl models, hep-th/0510147.

vii, 9, 10, 11, 23, 24, 25, 56, 94, 109

[6] A. Dabholkar, D. Gaiotto, and S. Nampuri, Comments on the spectrum of

chl dyons, hep-th/0702150. vii, 22, 48, 56, 58, 59

[7] D. Gaiotto, Re-recounting dyons in n = 4 string theory, hep-th/0506249.

vii, 21, 29, 31, 48, 56, 111

[8] A. Dabholkar, K. Narayan, and S. Nampuri, Degeneracy of Decadent

Dyons, JHEP 03 (2008) 026, [0802.0761]. viii

[9] S. Nampuri, P. K. Tripathy, and S. P. Trivedi, Duality Symmetry and the

Cardy Limit, JHEP 07 (2008) 072, [0711.4671]. viii

118

http://xxx.lanl.gov/abs/hep-th/9601029
http://xxx.lanl.gov/abs/0807.0237
http://xxx.lanl.gov/abs/hep-th/0603066
http://xxx.lanl.gov/abs/hep-th/9607026
http://xxx.lanl.gov/abs/hep-th/0510147
http://xxx.lanl.gov/abs/hep-th/0702150
http://xxx.lanl.gov/abs/hep-th/0506249
http://xxx.lanl.gov/abs/0802.0761
http://xxx.lanl.gov/abs/0711.4671


REFERENCES

[10] A. Sen, An introduction to non-perturbative string theory,

hep-th/9802051. 4

[11] A. Dabholkar, F. Denef, G. W. Moore, and B. Pioline, Precision counting

of small black holes, JHEP 10 (2005) 096, [hep-th/0507014]. 5

[12] J. Igusa, On siegel modular varieties of genus two, Amer. J. Math. 84

(1962) 175–200. 9

[13] J. Igusa, On siegel modular varieties of genus two (ii), Amer. J. Math. 86

(1962) 392–412. 9

[14] T. Ibukiyama, On siegel modular varieties of level 3, Int. J. Math 2(1)

(1991) 17–35. 9, 12

[15] S. Hayashida and T. Ibukiyama, Siegel modular forms of half integral

weights and a lifting conjecture., Journal of Kyoto Univ 45 (2005). 9, 12

[16] H. Aoki and T. Ibukiyama, Simple graed rings of siegel modular forms,

differential operators and borcherds products, International Journal of

Mathematics 16 (2005) 249–279. 9, 12, 14, 15, 92, 93, 94

[17] M. Eichler and D. Zagier, The theory of jacobi forms, Birkhauser (1985).

10

[18] R. Borcherds, Automorphic forms on os+2; 2 (r) and infinite products,

Invent.Math 120 (1995) 161–213. 12, 108

[19] V. A. Gritsenko and V. V. Nikulin, Automorphic forms and lorentzian

kac–moody algebras. part i, alg-geom/9610022. 12, 108

[20] V. Gritsenko, Modular forms and moduli spaces of abelian and k3 surfaces,

St. Petersburg Math. Jour. 6:6 (1995) 1179–1208. 12

[21] R. Dijkgraaf, G. W. Moore, E. P. Verlinde, and H. L. Verlinde, Elliptic

genera of symmetric products and second quantized strings, Commun.

Math. Phys. 185 (1997) 197–209, [hep-th/9608096]. 12, 18

119

http://xxx.lanl.gov/abs/hep-th/9802051
http://xxx.lanl.gov/abs/hep-th/0507014
http://xxx.lanl.gov/abs/alg-geom/9610022
http://xxx.lanl.gov/abs/hep-th/9608096


REFERENCES

[22] D. Gaiotto, A. Strominger, and X. Yin, New connections between 4d and

5d black holes, hep-th/0503217. 12, 17, 19, 48

[23] V. A. Gritsenko and V. V. Nikulin, Automorphic forms and lorentzian

kac-moody algebras. part ii, alg-geom/9611028. 14, 108

[24] V. Gritsenko, Elliptic genus of calabi-yau manifolds and jacobi and siegel

modular forms, . 14

[25] D. Shih, A. Strominger, and X. Yin, Counting dyons in n = 8 string

theory, JHEP 06 (2006) 037, [hep-th/0506151]. 19, 48, 56

[26] A. Dabholkar and J. A. Harvey, Nonrenormalization of the superstring

tension, Phys. Rev. Lett. 63 (1989) 478. 19, 36

[27] A. Dabholkar, G. W. Gibbons, J. A. Harvey, and F. Ruiz Ruiz,

Superstrings and solitons, Nucl. Phys. B340 (1990) 33–55. 19, 36

[28] A. Dabholkar, F. Denef, G. W. Moore, and B. Pioline, Exact and

asymptotic degeneracies of small black holes, JHEP 08 (2005) 021,

[hep-th/0502157]. 19

[29] A. Dabholkar, F. Denef, G. W. Moore, and B. Pioline, Precision counting

of small black holes, JHEP 10 (2005) 096, [hep-th/0507014]. 19

[30] T. Kawai, K3 surfaces, Igusa cusp form and string theory,

hep-th/9710016. 19

[31] C. M. Hull, String-string duality in ten-dimensions, Phys. Lett. B357

(1995) 545–551, [hep-th/9506194]. 21

[32] E. Witten, String theory dynamics in various dimensions, Nucl. Phys.

B443 (1995) 85–126, [hep-th/9503124]. 21

[33] A. Sen, String network, JHEP 03 (1998) 005, [hep-th/9711130]. 21, 30,

54

120

http://xxx.lanl.gov/abs/hep-th/0503217
http://xxx.lanl.gov/abs/alg-geom/9611028
http://xxx.lanl.gov/abs/hep-th/0506151
http://xxx.lanl.gov/abs/hep-th/0502157
http://xxx.lanl.gov/abs/hep-th/0507014
http://xxx.lanl.gov/abs/hep-th/9710016
http://xxx.lanl.gov/abs/hep-th/9506194
http://xxx.lanl.gov/abs/hep-th/9503124
http://xxx.lanl.gov/abs/hep-th/9711130


REFERENCES

[34] O. Aharony, A. Hanany, and B. Kol, Webs of (p,q) 5-branes, five

dimensional field theories and grid diagrams, JHEP 01 (1998) 002,

[hep-th/9710116]. 21, 30, 54

[35] G. Lopes Cardoso, B. de Wit, J. Kappeli, and T. Mohaupt, Asymptotic

degeneracy of dyonic n = 4 string states and black hole entropy, JHEP 12

(2004) 075, [hep-th/0412287]. 24, 114

[36] G. Lopes Cardoso, B. de Wit, J. Kappeli, and T. Mohaupt, Black hole

partition functions and duality, JHEP 03 (2006) 074, [hep-th/0601108].

24

[37] D. Shih and X. Yin, Exact black hole degeneracies and the topological

string, JHEP 04 (2006) 034, [hep-th/0508174]. 24

[38] J. R. David and A. Sen, Chl dyons and statistical entropy function from

d1-d5 system, hep-th/0605210. 28, 48, 56

[39] A. Dabholkar and D. Gaiotto, Spectrum of chl dyons from genus-two

partition function, hep-th/0612011. 29, 31, 56, 111

[40] J. H. Schwarz, Lectures on superstring and m theory dualities, Nucl. Phys.

Proc. Suppl. 55B (1997) 1–32, [hep-th/9607201]. 30, 54

[41] K. Dasgupta and S. Mukhi, Bps nature of 3-string junctions, Phys. Lett.

B423 (1998) 261–264, [hep-th/9711094]. 30, 54

[42] E. P. Verlinde and M. Vonk, String networks and supersheets,

hep-th/0301028. 33, 54

[43] O. Bergman and B. Kol, String webs and 1/4 bps monopoles, Nucl. Phys.

B536 (1998) 149–174, [hep-th/9804160]. 34, 54

[44] A. Sen, Extremal black holes and elementary string states, Mod. Phys.

Lett. A10 (1995) 2081–2094, [hep-th/9504147]. 36

121

http://xxx.lanl.gov/abs/hep-th/9710116
http://xxx.lanl.gov/abs/hep-th/0412287
http://xxx.lanl.gov/abs/hep-th/0601108
http://xxx.lanl.gov/abs/hep-th/0508174
http://xxx.lanl.gov/abs/hep-th/0605210
http://xxx.lanl.gov/abs/hep-th/0612011
http://xxx.lanl.gov/abs/hep-th/9607201
http://xxx.lanl.gov/abs/hep-th/9711094
http://xxx.lanl.gov/abs/hep-th/0301028
http://xxx.lanl.gov/abs/hep-th/9804160
http://xxx.lanl.gov/abs/hep-th/9504147


REFERENCES

[45] A. Dabholkar, Exact counting of black hole microstates, Phys. Rev. Lett.

94 (2005) 241301, [hep-th/0409148]. 36

[46] A. Dabholkar, R. Kallosh, and A. Maloney, A stringy cloak for a classical

singularity, JHEP 12 (2004) 059, [hep-th/0410076]. 36

[47] B. Bates and F. Denef, Exact solutions for supersymmetric stationary

black hole composites, hep-th/0304094. 39, 40

[48] F. Denef, Supergravity flows and d-brane stability, JHEP 08 (2000) 050,

[hep-th/0005049]. 40

[49] O. Bergman, Three-pronged strings and 1/4 bps states in n = 4 super-

yang-mills theory, Nucl. Phys. B525 (1998) 104–116, [hep-th/9712211].

45, 54, 110

[50] A. Sen, private communication and to appear, . 45

[51] M. Stern and P. Yi, Counting yang-mills dyons with index theorems, Phys.

Rev. D62 (2000) 125006, [hep-th/0005275]. 48, 50, 53

[52] K.-M. Lee and P. Yi, Dyons in n = 4 supersymmetric theories and

three-pronged strings, Phys. Rev. D58 (1998) 066005, [hep-th/9804174].

48, 53

[53] D. Bak, K.-M. Lee, and P. Yi, Quantum 1/4 bps dyons, Phys. Rev. D61

(2000) 045003, [hep-th/9907090]. 48, 53

[54] D. Bak, K.-M. Lee, and P. Yi, Complete supersymmetric quantum

mechanics of magnetic monopoles in n = 4 sym theory, Phys. Rev. D62

(2000) 025009, [hep-th/9912083]. 48

[55] F. Denef, Quantum quivers and hall/hole halos, JHEP 10 (2002) 023,

[hep-th/0206072]. 48, 50

[56] F. Denef and G. W. Moore, Split states, entropy enigmas, holes and halos,

hep-th/0702146. 48, 52

122

http://xxx.lanl.gov/abs/hep-th/0409148
http://xxx.lanl.gov/abs/hep-th/0410076
http://xxx.lanl.gov/abs/hep-th/0304094
http://xxx.lanl.gov/abs/hep-th/0005049
http://xxx.lanl.gov/abs/hep-th/9712211
http://xxx.lanl.gov/abs/hep-th/0005275
http://xxx.lanl.gov/abs/hep-th/9804174
http://xxx.lanl.gov/abs/hep-th/9907090
http://xxx.lanl.gov/abs/hep-th/9912083
http://xxx.lanl.gov/abs/hep-th/0206072
http://xxx.lanl.gov/abs/hep-th/0702146


REFERENCES

[57] A. Sen, Walls of marginal stability and dyon spectrum in n=4

supersymmetric string theories, JHEP 05 (2007) 039, [hep-th/0702141].

48, 56

[58] A. Sen, Dyon - monopole bound states, selfdual harmonic forms on the

multi - monopole moduli space, and sl(2,z) invariance in string theory,

Phys. Lett. B329 (1994) 217–221, [hep-th/9402032]. 52

[59] J. P. Gauntlett, C. Kohl, D. Mateos, P. K. Townsend, and M. Zamaklar,

Finite energy Dirac-Born-Infeld monopoles and string junctions, Phys.

Rev. D60 (1999) 045004, [hep-th/9903156]. 54

[60] P. C. Argyres and K. Narayan, String webs from field theory, JHEP 03

(2001) 047, [hep-th/0101114]. 54

[61] P. C. Argyres and K. Narayan, String webs and the decay of

supersymmetric particles, Int. J. Mod. Phys. A16S1C (2001) 962–966,

[hep-th/0101139]. 54, 110

[62] K. Narayan, On the internal structure of dyons in \ = 4 super yang-mills

theories, arXiv:0712.3625 [hep-th]. 54

[63] H. L. Verlinde, Counting dyons in four-dimensional n=4 string theory,

Nucl. Phys. Proc. Suppl. 58 (1997) 141–148. 56

[64] J. R. David, D. P. Jatkar, and A. Sen, Dyon spectrum in generic n = 4

supersymmetric z(n) orbifolds, hep-th/0609109. 56

[65] J. R. David, D. P. Jatkar, and A. Sen, Dyon spectrum in n = 4

supersymmetric type ii string theories, hep-th/0607155. 56

[66] J. R. David, D. P. Jatkar, and A. Sen, Product representation of dyon

partition function in chl models, hep-th/0602254. 56

[67] M. C. N. Cheng and E. Verlinde, Dying dyons don’t count,

arXiv:0706.2363 [hep-th]. 56

123

http://xxx.lanl.gov/abs/hep-th/0702141
http://xxx.lanl.gov/abs/hep-th/9402032
http://xxx.lanl.gov/abs/hep-th/9903156
http://xxx.lanl.gov/abs/hep-th/0101114
http://xxx.lanl.gov/abs/hep-th/0101139
http://xxx.lanl.gov/abs/arXiv:0712.3625 [hep-th]
http://xxx.lanl.gov/abs/hep-th/0609109
http://xxx.lanl.gov/abs/hep-th/0607155
http://xxx.lanl.gov/abs/hep-th/0602254
http://xxx.lanl.gov/abs/arXiv:0706.2363 [hep-th]


REFERENCES

[68] S. Banerjee and A. Sen, Duality orbits, dyon spectrum and gauge theory

limit of heterotic string theory on t6, arXiv:0712.0043 [hep-th]. 59

[69] S. Banerjee and A. Sen, S-duality action on discrete t-duality invariants,

arXiv:0801.0149 [hep-th]. 59

[70] A. Sen, Three String Junction and N=4 Dyon Spectrum, JHEP 12 (2007)

019, [arXiv:0708.3715 [hep-th]]. 60

[71] N. Banerjee, D. P. Jatkar, and A. Sen, Adding charges to N = 4 dyons,

JHEP 07 (2007) 024, [arXiv:0705.1433 [hep-th]]. 60

[72] S. Banerjee, A. Sen, and Y. K. Srivastava, Generalities of Quarter BPS

Dyon Partition Function and Dyons of Torsion Two, arXiv:0802.0544

[hep-th]. 60

[73] C. G. Callan and J. M. Maldacena, D-brane approach to black hole

quantum mechanics, Nucl. Phys. B472 (1996) 591–610,

[hep-th/9602043]. 62

[74] J. M. Maldacena, A. Strominger, and E. Witten, Black hole entropy in

m-theory, JHEP 12 (1997) 002, [hep-th/9711053]. 62

[75] J. M. Maldacena, Black holes in string theory, hep-th/9607235. 62

[76] D. Youm, Black holes and solitons in string theory, Phys. Rept. 316

(1999) 1–232, [hep-th/9710046]. 62

[77] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri, and Y. Oz, Large

n field theories, string theory and gravity, Phys. Rept. 323 (2000) 183–386,

[hep-th/9905111]. 62

[78] J. R. David, G. Mandal, and S. R. Wadia, Microscopic formulation of

black holes in string theory, Phys. Rept. 369 (2002) 549–686,

[hep-th/0203048]. 62

124

http://xxx.lanl.gov/abs/arXiv:0712.0043 [hep-th]
http://xxx.lanl.gov/abs/arXiv:0801.0149 [hep-th]
http://xxx.lanl.gov/abs/arXiv:0708.3715 [hep-th]
http://xxx.lanl.gov/abs/arXiv:0705.1433 [hep-th]
http://xxx.lanl.gov/abs/arXiv:0802.0544 [hep-th]
http://xxx.lanl.gov/abs/hep-th/9602043
http://xxx.lanl.gov/abs/hep-th/9711053
http://xxx.lanl.gov/abs/hep-th/9607235
http://xxx.lanl.gov/abs/hep-th/9710046
http://xxx.lanl.gov/abs/hep-th/9905111
http://xxx.lanl.gov/abs/hep-th/0203048


REFERENCES

[79] R. Emparan and G. T. Horowitz, Microstates of a neutral black hole in m

theory, hep-th/0607023. 62

[80] R. Emparan and A. Maccarrone, Statistical description of rotating

kaluza-klein black holes, Phys. Rev. D75 (2007) 084006,

[hep-th/0701150]. 62

[81] G. T. Horowitz and M. M. Roberts, Counting the microstates of a kerr

black hole, arXiv:0708.1346 [hep-th]. 62

[82] G. T. Horowitz, D. A. Lowe, and J. M. Maldacena, Statistical entropy of

nonextremal four-dimensional black holes and u-duality, Phys. Rev. Lett.

77 (1996) 430–433, [hep-th/9603195]. 62

[83] A. Dabholkar, Microstates of non-supersymmetric black holes, Phys. Lett.

B402 (1997) 53–58, [hep-th/9702050]. 62

[84] A. Dabholkar, A. Sen, and S. P. Trivedi, Black hole microstates and

attractor without supersymmetry, JHEP 01 (2007) 096, [hep-th/0611143].

62

[85] K. Sfetsos and K. Skenderis, Microscopic derivation of the

bekenstein-hawking entropy formula for non-extremal black holes, Nucl.

Phys. B517 (1998) 179–204, [hep-th/9711138]. 62

[86] A. Strominger, Black hole entropy from near-horizon microstates, JHEP

02 (1998) 009, [hep-th/9712251]. 62

[87] K. Skenderis, Black holes and branes in string theory, Lect. Notes Phys.

541 (2000) 325–364, [hep-th/9901050]. 62

[88] P. Kraus and F. Larsen, Microscopic black hole entropy in theories with

higher derivatives, JHEP 09 (2005) 034, [hep-th/0506176]. 62

[89] P. Kraus and F. Larsen, Holographic gravitational anomalies, JHEP 01

(2006) 022, [hep-th/0508218]. 62

125

http://xxx.lanl.gov/abs/hep-th/0607023
http://xxx.lanl.gov/abs/hep-th/0701150
http://xxx.lanl.gov/abs/arXiv:0708.1346 [hep-th]
http://xxx.lanl.gov/abs/hep-th/9603195
http://xxx.lanl.gov/abs/hep-th/9702050
http://xxx.lanl.gov/abs/hep-th/0611143
http://xxx.lanl.gov/abs/hep-th/9711138
http://xxx.lanl.gov/abs/hep-th/9712251
http://xxx.lanl.gov/abs/hep-th/9901050
http://xxx.lanl.gov/abs/hep-th/0506176
http://xxx.lanl.gov/abs/hep-th/0508218


REFERENCES

[90] P. Kraus and F. Larsen, Partition functions and elliptic genera from

supergravity, hep-th/0607138. 62

[91] P. Kraus, Lectures on black holes and the ads(3)/cft(2) correspondence,

hep-th/0609074. 62

[92] J. A. Harvey and G. W. Moore, Algebras, bps states, and strings, Nucl.

Phys. B463 (1996) 315–368, [hep-th/9510182]. 108

[93] R. Dijkgraaf, Instanton strings and hyperkaehler geometry, Nucl. Phys.

B543 (1999) 545–571, [hep-th/9810210]. 114

[94] A. Sen, Entropy function for heterotic black holes, hep-th/0508042. 114

[95] J. R. David and A. Sen, Chl dyons and statistical entropy function from

d1-d5 system, JHEP 11 (2006) 072, [hep-th/0605210]. 114

[96] S. Ferrara, R. Kallosh, and A. Strominger, N=2 extremal black holes,

Phys. Rev. D52 (1995) 5412–5416, [hep-th/9508072]. 116

[97] A. Strominger, Macroscopic entropy of n = 2 extremal black holes, Phys.

Lett. B383 (1996) 39–43, [hep-th/9602111]. 116

[98] S. Ferrara and R. Kallosh, Supersymmetry and attractors, Phys. Rev. D54

(1996) 1514–1524, [hep-th/9602136]. 116

[99] S. Ferrara and R. Kallosh, Universality of supersymmetric attractors,

Phys. Rev. D54 (1996) 1525–1534, [hep-th/9603090]. 116

[100] A. Sen, Black hole entropy function and the attractor mechanism in higher

derivative gravity, JHEP 09 (2005) 038, [hep-th/0506177]. 116

[101] R. Kallosh, N. Sivanandam, and M. Soroush, The non-bps black hole

attractor equation, JHEP 03 (2006) 060, [hep-th/0602005]. 116

[102] R. Kallosh, From bps to non-bps black holes canonically, hep-th/0603003.

116

126

http://xxx.lanl.gov/abs/hep-th/0607138
http://xxx.lanl.gov/abs/hep-th/0609074
http://xxx.lanl.gov/abs/hep-th/9510182
http://xxx.lanl.gov/abs/hep-th/9810210
http://xxx.lanl.gov/abs/hep-th/0508042
http://xxx.lanl.gov/abs/hep-th/0605210
http://xxx.lanl.gov/abs/hep-th/9508072
http://xxx.lanl.gov/abs/hep-th/9602111
http://xxx.lanl.gov/abs/hep-th/9602136
http://xxx.lanl.gov/abs/hep-th/9603090
http://xxx.lanl.gov/abs/hep-th/0506177
http://xxx.lanl.gov/abs/hep-th/0602005
http://xxx.lanl.gov/abs/hep-th/0603003


REFERENCES

[103] P. Kaura and A. Misra, On the existence of non-supersymmetric black

hole attractors for two-parameter calabi-yau’s and attractor equations,

Fortsch. Phys. 54 (2006) 1109–1141, [hep-th/0607132]. 116

[104] S. Ferrara and R. Kallosh, On n = 8 attractors, Phys. Rev. D73 (2006)

125005, [hep-th/0603247]. 116

[105] S. Ferrara and M. Gunaydin, Orbits and attractors for n = 2

maxwell-einstein supergravity theories in five dimensions, Nucl. Phys.

B759 (2006) 1–19, [hep-th/0606108]. 116

[106] S. Bellucci, S. Ferrara, M. Gunaydin, and A. Marrani, Charge orbits of

symmetric special geometries and attractors, Int. J. Mod. Phys. A21

(2006) 5043–5098, [hep-th/0606209]. 116

[107] S. Bellucci, S. Ferrara, A. Marrani, and A. Yeranyan, Mirror fermat

calabi-yau threefolds and landau-ginzburg black hole attractors, Riv. Nuovo

Cim. 29N5 (2006) 1–88, [hep-th/0608091]. 116

[108] L. Andrianopoli, R. D’Auria, S. Ferrara, and M. Trigiante, Extremal black

holes in supergravity, hep-th/0611345. 116

[109] R. D’Auria, S. Ferrara, and M. Trigiante, Critical points of the black-hole

potential for homogeneous special geometries, JHEP 03 (2007) 097,

[hep-th/0701090]. 116

[110] S. Bellucci, S. Ferrara, and A. Marrani, Attractor horizon geometries of

extremal black holes, hep-th/0702019. 116

[111] L. Andrianopoli, R. D’Auria, S. Ferrara, and M. Trigiante, Black-hole

attractors in n = 1 supergravity, JHEP 07 (2007) 019, [hep-th/0703178].

116

[112] S. Ferrara and A. Marrani, N=8 non-bps attractors, fixed scalars and

magic supergravities, Nucl. Phys. B788 (2008) 63–88, [arXiv:0705.3866

[hep-th]]. 116

127

http://xxx.lanl.gov/abs/hep-th/0607132
http://xxx.lanl.gov/abs/hep-th/0603247
http://xxx.lanl.gov/abs/hep-th/0606108
http://xxx.lanl.gov/abs/hep-th/0606209
http://xxx.lanl.gov/abs/hep-th/0608091
http://xxx.lanl.gov/abs/hep-th/0611345
http://xxx.lanl.gov/abs/hep-th/0701090
http://xxx.lanl.gov/abs/hep-th/0702019
http://xxx.lanl.gov/abs/hep-th/0703178
http://xxx.lanl.gov/abs/arXiv:0705.3866 [hep-th]


REFERENCES

[113] S. Ferrara and A. Marrani, On the moduli space of non-bps attractors for

n=2 symmetric manifolds, Phys. Lett. B652 (2007) 111–117,

[arXiv:0706.1667 [hep-th]]. 116

[114] A. Ceresole, S. Ferrara, and A. Marrani, 4d/5d correspondence for the

black hole potential and its critical points, arXiv:0707.0964 [hep-th].

116

[115] L. Andrianopoli, S. Ferrara, A. Marrani, and M. Trigiante, Non-bps

attractors in 5d and 6d extended supergravity, arXiv:0709.3488

[hep-th]. 116

[116] A. Sen, Black hole entropy function, attractors and precision counting of

microstates, arXiv:0708.1270 [hep-th]. 116

128

http://xxx.lanl.gov/abs/arXiv:0706.1667 [hep-th]
http://xxx.lanl.gov/abs/arXiv:0707.0964 [hep-th]
http://xxx.lanl.gov/abs/arXiv:0709.3488 [hep-th]
http://xxx.lanl.gov/abs/arXiv:0708.1270 [hep-th]

	Synopsis
	List of Publications
	1 Introduction
	1.1 Background

	2 Spectrum of Dyons and Black Holes in CHL orbifolds using Borcherds Lift.
	2.1 Siegel Modular Forms of Level N 
	2.2 Multiplicative Lift 
	2.3 Multiplicative Lift for 6 
	2.4 Physical Interpretation of the Multiplicative Lift 
	2.5 M-theory lift of String Webs 

	3 Comments on the Spectrum of CHL Dyons.
	3.1 S-Duality Invariance 
	3.2 Irreducibility Criterion and Higher Genus Contributions 
	3.3 States with Negative Discriminant 
	3.3.1 Microscopic Prediction 
	3.3.2 Supergravity Analysis 
	3.3.3 Moduli Dependence and Lines of Marginal Stability 


	4 Degeneracy of Decadent Dyons.
	4.1 Computing degeneracies near the surface of decadence
	4.1.1 Basic physical argument 
	4.1.2 Two-Centered Stern-Yi Dyons in SU(3) Gauge Theories 
	4.1.3 Multi-centered Stern-Yi Dyons in SU(N) Gauge Theory 

	4.2 Relation to string theory dyons 

	5 Duality Symmetry and Cardy Limit.
	5.1 Motivations.
	5.2 Cardy Limit.
	5.3 The D0-D4 System
	5.3.1 The Supersymmetric Case
	5.3.1.1 An Explicit Example

	5.3.2 The Non-supersymmetric Case
	5.3.3 Rational 
	5.3.4 Changing The Charges

	5.4 The D0-D6 System
	5.5 Absence of Magnetic Monopole Charge

	6 Appendix.
	6.1 Hecke Operators and the Multiplicative Lift 
	6.2 Consistency Check 
	6.3 Tightening the Conditions in the Supersymmetric Case
	6.4 Some Non-supersymmetric Examples
	6.5 More Details on Changing the Charges
	6.6 Some more details on the Isometry Analysis of Section 5 
	6.7 General canonical form of charge vector in 6,6

	7 Conclusions and Open Questions
	References

