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1 Synopsis

1.1 Introduction

Relativistic Hydrodynamics arises as the universal long wavelength effective description of

Lorentz invariant quantum field theories in translationally invariant phases. Its a minimalis-

tic description based on symmetries where the entire dynamics of the system is governed by

local conservation laws following from these symmetries. Specifically, the homogeneity gives

rise to stress tensor conservation and other global symmetry, if present, leads to corresponding

conservation law. To make it into a closed dynamical system hydrodynamics is supplemented

with so called ‘constitutive relations’ which express the conserved currents in terms of local

fluid variables namely velocity, temperature and chemical potential fields. These local vari-

ables are assumed to be varying only over length scales large compared to the ’mean free

path’ whose scale is set by the local temperature of the fluid. That is, for the validity of

fluid dynamical description the derivatives of the fluid variables have to be small. This lead

to the simplification that the constitutive relation can be specified order by order in a long

wavelength(derivatives) expansion of the fluid variables.

As in any other effective theory, hydrodynamics is characterized by parameters(e.g. the

transport coefficients in constitutive relations) which parametrized our ignorance. Although

these parameters are in principal determined from the underlying microscopic field theory by

an averaging out procedure, in practice it is extremly difficult to implement for any interesting

enough system. A natural question to ask in such a case is: Are there any constraints on the

possible values of these coefficients ? or are they completely arbitrary and any possible value

of these would result from some underlying field theory.

In the context of hydrodynamics this question becomes even more pressing for the fol-

lowing reason. Hydrodynamics in its current formulation is only at the level of equations

of motion and does not have an action formulation. So it is quite possible that some the

properties which are built into action formulation are missing here and hydrodynamics have

to be supplimented with them as external constraints.

The answer to what are the most general constitutive relations which could be realized

in nature is greatly constrained, over and above symmetry considerations, by the macro-

scopic laws of thermodynamics. Landau-Lifshitz [1], and several subsequent authors, have

emphasized consistency with a local form of the second law of thermodynamics as a source

of constraints on the equation of hydrodynamics. As is well known, this requirement im-

poses inequalities on several parameters (like viscosities and conductivities) that appear in

the equations of hydrodynamics. It is perhaps less well appreciated that the requirement of

local entropy increase also yields equalities relating otherwise distinct fluid dynamical param-

eters, and so reduces the number of free parameters that appear in the equations of fluid

dynamics (see e.g. [1, 2], for more recent work inspired by the AdS/CFT correspondence see

e.g. [3–11]).

The second law of thermodynamics is a macroscopic law and its microscopic origin is

not well understood. This makes the constraints obtained using it somewhat mysterious. In

– 2 –



this synopsis we report on some progress we have made, in hydrodynamical context, towards

demystifying a subset of these constraints using very general physical requirements on the

equations of hydrodynamics. We explore the structural constraints imposed on the equa-

tions of relativistic hydrodynamics by two related physical requirements. First that these

dynamical equations admit a stationary solution on an arbitrarily weakly curved stationary

background spacetime. Second that the conserved currents (e.g. the stress tensor) on the

corresponding solution follow from an equilibrium partition function1. In various examples

that we have studied so far we demonstrate that the equalities obtained from the comparison

with equilibrium (described in the previous paragraph) agree precisely with the equalities

between coefficients obtained from the local second law of thermodynamics. These results

lead us to conjecture that the constraints obtained from these two naively distinct physical

requirements infact always coincide.

In this synopsis we nowhere utilize the AdS/CFT correspondence. However our work is

motivated by the potential utility of our results in an investigation of the constraints imposed

by the second law of thermodynamics on higher derivative corrections to Einstein’s equations

[12], via the Fluid - Gravity map of AdS/CFT ([13], see [14, 15] for reviews).

The rest of this synopsis is organized as follows. In section 1.2 we discuss the equilib-

rium partition function on weakly curved manifolds. In section 1.3 we briefly review stan-

dard formulation of hydrodynamics and then describe our general procedure to constrain

non-dissipative transport coefficients using equilibrium partition function. In section 1.4 we

elaborate the method using the example of parity violating charged fluids in 3+1d at first

order in derivative expansion. In section 1.5 we present a brief give summary of results for

many other cases that we have worked out using the set of ideas described in sections 1.2 and

1.4.

1.2 Equilibrium partition function and constraints on hydrodynamics

Consider a relativistically invariant quantum field theory with a global U(1) symmetry on a

manifold with a timelike killing vector and a background gauge field turned on. By a suitable

choice of coordinates, the metric and the gauge field on any such manifold can be put in the

form

ds2 = −e2σ(~x)
(
dt+ ai(~x)dxi

)2
+ gij(~x)dxidxj

A = A0(~x)dx0 +Ai(~x)dxi
(1.1)

where i = 1 . . . p. ∂t is the killing vector on this manifold, while the coordinates ~x parametrize

spatial slices. Here σ, ai, gij ,A0 and Ai are smooth functions of coordinates ~x.

Let H denote the Hamiltonian that generates translations of the time coordinate t and

Q be the charge that generates the global U(1) transformations. Let us address the following

1Although the existence of a generating function for equilibrium conserved currents do not follow from the

existence of equilibrium solution, as there is a non trivial integrability condition here. We find that in all cases

we study the two infact give the same results
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question. What can we say, on general symmetry grounds, about the dependence of the the

partition function of the system

Z = Tre
−H−µ0Q

T0 (1.2)

on σ, gij , ai, A0 and Ai? Here we focus on the long wavelength limit, i.e. on manifolds whose

curvature length scales and the scale of gauge field variations are much larger than the ‘mean

free path’ of the thermal fluid. In this limit the question formulated above may addressed

using the techniques of effective field theory. In the long wavelength limit the background

manifold may be thought of as a union of approximately flat patches, in each of which the

system is in a local flat space thermal equilibrium at the locally red shifted temperature

T (x) = e−σT0 + . . . (1.3)

(where T0 is the equilibrium temperature of the system and the . . . represent derivative

corrections). Consequently the partition function of the system is given by

lnZ =

∫
dpx
√
gp

1

T (x)
P (T (x), µ(x)) + . . . (1.4)

where P (T, µ) is the thermodynamical function that computes the pressure as a function of

temperature in flat space. Substituting (1.3) into (1.4) we find

lnZ =

∫
dpx
√
gp
eσ

T0
P (T0e

−σ, A0e
−σ) + . . . (1.5)

The . . . in (1.5) denote corrections to lnZ in an expansion in derivatives of the background

metric. At any given order in the derivative expansion these correction are determined, by the

requirement of the left over diffeomorphism invariance and gauge invariance(upto anomalies)

in terms of a finite number of unspecified functions of σ andA0. For the case of parity violating

charged fluids in 3+1 dimensions, which we will describe in some detail in this synopsis, the

requirements of three dimensional diffeomorphism invariance, Kaluza Klein gauge invariance,

and U(1) gauge invariance upto an anomaly2 force the partition function to take the form3

lnZ = W 0 +W 1
inv +W 1

anom

W 0 =

∫
√
g3
eσ

T0
P
(
T0e
−σ, e−σA0

)
W 1
inv =

C0

2

∫
AdA+

T 2
0C1

2

∫
ada+

T0C2

2

∫
Ada

W 1
anom =

C

2

(∫
A0

3T0
AdA+

A2
0

6T0
Ada

)
(1.6)

2Here we only consider the effect of U(1)3 anomalies ignoring the effects of, for instance, mixed gauge-

gravitational anomalies. A systematic study of the effect of these anomalies in fluid dynamics would require

analysis at second order in derivative expansion.
3Our convention is

1

2

∫
XdY =

∫
d3x
√
g3ε

ijkXi∂jYk ,
1

2

∫
dY =

∫
d2x
√
g2ε

ij∂iYj .
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where Ai

A0 = A0 + µ0

Ai = Ai −A0ai
(1.7)

(1.6) is written in terms of Ai because Ai, unlike Ai, is Kaluza Klein gauge invariant4.

W 0 in (1.6) is zero derivative contribution to the partition function, and is the patchwise

approximation to equilibrium, in the spirit of (1.5). W 1
inv is the most general diffeomorphism

and gauge invariant one derivative correction to W 0. Note that W 1 is the sum of a Chern

Simons term for the connection A, a Chern Simons term for the connection a and a mixed

Chern Simons term in A and a. As usual, the Chern Simons terms are gauge invariant only

upto boundary terms, and thus local gauge invariance forces the coefficients C0, C1 and C2

of these Chern Simons terms to be constants.

(1.6) is the most general form of the partition function of our system that satisfies the

requirements of 3 dimensional diffeomorphism invariance and gauge invariance. If we, in

addition, impose the requirement of CPT invariance of the underlying four dimensional field

theory then it turns out that C0 = C1 = 0. In other words, the requirement of CPT invariance

allows only the mixed Chern Simons term, setting the ‘pure’ Chern Simons terms to zero.

W 1
anom is the part of the effective action that is not gauge invariant under U(1) gauge

transformations. 5 Its gauge variation under Aµ → Aµ + ∂µφ(~x) is given by

δW 1
anom =

C

24T0

∫
d3x
√
−g4 ∗ (F ∧ F) φ(x) (1.8)

This is exactly the variation of the effective action predicted by the anomalous conservation

equation

∇µJ̃µ = −C
8
∗ (F ∧ F) (1.9)

where J̃ is the gauge invariant U(1) charge current, and ∗ denotes the Hodge dual.

1.3 Constraints using stationary equilibrium

1.3.1 Relativistic Hydrodynamics

In this subsection we present a lightening review of the structure of the equations of charged

relativistic hydrodynamics. The equations of hydrodynamics are simply the equations of

conservation of the stress tensor and the charge current

∇µTµν = FνµJ̃µ, ∇µJ̃µ = −C
8
∗ (F ∧ F), (1.10)

4The background data can be taken as gauge field A = (A0,Ai) with constant chemical potential µ0 and

temperature T0. Equivalently we can think of the system to have background gauge field B = (A0 + µ0,Ai)
with no chemical potential. These two are equivalent physical statements as µ0 can be absorbed in the constant

part of A0.
5It is striking that the effect of the anomaly can be captured by a local term in the 3 dimensional effec-

tive action. Note that W 1 cannot be written as the dimensional reduction of a local contribution to the 4

dimensional action, in agreement with general expectations.
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where F is the field strength of the gauge field A. These equations constitute a closed

dynamical system when supplemented with constitutive relations that express Tµν and Jµ
as a function of the fluid temperature, chemical potential and velocity. These constitutive

relations are presented in an expansion in derivatives and take the form

Tµν = (ε+ P )uµuν + Pgµν + πµν , Jµ = quµ + Jµdiss, (1.11)

The pressure P , proper energy density ε and proper charge density q are those functions of

T and µ predicted by flat space equilibrium thermodynamics. πµν refers to the sum of all

corrections to the stress tensor that are of first or higher order in the derivative expansion (the

derivatives in question could act either on the T , µ, uµ, or the background metric and gauge

field gµν and Aµ). Similarly Jµdiss refers to corrections to the perfect fluid charge current that

depend on atleast one spacetime derivative. Field redefinitions of the T µ and uµ may be

used to impose p+2 constraints on πµν and Jµdiss, referred to as frame choice. In this synopsis

we will work in the so called Landau Frame which is defined by the conditions

uµπµν = 0, uµJdissµ = 0 (1.12)

Terms in πµν and Jµdiss are both graded according to the number of spacetime derivatives

they contain, i.e.

πµν = πµν(1) + πµν(2) + πµν(3) + . . .

Jµdiss = Jµdiss,(1) + Jµdiss,(2) + Jµdiss,(3) + . . .
(1.13)

where the subscript counts the number of derivatives.

Symmetry considerations immediately constrain the possible expansions for πµν and Jµdiss
as follows. At any given point in spacetime, the fluid velocity uµ is a particular timelike vector.

The value of the velocity breaks the local SO(p, 1) Lorentz symmetry of the theory down to

the rotational subgroup SO(p). In the Landau frame (1.10) πµν may be decomposed into an

SO(p) tensor and SO(p) scalar. Jµdiss is an SO(p) vector.

In order to parameterize freedom in the equations of hydrodynamics, it is useful to define

some terminology. Let tnf , vnf and snf respectively denote the number of onshell inequivalent

tensor, vector and scalar expressions made up of a total of n derivatives acting on T , uµ, µ,

gµν and Aµ. It follows immediately that the most general symmetry allowed expression for

πµν(n) is given in terms of tnf + snf unknown functions of the two variables T and µ. In a similar

manner the most general expression for the Jµdiss(n), permitted by symmetries, is given in

terms of vnf unknown functions of the same two variables.

It turns out that the (tnf + snf + vnf ) nth order transport coefficients are not all indepen-

dent. The requirement that the hydrodynamical equations be consistent with the existence

of an entropy current that is of positive divergence in every conceivable fluid flow imposes

several relationships between these coefficients cutting down the number of parameters in

these equations(see e.g. [1, 3, 5, 10]). We now turn to a description of a simpler physical
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principal that appears predict the same relations between these coefficients. These relations

may all be constructively determined by comparison of the equations of hydrodynamics with

a partition function.

1.3.2 Constraints from stationary equilibrium

As we have explained in the previous subsection, it follows from symmetry considerations

that the equations of charged hydrodynamics, at nth order in the derivative expansion, are

parameterized by tnf + vnf + snf unknown functions of two variables(σ and A0) appearing in

the constitutive relation at nth order. We will now argue that these functions are not all

independent, but instead are determined in terms of a smaller number of functions.

It is easy to verify that the equations of perfect fluid hydrodynamics (hydrodynamics

at lowest order in the derivative expansion) admit a stationary ‘equilibrium’ solution in the

backgrounds (1.1) given by

uµ(0)(~x) = e−σ(1, 0, . . . , 0), T(0)(~x) = Toe
−σ, µ(0)(~x) = e−σA0 (1.14)

As explained above, this is also the equilibrium solution one expects of the fluid on intuitive

ground. At higher order in the derivative expansion this solution is corrected; the corrected

solution can itself be expanded in derivatives

uµ = uµ(0) + uµ(1) + uµ(2) + . . .

T = T(0) + T(1) + T(2) + . . .

µ = µ(0) + µ(1) + µ(2) + . . .

(1.15)

where uµ(n), T(n) and µ(n) are expressions of nth order in derivatives acting on σ, A0, ai, Ai
and gij . What can we say about the form of the corrections uµ(n), T(n) and µ(n)? Adopting

the notation defined in the last paragraph of the previous subsection, symmetries determine

the expression for uµ(n) in terms of vne as yet unknown functions of σ and A0, while T and µ

are each determined in terms of sne as yet unknown equations of A0 and σ.

The stress tensor and charge current in equilibrium are given by plugging (1.15) into

(1.13). The result is an expression for πµν and Jµdiss written entirely in terms of σ, A0, ai,

Ai, gij and their derivatives.

This expressions for the stress tensor and charge current so obtained depend only on a

subset of the transport coefficients that appear in the expansion of πµν and Jµdiss. For instance,

the expansion of the nth order tensor part of πµν has tnf terms in general. When evaluated

on (1.14), however, this expression reduces to a sum over tne ≤ tnf terms. The coefficients of

these terms define tne subspace of the tnf dimensional set of nth order transport coefficients.

We refer to this subspace as the subspace of non dissipative transport coefficients.

We demand that the expressions for the equilibrium stress tensor and charge current,

obtained as described in the previous paragraph, agree with the corresponding expressions

obtained from the equilibrium partition function by varying with respect to the metric and
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gauge field respectively. This requirement yields a set of tne + 2vne + 3sne equations6 that

completely determine both the nth order corrections to the equilibrium solutions Tn µn and

uµn (vne + 2sne coefficients in all) as well as the tne + vne + sne non dissipative hydrodynamical

transport coefficients. Note that the number of variables precisely equals the number of

equations. Dissipative hydrodynamical transport coefficients are completely unconstrained

by this procedure.

We emphasize that the shifted equilibrium velocities, temperatures and chemical poten-

tials obtained from the procedure just described automatically obey the equations of hy-

drodynamics. By construction, the shifted fluid variables, together with the constitutive

relations determined above yield the stress tensor that follows from the functional variation

of an equilibrium partition function, and the stress tensor obtained from the variation of any

diffeomorphically invariant functional is automatically conserved. Very similar remarks apply

to the charge current.

The procedure described above may also be used to derive constraints on the form of the

fluid entropy current. The entropy current must obey two constraints. First its divergence

must vanish on all the equilibrium configurations derived above. Second, the integral over

the entropy density (obtained from the entropy current) must equal the thermodynamical

entropy that follows from the partition function. These requirements impose constraints on

the form of the (non dissipative) part of the most general symmetry allowed hydrodynamical

entropy current.

In the case of parity violating fluid dynamics in 3+1 dimensions at first order in derivative

expansion, which we will discuss in some detail below, the results for transport coefficients

computed from (1.6) match perfectly with those of Son and Surowka [3] (generalized in

[16],[4]) once we impose the additional requirement of CPT invariance. Before imposing the

requirement of CPT invariance, we have an additional one parameter freedom that is not

captured by the the generalized Son-Surowka analysis. The reason for this is that Son and

Surowka (and subsequent authors) assumed that the entropy current was necessarily gauge

invariant. This does not seem to be physically necessary. It seems to us that an entropy

current whose divergence is gauge invariant - and whose integral over a compact manifold in

equilibrium is gauge invariant - is perfectly acceptable. As we explain below, it is easy to

find a one parameter generalization of the Son-Surowka solution that meets these conditions,

and that gives rise to the additional term C0 in the partition function (1.6). However it

turns out that the requirement of CPT invariance sets C0 (along with C1) to zero in (1.6),

so this possible ambiguity is never realized in the hydrodynamical description of a quantum

field theory. Later we will present the results for anomalous charged fluids in arbitrary even

dimensions and see that this turns out to be true there as well.

In the next section we present our study of the particularly interesting case of parity vio-

6The counting goes as follows. The stress tensor decomposes into one SO(p), tensor, one vector and two

scalars. The charge current decomposes into a vector and a scalar. Equating the hydrodynamical equilibrium

stress tensor and charge current to the expressions obtained by varying the equilibrium yields 3sne + 2vne + tne
equations.
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lating charged fluids in 3+1d at first order in derivative expansions to illustrate this powerful

method.

1.4 3+1d parity violating charged fluids at first order

Throughout rest of synopsis we will be working with the background metric and gauge field

configuration (1.1). Before proceeding we first define some useful notation. Let uµK be the

unit normalized vector in the Killing direction. In components

uµK = e−σ(1, 0, . . . , 0) (1.16)

Let PKµν denote the projector orthogonal to uµK

PKµν = gµν + uµKu
ν
K (1.17)

Explicitly in matrix form

(PK)µν =

(
0 0

0 gij

)
Let us also define the shear tensor, vorticity and expansion and acceleration of this Killing

‘velocity’ field by

ΘK = ∇.uK = Expansion, aµK = (uK .∇)uµK = Acceleration

σµνK = PµαP νβ
(
∇α(uK)β +∇β(uK)α

2
− ΘK

3
gαβ

)
= Shear tensor

ωµνK = PµαP νβ
(
∇α(uK)β −∇β(uK)α

2

)
= Vorticity

(1.18)

A straightforward computation yields

ΘK = 0, (aK)µ = (PK)µi∇iσ
σµνK = 0

(ωK)µν =
eσ

2
(PK)µi(PK)νjf

ij

(1.19)

1.4.1 Equilibrium from hydrodynamics

In this subsection we evaluate the most general hydrodynamical stress tensor and charge

current, at first order in derivatives, and evaluate it in as yet undetermined equilibrium

configuration.

In table 1 we list the onshell equivalent first order fluid data. From this table this follows

that the most general symmetry allowed correction the constitutive relations at first order in

derivatives is given by

πµν = −ζθPµν − ησµν
Jµdiss = σ

(
Eµ − TPαµ ∂αν

)
+ α1E

µ + α2Pµα∂αT + ξωω
µ + ξBB

µ
(1.20)
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Type Data Evaluated at equilibrium

T = T0e
−σ, µ = e−σA0, u

µ = uµK
Scalars ∇.u 0

Vectors Eµ = Fµνu
ν , e−σ∂iA0

Pµα∂αT, -T0e
−σ∂iσ

(Eµ − TPµα∂αν) 0

Pseudo-Vectors ερλαβu
λ∇αuβ eσ

2 εijkf
jk

Bµ = 1
2ερλαβu

λFαβ Bi = 1
2gijε

jkl(Fkl +A0fkl)

Tensors PµαPνβ
(∇αuβ+∇βuα

2 − ∇.u3 gαβ
)

0

Table 1. One derivative fluid data

Scalars None

Vectors ∂iA0 , ∂iσ

Pseudo-Vectors εijk∂jAk , εijk∂jak
Tensors None

Table 2. One derivative background data

where the shear viscosity η, bulk viscosity ζ, conductivity σ and the remaining possible

transport coefficients α1, α2, ξω and ξB are arbitrary functions of σ and A0.

Solutions in equilibrium are determined entirely by the background fields σ, A0, ai, Ai and

gij . In Table(2,1) we have listed all coordinate and gauge invariant one derivative scalars,

vectors and tensors constructed out of this background data. As Table (2,1) lists no one

derivative scalars, it follows immediately that the equilibrium temperature field T (x) = e−σT0

and chemical potential field µ(x) = e−σA0 receive no corrections at first order in the derivative

expansion. The velocity field in equilibrium can, however, be corrected. The most general

correction to first order is proportional to the vectors and pseudo vectors listed in Table (2,1)

and is given by

δui = −e
−σb1
4

εijkfjk + b2B
i
K + b3∂

iσ + b4∂
iA0 (1.21)

where

fjk = ∂jak − ∂kaj , Fjk = ∂jAk − ∂kAj , Aj = Aj − ajA0,

Bi
K =

1

2
εijk(Fjk +A0fjk), ε123 =

1
√
g3
.

(1.22)

The fluid stress tensor evaluated on this equilibrium configuration has two source of first

derivative corrections. The first set of corrections arises from the corrections (1.20) evaluated

on the zero order equilibrium fluid configuration (1.14). 7 The second source of correc-

tions arises from inserting the velocity correction (1.21) into the zero order (perfect fluid)

7When uµ ∝ (1, 0 . . . , 0) the Landau frame condition sets π00 = π0i = Jdiss0 = 0. Consequently T00, T0i

and J0 receive no one derivative corrections of this sort.
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constitutive relations. The net change in the constitutive relations is the sum of above two

contributions and is given by

δT00 = δJ0 = δT ij = 0,

δT i0 = −eσ(ε+ P )
[1

2
(b2A0 −

1

2
b1e

σ)εijkfjk +
1

2
b2ε

ijkFjk − b3T0e
−σ∂iσ + b4∂

iA0

]
δJ̃ i =

[1

2

(
(ξB + qb2)A0 −

1

2
(ξω + qb1)eσ

)
εijkfjk +

1

2
(ξB + qb2)εijkFjk

− (qb3 + α2)T0e
−σ∂iσ + (qb4 + α1)∂iA0

]
.

(1.23)

1.4.2 Equilibrium from the Partition Function

In this subsection we compute the first order corrections to the equilibrium stress tensor and

charge current from the equilibrium partition function. From the fact that Table (2) lists

no gauge invariant scalars, one might be tempted to conclude that the equilibrium partition

function can have no gauge invariant one derivative corrections. But as we have already

explained earlier the three(constant) parameter set of Chern Simons terms listed in the third

line of (1.6) yield perfectly local and gauge invariant contributions to the partition function,

even though they cannot be written as integrals of local gauge invariant expressions. In

addition to these gauge invariant pieces we need a term in the action that results in its

anomalous gauge transformation property. This requirement is precisely met by the term in

the last line of (1.6). With the action (1.6) in hand it is straightforward to compute the stress

tensor and charge current in equilibrium using

T00 = − T0e
2σ√

−g(p+1)

δW

δσ
, T i0 =

T0√
−g(p+1)

(
δW

δai
−A0

δW

δAi

)
,

T ij = − 2T0√
−g(p+1)

gilgjm
δW

δglm
, J0 = − e2σT0√

−g(p+1)

δW

δA0
, J i =

T0√
−g(p+1)

δW

δAi
. (1.24)

where, for instance, the derivative w.r.t A0 is taken at constant σ, ai, Ai, g
ij , T0 and µ0.

Using these we find

T00 = 0, T ij = 0,

T i0 = e−σεijk
[
(−1

2
CA2

0 + 2C0A0 + C2)∇jAk + (2C1 −
C

6
A3

0 − C2A0)∇jak
]

J0 = −eσεijk
[
C

3
Ai∇jAk +

C

3
A0Ai∇jak

]
J i = e−σεijk

[
2

(
C

3
A0 + C0

)
∇jAk +

(
C

6
A2

0 + C2

)
∇jak +

C

3
Ak∇jA0

]
,

(1.25)

The current obtained above is gauge non invariant. The more familiar gauge invariant ’co-

variant’ current is related to this ’consistent’ current by [17]

J̃µ = Jµ − C

6
εµνγδAνFγδ (1.26)
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Using (1.26) it follows that

J̃0 = 0,

J̃ i = e−σεijk
[
(CA0 + 2C0)∇jAk + (

1

2
CA2

0 + C2)∇jak
]
,

(1.27)

1.4.3 Constraints on Hydrodynamics

In this subsection we compare the equilibrium stress tensor and charge current obtained in two

different ways in 1.4.1 and 1.4.2 to obtain constraints Equating the coefficients of independent

terms in the two expressions for T i0 (1.23),(1.25) determines the one derivative corrections of

the velocity field in equilibrium. We find.

b1 =
T 3

ε+ P

(2

3
ν3C + 4ν2C0 − 4νC2 + 4C1

)
,

b2 =
T 2

ε+ P

(1

2
ν2C + 2νC0 − C2

)
,

b3 = b4 = 0. (1.28)

where ν = µ
T = A0

T0
.

Equating coefficients of independent terms in J i in equations 1.23 and 1.27 and using

(1.28) gives

ξω = Cν2T 2
(
1− 2q

3(ε+ P )
νT
)

+ T 2
[
(4νC0 − 2C2)− qT

ε+ P
(4ν2C0 − 4νC2 + 4C1)

]
,

ξB = CνT
(
1− q

2(ε+ P )
νT
)

+ T
(
2C0 −

qT

ε+ P
(2νC0 − C2)

)
,

α1 = α2 = 0 (1.29)

Let us summarize. We have found that the hydrodynamical charge current and stress

tensor are given by

πµν = −ζθPµν − ησµν
Jµdiss = σ

(
Eµ − TPαµ ∂αν

)
+ ξωω

µ + ξBB
µ

(1.30)

In (1.30) the viscosities ζ and η together with the conductivity σ are all dissipative param-

eters. These parameters multiply expressions that vanish in equilibrium and are completely

unconstrained by the analysis of this subsection. On the other hand ζω and ζB - together

with α1 and α2 in (1.20) - are non dissipative parameters. They multiply expressions that

do not vanish in equilibrium. The analysis of this section has demonstrated that α1 and α2

vanish and that ζω and ζB are given by (1.30). The expressions (1.30) agree exactly with the

results of Son and Surowka - based on the requirement of positivity of the entropy current -

upon setting C0 = C1 = C2 = 0. Upon setting C0 = 0 they agree with the generalized results

of [16] (see also [4],[8]).
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1.4.4 The Entropy Current

The entropy of our fluid system can easily be computed from the equilibrium partition function

as

S =
∂

∂T0
(T0 logZ)

=

∫
d3x
√
g3ε

ijk
[
C0Ai∇jAk + 3C1T

2
0 ai∇jak + 2C2T0Ai∇jak

]
.

(1.31)

Although we can cannot determined the full entropy current(JµS ) from equilibrium par-

tition function, but the requirement that total entropy

S =

∫
d3x
√
−g4J

0
S (1.32)

should match with the (1.31), can be used to constrain the equilibrium entropy current. As

mentioned in the introduction and as is apparent by looking at the (1.31) that we have to

allow for gauge non invariant terms in the entropy current, but keeping associated physical

quantities, namely the divergence of entropy current and total entropy, gauge invariant. The

most general physically allowed form for the entropy current, at one derivative order, may

then be read off from Table 2

JµS = suµ − νJµdiss +DθΘu
µ +Dc (Eµ − TPµα∂αν) +DEE

µ +Daa
µ

+Dωω
µ +DBB

µ + hεµνλσAν∂λAσ
where h is a constant

(1.33)

From this the first order correction to the total entropy in equilibrium is easily computed to

be ∫
d3x
√
−g4J

0
S |correction

=

∫
d3x
√
g3ε

ijk

[
T 2

0

(
3C1 + hν2 +

dω
2
− νdB

)
ai∂jak

+ T0(2C2 + 2hν − dB)ai∂jAk + hAi∂jAk

] (1.34)

where

ν =
µ

T
=
A0

T0
, dB =

DB

T
−
(
Cν2

2
− C2

)
, dω =

Dω

T 2
−
(
Cν3

3
− 2C2ν + 2C1

)
(1.35)

Comparing this expression with (1.31) we find

h = C0, dB = 2C0ν, dω = 2C0ν
2 (1.36)

This result agrees precisely with that of Son and Surowka as generalized in [5].

To end this section let us finally look at the the CPT properties of our partition function

(1.6). From table 3 terms appearing with C0 and C1 and thus imposing the requirement of

CPT invariance on the partition function sets these coefficients to zero.
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Field C P T CPT

σ + + + +

ai + − − +

gij + + + +

A0 − + + −
Ai − − − −

Table 3. Action of CPT

1.5 A summary of results

In previous sections we have discussed the generalities of our equilibrium partition function

technique and illustrated it some detail with the case of first order parity violating fluids in

3+1d. Using these set of ideas we have worked many other cases. In these section we briefly

summarize these results one by one.

1.5.1 3+1d uncharged fluids at 2nd order

For uncharged fluids, the first correction to the equilibrium partition function appears at 2nd

order in derivative expansion. Without assuming anything about the parity properties, the

most general 2nd order correction to the equilibrium partition function for 3+1d uncharged

fluids is given by

W = logZ = −1

2

∫
d3x
√
g3

[
P̃1(T0e

−σ)R+ T 2
0 P̃2(T0e

−σ)fijf
ij + P̃3(T0e

−σ)(∂σ)2
]

where P̃i(T0e
−σ) = Pi(σ) and P ′i ≡

dPi(σ)

dσ
(i = 1, 2, 3)

(1.37)

where P1, P2, P3 are three arbitrary function of σ and from now on we will remove the explicit

dependence. In partition function, the fourth scalar ∇2σ and the pseudo-scalar εijk∂
iσf jk do

not appear as they are total derivatives.

The most general constitutive relations for this case are parametrized by

Πµν = − ησµν − ζPµνΘ

+ T

[
τ (u.∇)σ〈µν〉 + κ1R̃〈µν〉 + κ2K〈µν〉 + λ0 Θσµν

+ λ1 σ〈µ
aσaν〉 + λ2 σ〈µ

aωaν〉 + λ3 ω〈µ
aωaν〉 + λ4 a〈µaν〉

]
+ TPµν

[
ζ1(u.∇)Θ + ζ2R̃+ ζ3R̃00 + ξ1Θ2 + ξ2σ

2 + ξ3ω
2 + ξ4a

2

]
+ T

[ 4∑
i=1

δit
(i)
µν + δ5Pµνaαl

α

]
(1.38)
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where

uµ = The normalized four velocity of the fluid

Pµν = gµν + uµuν = Projector perpendicular to uµ

Θ = ∇.u = Expansion, aµ = (u.∇)uµ = Acceleration

σµν = PµαP νβ
(
∇αuβ +∇βuα

2
− Θ

3
gαβ

)
= Shear tensor

ωµν = PµαP νβ
(
∇αuβ −∇βuα

2

)
= Vorticity

Kµν = R̃µaνbuaub, R̃µν = R̃aµbνgab (R̃abcd = Riemann tensor)

σ2 = σµνσ
µν , ω2 = ωµνω

νµ

(1.39)

and

A〈µν〉 ≡ Pαµ P βν
(
Aαβ +Aβα

2
−
[
AabP

ab

3

]
gαβ

)
For any tensor Aµν

The expansion (1.38) is given in terms of 15 parity even and 5 parity odd arbitrary

transport coefficients, each of which is, as yet, an arbitrary function of temperature). Seven

of these fifteen parity even terms and two of the five parity odd terms vanish in equilibrium.

Using the techniques used in previous sections we can determine the equilibrium solution as

well as the non dissipative transport coefficients in terms of the coefficient functions P1, P2, P3

of the equilibrium partition function. Eliminating P1, P2, P3, we find relation among the non

dissipative transport coefficients

κ2 = κ1 + T
dκ1

dT

ζ2 =
1

2

[
s
dκ1

ds
− κ1

3

]
ζ3 =

(
s
dκ1

ds
+
κ1

3

)
+

(
s
dκ2

ds
− 2κ2

3

)
+
s

T

(
dT

ds

)
λ4

ξ3 =
3

4

( s
T

)(dT
ds

)(
T
dκ2

dT
+ 2κ2

)
− 3κ2

4
+
( s
T

)(dT
ds

)
λ4

+
1

4

[
s
dλ3

ds
+
λ3

3
− 2

( s
T

)(dT
ds

)
λ3

]
ξ4 = − λ4

6
− s

T

(
dT

ds

)(
λ4 +

T

2

dλ4

dT

)
− T

(
dκ2

dT

)(
3s

2T

dT

ds
− 1

2

)
− Ts

2

(
dT

ds

)(
d2κ2

dT 2

)

(1.40)

This is in perfect agreement with the relations obtained in [10] using the second law of

thermodynamics.
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1.5.2 Anomalous charged fluids in arbitrary dimensions

The story described in 1.4 can be generalized to anomalous charged fluid dynamics in arbitrary

even dimensions. Although the parity even contributions to the partition functions could

appear at all orders in derivative expansion, the parity odd part receive first non trivial

contribution at n − 1 order in derivatives. The anomalous part of the equilibrium partition

function, constrained by 2n − 1 dimensional diffeomorphisms invariance, kaluza-klein gauge

invariance and the U(1) gauge invariance upto anomaly, is given by

Wanom =
1

T0

∫
d2n−1x

√
g2n−1

{ n∑
m=1

αm−1(A0, T0) [εA(da)m−1(dA)n−m]

+ αn(T0) [εa(da)n−1]

}
.

(1.41)

where, εijk... is the (2n− 1) dimensional tensor density defined via

εi1i2...id−1 = e−σε0i1i2...id−1

The indices (i, j) run over (2n− 1) values. We have used the following notation for the sake

of brevity

[εA(da)m−1(dA)n−m]

≡ εij1k1...jm−1km−1p1q1...pn−mqn−mAi∂j1ak1 . . . ∂jm−1akm−1∂p1Aq1 . . . ∂pn−mAqn−m

[ε(da)m−1(dA)n−m]i

≡ εij1k1...jm−1km−1p1q1...pn−mqn−m∂j1ak1 . . . ∂jm−1akm−1∂p1Aq1 . . . ∂pn−mAqn−m

(1.42)

The coefficient function αm’s are all determined by gauge invariance upto the anomaly equa-

tion to be

αm = −Canom
(

n

m+ 1

)
Am+1

0 + C̃mT
m+1
0 , m = 0, . . . , n− 1

αn = C̃nT
n+1
0 (1.43)

Here, C̃m are arbitrary constants. The requirement of CPT invariance forces all C̃2k = 0.

Using the analysis similar to the that used in section 1.4 we obtain the anomalous part

of the constitutive relation to be

δTµνodd = 0

δJµodd =
n∑

m=1

ξmε
µν γ1δ1...γm−1δm−1 α1β1...αn−mβn−muν(∂γuδ)

m−1(∂αAβ)n−m + . . . .
(1.44)

where the coefficients ξm’s are determined to be

ξm =

[
m

qµ

ε+ p
− (m+ 1)

]
Canom

(
n+ 1

m+ 1

)
µm

+

m∑
k=0

[
m

qµ

ε+ p
− (m− k)

]
(−1)k−1C̃k

(
n− k
m− k

)
T k+1µm−k−1

(1.45)
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This then is the prediction of this transport coefficient via partition function methods. This

exactly matches with the expression from [8](see section (2) of [18] for conversion of results

of [8] to our conventions).

1.5.3 Parity violating charged fluids in 2+1d at first order

For this case, here, we will only discuss the parity odd part of the partition function and the

constraints obtained from it on the the constitutive relations. The parity even sector works

as in 3+1d.

The most general partition function in this case is

W =
1

2

∫ (
α(σ,A0)dA+ T0β(σ,A0)da

)
, (1.46)

where α and β are two arbitrary functions.

The most general first order constitutive relations are given by

Tµν = εuµuν + (P − ζ∇αuα − χ̃BB − χ̃ΩΩ)Pµν − ησµν − η̃σ̃µν , (1.47a)

Jµ = ρuµ + σV µ + σ̃Ṽ µ + χ̃EẼ
µ + χ̃T T̃

µ . (1.47b)

The various quantities appearing in the constitutive relations (1.47) are defined as

Ω = −εµνρuµ∇νuρ, B = −1

2
εµνρuµFνρ, (1.48a)

Eµ = Fµνuν , V µ = Eµ − TPµν∇ν
µ

T
, (1.48b)

Pµν = uµuν + gµν , σµν = PµαP νβ
(
∇αuβ +∇βuα − gαβ∇λuλ

)
, (1.48c)

and

Ẽµ = εµνρuνEρ , Ṽ µ = εµνρuνVρ , (1.48d)

σ̃µν =
1

2

(
εµαρuασ

ν
ρ + εναρuασ

µ
ρ

)
, T̃µ = εµνρuν∇ρT. (1.48e)

Out the 6 parity odd transport coefficients, namely {χ̃B, χ̃ω, η̃, σ̃, χ̃E , χ̃T } appearing in

the constitutive relations (1.47), only 4 {χ̃B, χ̃ω, χ̃E , χ̃T } survive in equilibrium. These are

determined in terms of the partition function coefficients α and β to be

χ̃B =
∂P

∂ε

(
− T0e

−σ ∂α

∂σ

)
+
∂P

∂ρ

(
T0

∂α

∂A0

)
,

χ̃Ω =
∂P

∂ε

(
T0e
−2σ

(
T0
∂β

∂σ
−A0

∂α

∂σ

))
+
∂P

∂ρ

(
− T0e

−σ
(
T0

∂β

∂A0
−A0

∂α

∂A0

))
,

χ̃E =

(
T0

∂α

∂A0

)
− ρ

ε+ P

(
− T0e

−σ
(
T0

∂β

∂A0
−A0

∂α

∂A0

))
T χ̃T =

(
− T0e

−σ ∂α

∂σ

)
− ρ

ε+ P

(
T0e
−2σ

(
T0
∂β

∂σ
−A0

∂α

∂σ

))
(1.49)
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Eliminating the α and β we find the following relation between the four nondissipative trans-

port coefficients.

χ̃B −
ρ

ε+ P
χ̃Ω =

∂P

∂ρ
χ̃E +

∂P

∂ε
T χ̃T . (1.50)

which matches precisely with the relation obtained in [19].

1.5.4 Superfluids in 3+1d

In field theories where a global U(1) symmetries is spontaneously broken, e.g. by condensa-

tion of charged scalar field, the long wavelength hydrodynamical description has, over and

above the usual hydrodynamical modes, a massless goldstone mode corresponding to the

spontaneously broken symmetry. The presence of this massless mode renders the equilibrium

partition function nonlocal and its is hard then to make sense of the derivative expansions in

such a case. To deal with this problem we shall follow the following strategy. Rather then

working with the non local partition function we will work with the euclidean effective action

for the goldstone mode. This effective action, unlike the partition function, is local and can

usefully be studies in a derivative expansion.

We limit ourselves here to the case where the underlying field theories in an appropriate

large N limit in which the effective action for the goldstone boson comes with suitable positive

power of N , so that effective dynamics of the the goldstone mode becomes classical in the

large N limit. 8 In this classical approximation the partition function of our system is just

the Goldstone effective action evaluated on shell.

The most general goldstone effective action for the superfluids upto first order in deriva-

tive expansions is given by

S = S(0) + S(1)
even + S

(1)
odd + Sanom,

where S(0) =

∫
d3x
√
g

1

T̂
P (T̂ , µ̂, χ),

S(1)
even =

∫
d3y
√
g

[
f1

T̂
(ζ.∂)T̂ +

f2

T̂
(ζ.∂)ν̂ − f3∇i

(
f

T̂
ζi
)]

S
(1)
odd =

∫
√
gd3x

(
g1 ε

ijkζi∂jAk + T0g2ε
ijkζi∂jak

)
+
C1

2

∫
ada

Sanom =
C

2T0

(∫
A0

3
AdA+

A2
0

6
Ada

)
(1.51)

where

T̂ = T0e
−σ, µ̂ = A0e

−σ, ûµ = (1, 0, 0, 0)e−σ, ν̂ =
µ̂

T̂
=
A0

T0
,

ξi = −∂iφ+Ai, ζi = ξi − aiA0 = −∂iφ+Ai, ζ0 = ξ0 = A0,

χ = ξ2 = −ξµξµ, ψ =
ξ2

T̂ 2
.

(1.52)

8Outside such a large N limit the quantum corrections to the classical answers, which are suppressed by

appropriate powers of N(e.g. by 1
N2 in adjoint theories, like N = 4 SYM, in t’Hooft limit) may have interesting

structure, see e.g. [20–23] for related work, but we would restrict here to the strict large N limit.
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The parity even coefficients fi ≡ fi(T̂ , ν̂, ζ2) for i=1,2,3 while the coefficients gi ≡ gi(T̂ , ν̂, ψ).

The function P (T̂ , ν̂, χ) is the thermodynamical pressure and

f(T̂ , ν̂, ζ2) = −2
∂P

∂ζ2

.

A few comments are in order.

• Under gauge transformations we have

Ai → Ai + ∂iα, φ→ φ+ α.

Gauge invariance thus forces that the effective action can only depend on the ξi which

is gauge invariant. ζi is useful since it is not only U(1) gauge invariant but also Kaluza

Klein gauge invariant.

• The coefficient f3 multiplies the zeroth order equation of motion for the the field φ and

is thus shifted by field redefinition of φ and its effect on physical quantities would be

rather trivial.

• While the fields σ, µ and χ are even under the action of time reversal, the fields ξi and

ζi are odd under this operation. Thus the simultaneous requirement of parity and time

reversal invariance simply sets S1
even = 0.

The most general constitutive relations at first order in this case and the relations ob-

tained between the non dissipative transport coefficients from our method are rather cum-

bersome to state here, so for sake of brevity we shall just give the counting of the transport

coefficients and relations this case. Working in the frame invariant formalism of [4] we find

• In the parity even sector there are 22 non dissipative transport coefficients which are

determined in term of 2 free field redefinition invariant functions f1 and f2 in the

partition function.

• In the parity odd sector there are 18 non dissipative transport coefficients are determined

in terms of two free functions g1 and g2 appearing in the partition function.

These explicit results obtained, [24], agree precisely with those obtained using the local en-

tropy increase principle [4] and slightly generalized in [24].

1.6 Conclusion

In this synopsis we reported on the progress we have made in better understanding the

constraints on the non dissipative transport coefficients from a very physical point of view of

demanding that there must exist time independent solutions when a fluid is put on a time

independent background and that the equilibrium conserved currents should come from an

equilibrium partition function. We showed that the constraints thus obtained match precisely
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with those obtained by the use of a local form of second law of thermodynamics in number of

nontrivial examples. The extensive matching of the relations, in cases like superfluids, where

the number of relation are numerous and rather intricate, makes provides extensive support

for our conjecture that such a relation is true to all orders in long wavelength expansion. It

would be certainly be interesting to find a proof or a counterexample against this conjecture.

Although in this synopsis we have nowhere used the AdS/CFT correspondence, it is

one of the main motivation behind the work presented in this synopsis. The local entropy

increase of the boundary fluid dynamics maps, under the fluid-gravity map, to Hawking’s

black hole area(/entropy) increase theorem in two derivative Einstein-Hilbert gravity. Al-

though a generalization of the Bekenstein-Hawking entropy by Wald has been long proposed,

a corresponding Wald entropy increase theorem has not yet been proven. The second law of

thermodynamics for fluids dual to higher derivative gravity theories would map to a Wald

entropy increase theorem. This leads to a exciting possibility of either proving the Wald

entropy increase theorem for higher derivative theories of gravity or constraining the possible

higher derivative corrections to Einstein-Hilbert gravity by the requirement of an entropy

increase principle.

Recently, using the ideas of the equilibrium partition function other authors have also

made progress in understanding the effects of anomalies in other global symmetries like weyl

symmetry, diffeomorphisms and other non-abelian global symmetries(see e.g. [25–28]). An

interesting related queston is, whether anomalies also affect the dissipative transport coeffi-

cients.

We have proposed a very simple and powerful technique to analyse the equality type

constraints in hydrodynamics. It is natural to wonder if there is a simillar simpler under-

standing of the inequalities for the dissipative transport coefficients e.g. by the consideration

of stability of equilibrium solution. If true, this would be some progress towards a better

understanding of second law of thermodynamics at least in the hydrodynamical context.
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3 Constraints on Fluid Dynamics From Equilibrium Partition Function

3.1 Introduction and Summary

In this chapter we explore, in great detail, the structural constraints imposed on the equations

of relativistic hydrodynamics by two related physical requirements. First that these equations

admit a stationary solution on an arbitrarily weakly curved stationary background spacetime.

Second that the conserved currents (e.g. the stress tensor) on the corresponding solution

follow from an equilibrium partition function.

Landau-Lifshitz [1], and several subsequent authors, have emphasized another source of

constraints on the equations of hydrodynamics, namely that the equations are consistent

with a local form of the second law of thermodynamics. As is well known, this requirement

imposes inequalities on several parameters (like viscosities and conductivities) that appear

in the equations of hydrodynamics. It is perhaps less well appreciated that the requirement

of local entropy increase also yields equalities relating otherwise distinct fluid dynamical

parameters, and so reduces the number of free parameters that appear in the equations of

fluid dynamics (see e.g. [1, 2], for more recent work inspired by the AdS/CFT correspondence

see e.g. [3–11]). In three specific examples we demonstrate below that the equalities obtained

from the comparison with equilibrium (described in the previous paragraph) agree exactly

with the equalities between coefficients obtained from the local second law of thermodynamics.

These results lead us to conjecture that the constraints obtained from these two a naively

distinct physical requirements infact always coincide.

In the rest of this section we summarize our procedure and results in detail. In subsection

3.1.1 below we describe the structure of equilibrium partition functions for field theories on

stationary spacetimes in an expansion in derivatives of the background spacetime metric

(and gauge fields). In subsection 3.1.2 we then describe the constraints on the equations of

relativistic hydrodynamics imposed by the structure of the partition functions described in

subsection 3.1.1. In three examples we compare these constraints to those obtained from the

requirement of entropy increase and find perfect agreement in each case.

3.1.1 Equilibrium partition functions on weakly curved manifolds

Consider a relativistically invariant quantum field theory on a manifold with a timelike killing

vector. By a suitable choice of coordinates, any such manifold may be put in the form

ds2 = −e2σ(~x)
(
dt+ ai(~x)dxi

)2
+ gij(~x)dxidxj (3.1)

where i = 1 . . . p. ∂t is the killing vector on this manifold, while the coordinates ~x parametrize

spatial slices. Here σ, ai, gij are smooth functions of coordinates ~x.

Let H denote the Hamiltonian that generates translations of the time coordinate t. In

this subsection we address the following question. What can we say, on general symmetry

grounds, about the dependence of the the partition function of the system

Z = Tre
− H
T0 , (3.2)
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on σ, gij and ai? We will focus on the long wavelength limit, i.e. on manifolds whose

curvature length scales are much larger than the ‘mean free path’ of the thermal fluid 9. In

this limit the question formulated above may addressed using the techniques of effective field

theory. In the long wavelength limit the background manifold may be thought of as a union

of approximately flat patches, in each of which the system is in a local flat space thermal

equilibrium at the locally red shifted temperature

T (x) = e−σT0 + . . . (3.3)

(where T0 is the equilibrium temperature of the system and the . . . represent derivative

corrections, see below). Consequently the partition function of the system is given by

lnZ =

∫
dpx
√
gp

1

T (x)
P (T (x)) + . . . (3.4)

where P (T ) is the thermodynamical function that computes the pressure as a function of

temperature in flat space. Substituting (3.3) into (3.4) we find

lnZ =

∫
dpx
√
gp
eσ

T0
P (T0e

−σ) + . . . (3.5)

The . . . in (3.5) denote corrections to lnZ in an expansion in derivatives of the background

metric. At any given order in the derivative expansion these correction are determined, by the

requirement of diffeomorphism invariance, in terms of a finite number of unspecified functions

of σ. For example, to second order in the derivative expansion, p dimensional diffeomorphism

invariance and U(1) gauge invariance of the Kaluza Klein field a constrain the action to take

the form

logZ = W = −1

2

(∫
dpx
√
gp
eσ

T0
P (T0e

−σ)

+

∫
dpx
√
gp
(
P1(σ)R+ T 2

0P2(σ)(∂iaj − ∂jai)2 + P3(σ)(∇σ)2
)) (3.6)

where P1(σ), P2(σ) and P3(σ) are arbitrary functions. It is possible to demonstrate on general

grounds that the temperature dependence of these functions is given by

Pi(σ) = P̃i(T0e
−σ) (3.7)

so that

logZ = W = −1

2

(∫
dpx
√
gp
eσ

T0
P (T0e

−σ)

+

∫
dpx
√
gp
(
P̃1(T0e

−σ)R+ T 2
0 P̃2(T0e

−σ)(∂iaj − ∂jai)2 + P̃3(T0e
−σ)(∇σ)2

))
(3.8)

9Equilibrium Partition functions special curved manifolds or with particular background gauge fields have

been studied before in [19, 29, 30]
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The discussion above is easily generalized to the study of a relativistic fluid which pos-

sesses a conserved current Jµ corresponding to a global U(1) charge. We work on the manifold

(3.1) in the presence of a time independent background U(1) gauge connection

A = A0(~x)dx0 +Ai(~x)dxi (3.9)

and study the partition function

Z = Tre
−H−µ0Q

T0 (3.10)

Later in the section we present a detailed study of the special case of charged fluid dynamics

in p = 3 and p = 2 spatial dimensions, at first order in the derivative expansion, without

imposing the requirement of parity invariance. Let us first consider the case p = 3. The

requirements of three dimensional diffeomorphism invariance, Kaluza Klein gauge invariance,

and U(1) gauge invariance upto an anomaly10 (see below) force the partition function to take

the form11

lnZ = W 0 +W 1
inv +W 1

anom

W 0 =

∫
√
g3
eσ

T0
P
(
T0e
−σ, e−σA0

)
W 1
inv =

C0

2

∫
AdA+

T 2
0C1

2

∫
ada+

T0C2

2

∫
Ada

W 1
anom =

C

2

(∫
A0

3T0
AdA+

A2
0

6T0
Ada

)
(3.11)

where Ai

A0 = A0 + µ0

Ai = Ai −A0ai
(3.12)

(3.11) is written in terms of Ai because Ai, unlike Ai, is Kaluza Klein gauge invariant12.

W 0 in (3.11) is zero derivative contribution to the partition function, and is the patchwise

approximation to equilibrium, in the spirit of (3.5). W 1
inv is the most general diffeomorphism

10In this thesis we only consider the effect of U(1)3 anomalies ignoring the effects of . for instance, mixed

gravity-gauge anomalies. A systematic study of the effect of these anomalies in fluid dynamics would require

us to extend our analysis of charged fluid dynamics to 2nd order, a task we leave for the future (see however

section 3.6). It is possible that C2 above will turn out to be determined in terms of such an anomaly coefficient.

We thank R. Loganayagam for pointing this out to us.
11Our convention is

1

2

∫
XdY =

∫
d3x
√
g3ε

ijkXi∂jYk ,
1

2

∫
dY =

∫
d2x
√
g2ε

ij∂iYj .

12The background data can be taken as gauge field A = (A0,Ai) with constant chemical potential µ0 and

temperature T0. Equivalently we can think of the system to have background gauge field B = (A0 + µ0,Ai)
with no chemical potential. These two are equivalent physical statements as µ0 can be absorbed in the constant

part of A0.
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and gauge invariant one derivative correction to W 0. Note that W 1 is the sum of a Chern

Simons term for the connection A, a Chern Simons term for the connection a and a mixed

Chern Simons term in A and a. As usual, gauge invariance forces the coefficients C0, C1 and

C2 of these Chern Simons terms to be constants.

(3.11) is the most general form of the partition function of our system that satisfies

the requirements of 3 dimensional diffeomorphism invariance and gauge invariance. If we,

in addition, impose the requirement of CPT invariance of the underlying four dimensional

field theory then it turns out that C0 = C1 = 0 (see subsection 3.3.6). In other words, the

requirement of CPT invariance allows only the mixed Chern Simons term, setting the ‘pure’

Chern Simons terms to zero.

W 1
anom is the part of the effective action that is not gauge invariant under U(1) gauge

transformations. 13 Its gauge variation under Aµ → Aµ + ∂µφ(~x) is given by

δW 1
anom =

C

24T0

∫
d3x
√
−g4 ∗ (F ∧ F) φ(x) (3.13)

As we explain in much more detail below, this is exactly the variation of the effective action

predicted by the anomalous conservation equation

∇µJ̃µ = −C
8
∗ (F ∧ F) (3.14)

where J̃ is the gauge invariant U(1) charge current, and ∗ denotes the Hodge dual.

Let us now turn to parity violating charged fluid dynamics in p = 2 spatial dimensions.

In this case there is no anomaly in the system and the parity odd sector is qualitatively much

different from its p = 3 spatial dimension counterpart. For this system we primarily focus on

the parity odd sector upto the first order in derivative expansion and the manifestly gauge

invariant partition function in this case takes the form

lnZ =W0 +W, (3.15)

where

W0 =

∫
√
g2
eσ

T0
P
(
T0e
−σ, e−σA0

)
W =

1

2

∫
(α(σ,A0) dA+ T0 β(σ,A0) da) .

(3.16)

Where A0 and Ai are defined in (3.12) and α and β are arbitrary functions.

It is straightforward, if tedious, to generalize the form of the partition function presented

in special examples above to higher orders in the derivative expansion. To any given order

in the derivative expansion, the dependence of lnZ, on gij , ai, σ, A0 and Ai is fixed by the

13It is striking that the effect of the anomaly can be captured by a local term in the 3 dimensional effec-

tive action. Note that W 1 cannot be written as the dimensional reduction of a local contribution to the 4

dimensional action, in agreement with general expectations.
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requirements of p dimensional diffeomorphism invariance and gauge invariance in terms of a

finite number of unspecified functions of two variables, σ and A0.

We will now define some terminology that will prove useful in the sequel. Let sne denote

the number of independent gauge invariant scalar expressions that one can construct out of

σ, ai (and A0 and Ai in the case that the fluid is charged) at nth order in the derivative

expansion. In a similar manner, vne and tne will denote the number of nth order independent

gauge invariant vectors and (traceless symmetric two index) tensors formed out of the same

quantities. Finally let stne denote the total number of nth order scalar expressions that happen

to be total derivatives (including the contribution of a coefficient function) and so integrate

to zero 14 It is clear that at nth order in the derivative expansion, the equilibrium action lnZ

depends on sne − stne unknown functions of two variables.

3.1.2 Constraints on Fluid Dynamics from stationary equilibrium

Relativistic Hydrodynamics In this subsubsection we present a lightening review of the

structure of the equations of charged relativistic hydrodynamics. The equations of hydrody-

namics are simply the equations of conservation of the stress tensor and the charge current

∇µTµν = FνµJ̃µ, ∇µJ̃µ = −C
8
∗ (F ∧ F), (3.17)

where F is the field strength of the gauge field A in (3.9). These equations constitute a

closed dynamical system when supplemented with constitutive relations that express Tµν and

Jµ as a function of the fluid temperature, chemical potential and velocity. These constitutive

relations are presented in an expansion in derivatives and take the form

Tµν = (ε+ P )uµuν + Pgµν + πµν , Jµ = quµ + Jµdiss, (3.18)

The pressure P , proper energy density ε and proper charge density q are those functions of

T and µ predicted by flat space equilibrium thermodynamics. πµν refers to the sum of all

corrections to the stress tensor that are of first or higher order in the derivative expansion (the

derivatives in question could act either on the T , µ, uµ, or the background metric and gauge

field gµν and Aµ). Similarly Jµdiss refers to corrections to the perfect fluid charge current that

depend on atleast one spacetime derivative. Field redefinitions of the T µ and uµ may be

used to impose p + 2 constraints on πµν and Jµdiss; throughout this section we will work in

the so called Landau Frame in which

uµπµν = 0, uµJdissµ = 0 (3.19)

Terms in πµν and Jµdiss are both graded according to the number of spacetime derivatives

they contain, i.e.

πµν = πµν(1) + πµν(2) + πµν(3) + . . .

Jµdiss = Jµdiss,(1) + Jµdiss,(2) + Jµdiss,(3) + . . .
(3.20)

14For example, the two derivative scalar ∇µh(σ)∇µσ is a total derivative for arbitrary h(σ).
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where the subscript counts the number of derivatives.

Symmetry considerations immediately constrain the possible expansions for πµν and Jµdiss
as follows. At any given point in spacetime, the fluid velocity uµ is a particular timelike vector.

The value of the velocity breaks the local SO(p, 1) Lorentz symmetry of the theory down to

the rotational subgroup SO(p). In the Landau frame (3.17) πµν may be decomposed into an

SO(p) tensor and SO(p) scalar. Jµdiss is an SO(p) vector.

In order to parameterize freedom in the equations of hydrodynamics, it is useful to define

some terminology. Let tnf , vnf and snf respectively denote the number of onshell inequivalent

tensor, vector and scalar expressions that can be formed out expressions made up of a total

of n derivatives acting on T , uµ, µ, gµν and Aµ. It follows immediately that the most general

symmetry allowed expression for πµν(n) is given in terms of tnf +snf unknown functions of the two

variables T and µ. In a similar manner the most general expression for the Jµdiss(n), permitted

by symmetries, is given in terms of vnf unknown functions of the same two variables.

It turns out that the (tnf +snf +vnf ) nth order transport coefficients are not all independent.

The requirement that the hydrodynamical equations are consistent with the existence of

an entropy current that is of positive divergence in every conceivable fluid flow imposes

several relationships between these coefficients cutting down the number of parameters in

these equations; we refer the reader to [1, 3, 5, 10], for example, for a fuller discussion.

We now turn to a description of a simpler physical principal that appears predict the same

relations between these coefficients.These relations may all be constructively determined by

comparison of the equations of hydrodynamics with a partition function.

Constraints from stationary equilibrium As we have explained in the previous sub-

subsection, it follows from symmetry considerations that the equations of charged hydrody-

namics, at nth order in the derivative expansion, are parameterized by tnf + vnf + snf unknown

functions of two variables (or tnf +snf functions of one variable for uncharged hydrodynamics).

We will now argue that these functions are not all independent, but instead are determined

in terms of a smaller number of functions.

It is easy to verify that the equations of perfect fluid hydrodynamics (hydrodynamics

at lowest order in the derivative expansion) admit a stationary ‘equilibrium’ solution in the

backgrounds (3.1) and (3.9) given by

uµ(0)(~x) = e−σ(1, 0, . . . , 0), T(0)(~x) = Toe
−σ, µ(0)(~x) = e−σA0 (3.21)

As explained above, this is also the equilibrium solution one expects of the fluid on intuitive

ground. At higher order in the derivative expansion this solution is corrected; the corrected

solution may be expanded in derivatives

uµ = uµ(0) + uµ(1) + uµ(2) + . . .

T = T(0) + T(1) + T(2) + . . .

µ = µ(0) + µ(1) + µ(2) + . . .

(3.22)
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where uµ(n), T(n) and µ(n) are expressions of nth order in derivatives acting on σ, A0, ai, Ai
and gij . What can we say about the form of the corrections uµ(n), T(n) and µ(n)? Adopting

the notation defined in the last paragraph of the previous subsection, symmetries determine

the expression for uµ(n) in terms of vne as yet unknown functions of σ and A0, while T and µ

are each determined in terms of sne as yet unknown equations of A0 and σ.

The stress tensor and charge current in equilibrium are given by plugging (3.22) into

(3.20). The result is an expression for πµν and Jµdiss written entirely in terms of σ, A0, ai,

Ai, gij and their derivatives.

This expressions for the stress tensor and charge current so obtained depend only on a

subset of the transport coefficients that appear in the expansion of πµν and Jµdiss. For instance,

the expansion of the nth order tensor part of πµν has tnf terms in general. When evaluated

on (3.21), however, this expression reduces to a sum over tne ≤ tnf terms. The coefficients of

these terms define tne subspace of the tnf dimensional set of nth order transport coefficients.

We refer to this subspace as the subspace of non dissipative transport coefficients.

In this thesis we demand that the expressions for the equilibrium stress tensor and charge

current, obtained as described in the previous paragraph, agree with the corresponding ex-

pressions obtained by differentiating the equilibrium partition function of subsection 3.1.1

with respect to the background gauge field and metric. This requirement yields a set of

tne + 2vne + 3sne equations15 that completely determine both the nth order corrections to the

equilibrium solutions Tn µn and uµn (vne + 2sne coefficients in all) as well as the tne + vne + sne
non dissipative hydrodynamical transport coefficients. Note that the number of variables

precisely equals the number of equations. Dissipative hydrodynamical transport coefficients

are completely unconstrained by this procedure.

We emphasize that the shifted equilibrium velocities, temperatures and chemical poten-

tials obtained from the procedure just described automatically obey the equations of hy-

drodynamics. By construction, the shifted fluid variables, together with the constitutive

relations determined above yield the stress tensor that follows from the functional variation

of an equilibrium partition function, and the stress tensor obtained from the variation of any

diffeomorphically invariant functional is automatically conserved. Very similar remarks apply

to the charge current.

Let us summarize. In general πµν and Jµdiss are expanded in terms of tnf +snf and vnf trans-

port coefficients, each of which is a function of temperature and chemical potential. However

tnf − tne + snf − sne of these coefficients in πµν and vnf − vne of these coefficients in Jµdiss evaluate

to zero on the ‘equilibrium’ configuration (3.21). The remaining tne + vne + sne non dissipative

transport coefficients multiply expressions that do not vanish on (3.21). Comparison with

the equilibrium partition function algebraically determines all non dissipative transport coef-

ficients in terms of the sne − stne functions (and derivatives thereof) that appear as coefficients

15The counting goes as follows. The stress tensor decomposes into one SO(p), tensor, one vector and two

scalars. The charge current decomposes into a vector and a scalar. Equating the hydrodynamical equilibrium

stress tensor and charge current to the expressions obtained by varying the equilibrium yields 3sne + 2vne + tne
equations.
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in the derivative expansion of the partition function. In other words the tne + vne + sne non

dissipative transport coefficients are not all independent; there exist tne + vne + stne relations

between these coefficients.

The procedure described above may also be used to derive constraints on the form of the

fluid entropy current. The entropy current must obey two constraints. First its divergence

must vanish on all the equilibrium configurations derived above. Second, the integral over the

entropy density (obtained from the entropy current) must equal the thermodynamical entropy

that follows from the partition function (3.10). These requirements impose constraints on the

form of the (non dissipative) part of the most general symmetry allowed hydrodynamical

entropy current.

We have implemented the procedure described above in detail in three separate examples

which we describe in more detail immediately below. In each case we have obtained detailed

expressions for all non dissipative hydrodynamical coefficients in terms of the parameters that

appear in the action. In each case, the relations obtained between non dissipative transport

coefficients, after eliminating the action parameters, agree exactly with the relations obtained

between the same quantities by previous investigations based on the study study of the second

law of thermodynamics.

In the case of parity violating first order fluid dynamics in 3+1 dimensions, the results for

transport coefficients computed from (3.11) match perfectly with those of Son and Surowka

[3] (generalized in [16],[4]) once we impose the additional requirement of CPT invariance. 16

In the case of parity preserving fluid dynamics in 3+1 dimensions, the results obtained

from the partition function (3.6) agree perfectly with those of Bhattacharyya [10]. Finally, in

the case of parity non preserving charged fluid dynamics in 2+1 dimensions, the results from

section 3.4 agree perfectly with those of [19].

In ending this introduction let us note the following. As we have described at the be-

ginning of the introduction, the physical principles that yield constraints on the transport

relations of fluid dynamics are twofold. First, that these equations are consistent with the

existence of a stationary solution in every background of the form (3.1), (3.9). Second, that

the stress tensor and charge current evaluated on this equilibrium configuration obeys the

integrability constraints that follow if these expressions can be obtained by differentiating a

partition function. In the presentation described above we have mixed these two conditions

together (as the partition function is the starting point of our discussion). However it is also

possible to separate these two conditions. For each of the three examples discussed above, in

16Before imposing the requirement of CPT invariance, we have an additional one parameter freedom that is

not captured by the the generalized Son-Surowka analysis. The reason for this is that Son and Surowka (and

subsequent authors) assumed that the entropy current was necessarily gauge invariant. This does not seem

to us to be physically necessary. It seems to us that an entropy current whose divergence is gauge invariant -

and whose integral over a compact manifold in equilibrium is gauge invariant - is perfectly acceptable. As we

explain below, it is easy to find a one parameter generalization of the Son-Surowka solution that meets these

conditions, and that gives rise to the additional term C0 in the partition function (3.11). However it turns out

that the requirement of CPT invariance sets C0 (along with C1) to zero in (3.11), so this possible ambiguity

is never realized in the hydrodynamical description of a quantum field theory.
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Appendix 3.8.1, 3.8.2 and 3.8.3 we present a detailed study of the constraints on the equa-

tions of fluid dynamics obtained merely from the existence of stationary solutions in arbitrary

backgrounds of the form (3.1), (3.9). In each case we find that all of the relations between

transport coefficients, derived in this thesis, are implied already by this weaker condition. In

these three examples, once equilibrium exists, the requirement that it follows from a partition

function turns out to be automatic. We do not expect this always to be the case. In more

complicated cases we expect the existence of a partition function to imply further constraints

than those implied merely by the existence of equilibrium. However we leave the study of

such effects to future work.

3.2 Preparatory Material

In this subsection we present background material that we will need in the main part of

this section. In subsubsection 3.2.1 we present some Kaluza Klein reduction formulae for

metrics of the form (3.1). In subsubsection 3.2.2 we describe the transformation properties

of various quantities of interest under Kaluza Klein gauge transformations. In subsubsection

3.2.3 we discuss how the stress tensor and charge current of our system is related to the

partition function. We also discuss the thermodynamical energy, entropy and entropy of our

system, and compare these quantities to those obtained from integrals over local currents. In

subsubsection 3.2.6 we discuss the relation between consistent currents (those obtained from

the variation of an action) and gauge invariant currents in systems with a U(1) anomaly.

In subsubsection3.2.7 we describe how the equations of perfect fluid hydrodynamics may be

‘derived’ starting from a zero derivative equilibrium partition function.

3.2.1 Kaluza Klein Reduction Formulae

As explained in the introduction, in this thesis we study theories on metric and gauge fields

in the Kaluza Klein form

ds2 = −e2σ(~x)
(
dt+ ai(~x)dxi

)2
+ gij(~x)dxidxj

Aµ = (A0(~x),Ai(~x))
(3.23)

The inverse of this metric is given by

gµν =

(
(−e−2σ + a2) −ai

−ai gij

)
where the first row and column refer to time and gij is the inverse of gij . Christoffel symbols,

Γ̃, of the p+ 1 dimensional metric are given in terms of those of the p dimensional Christoffel
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symbols Γ by

Γ̃0
00 = −e2σ(a.∂)σ

Γ̃i00 = e2σgim∂mσ

Γ̃0
i0 = ∂iσ − e2σ(a.∂)σai +

e2σfima
m

2

Γ̃ij0 = e2σgik(−1

2
fjk + ∂kσaj)

Γ̃0
ij = −anΓnij +

e2σ

2

[
aja

m∂iam + aia
m∂jam

]
− 1

2
a.∂(e2σaiaj) +

e−2σ

2

[
∂i(e

2σaj) + ∂j(e
2σai)

]
Γ̃kij = Γkij −

e2σ

2
gkm

[
aj∂iam + ai∂jam

]
+

1

2
gkm∂m(e2σaiaj) (3.24)

Curvature symbols of the p+1 dimensional metric (e.g. the Ricci scalar R̃) are given in terms

of p dimensional curvature data (e.g. the p dimensional Ricci Scalar R) by17

R̃ = R+
1

4
e2σf2 − 2(∇σ)2 − 2∇2σ

R̃ij = Rij −∇iσ∇jσ −∇i∇jσ +
1

2
e2σf imf jm

Kij ≡ R̃ i j
0 0 (u0)2 = ∇iσ∇jσ +∇i∇jσ +

1

4
e2σf imf jm,

(3.26)

where fij = ∂iaj − ∂jai
Let us define uµK to be the unit normalized vector in the Killing direction. In components

uµK = e−σ(1, 0, . . . , 0) (3.27)

Let PKµν denote the projector orthogonal to uµK

PKµν = gµν + uµKu
ν
K (3.28)

Explicitly in matrix form

(PK)µν =

(
0 0

0 gij

)
17The definitions we adopt in this thesis are

R σ
µνρ = ∂νΓσµρ − ∂µΓσνρ + ΓαµρΓ

σ
αν − ΓανρΓ

σ
αµ,

Rµν = R σ
µσν .

(3.25)

We always use the mostly positive signature.
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Let us also define the shear tensor, vorticity and expansion and acceleration of this Killing

‘velocity’ field by

ΘK = ∇.uK = Expansion, aµK = (uK .∇)uµK = Acceleration

σµνK = PµαP νβ
(
∇α(uK)β +∇β(uK)α

2
− ΘK

3
gαβ

)
= Shear tensor

ωµνK = PµαP νβ
(
∇α(uK)β −∇β(uK)α

2

)
= Vorticity

(3.29)

A straightforward computation yields

ΘK = 0, (aK)µ = (PK)µi∇iσ
σµνK = 0

(ωK)µν =
eσ

2
(PK)µi(PK)νjf

ij

(3.30)

3.2.2 Kaluza Klein gauge transformations

The form of the metric and gauge fields in (3.23) is preserved by p dimensional spatial diffeo-

morphisms together with redefinitions of time of the form

t′ = t+ φ(~x), x′ = x. (3.31)

Under coordinate changes of the form (3.31) the Kaluza Klein gauge field ai transforms like

a connection:

a′i = ai − ∂iφ.

Let us now examine the transformation of p + 1 dimensional tensors under the coordinate

transformations (3.31). It is not difficult to verify that upper spatial indices and lower temporal

indices are gauge invariant. So, for instance, if Aµν is any p+ 1 dimensional two tensor, the p

dimensional scalar A00, the p dimensional vector Ai0 and the p dimensional tensor Aij are all

Kaluza Klein gauge invariant. On the other hand lower spatial indices and upper temporal

indices transform under the Kaluza Klein gauge transformation (3.31) according to

V ′i = Vi − ∂iφV0, (V ′)0 = V 0 + ∂iφV
i. (3.32)

Note that the p dimensional oneforms

gijV
j = Vi − aiV0

are gauge invariant. In the sequel we will make heave use of the p dimensional oneforms

Ai = Ai − aiA0 (3.33)

This oneform is Kaluza Klein gauge invariant and transform as connections under U(1) gauge

transformations. This is the reason that the partition function (3.11) was written in terms of

Ai rather than Ai.
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3.2.3 Stress Tensor and U(1) current

The p+ 1 dimensional tensors that will be of most interest to us in this section are the stress

tensor, the charge current and the entropy current. The stress tensor and charge current are

defined in terms of variation of the action with respect to the higher dimensional metric and

gauge field according to the formulas

δS =

∫
dxp+1

√
−gp+1

(
−1

2
Tµνδg

µν + JµδAµ
)

(3.34)

As we have described in the introduction, in this thesis we will be interested in the parti-

tion function lnZ of our system on the background (3.23). This partition function may be

thought of as the Euclidean action of our system on the metric (3.1) with coordinate time t

compactified on a circle of length 1
T0

. The change of lnZ under time independent variations

of the metric and gauge field is thus given by

δ lnZ =

∫
dxp+1

√
−gp+1

(
−1

2
Tµνδg

µν + JµδAµ
)

=
1

T0

∫
dxp
√
−gp+1

(
−1

2
Tµνδg

µν + JµδAµ
) (3.35)

It follows that

Tµν = −2T0
δ lnZ

δgµν

Jµ = T0
δ lnZ

δAµ

(3.36)

The formulae (3.36) are not written in the most useful form for the purposes of this section.

As we have described in the introduction, we find it useful to regard our partition function

as a functional of

lnZ = W (eσ, A0, ai, Ai, g
ij , T0, µ0). (3.37)

By application of the chain rule to the formulas (3.35) we find

T00 = − T0e
2σ√

−g(p+1)

δW

δσ
, T i0 =

T0√
−g(p+1)

(
δW

δai
−A0

δW

δAi

)
,

T ij = − 2T0√
−g(p+1)

gilgjm
δW

δglm
, J0 = − e2σT0√

−g(p+1)

δW

δA0
, J i =

T0√
−g(p+1)

δW

δAi
. (3.38)

where, for instance, the derivative w.r.t A0 is taken at constant σ, ai, Ai, g
ij , T0 and µ0.

3.2.4 Dependence of the partition function on T0 and µ0

From the viewpoint of a Euclidean path integral, the parameter T0 in the partition function

(3.10) is the coordinate length of the time circle. Moreover, every quantum field of charge q is

twisted by the phase q µ0

T0
as it winds the temporal circle in Euclidean space. As usual, such a
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twist is gauge equivalent to a shift in the ’ temporal gauge field A0 → A0 +µ0 = A0
18 holding

Ai fixed. It follows that lnZ is a function of A0, Ai and µ0 only in the combination A0 and

Ai . The dependence of lnZ on T0 may be deduced in a similar fashion. The Euclidean time

coordinate t′ = tT0 has unit periodicity. When rewritten in terms of t′, the metric and gauge

field retain the form (3.23) with

eσ
′

=
eσ

T0
, a′i = aiT0, A′0 =

A0

T0

It follows from all these considerations that

W (eσ,A0, ai,Ai, gij , T0, µ0) =W(
eσ

T0
,
A0

T0
, T0ai, Ai, g

ij). (3.39)

We will never use the function W below; all our explicit formulae will be written in terms of

the function W . Nonetheless (3.39) will allow us to relate thermodynamical derivatives w.r.t.

T0 and µ0 to functional derivatives of the partition function w.r.t. background fields.

3.2.5 Conserved charges and entropy

In this subsubsection we will compute the U(1) charge and energy of our system from in-

tegrals over the appropriate charge currents, and compare the expressions so obtained with

thermodynamical formulas.

The U(1) charge of our system in equilibrium is given by

Q =

∫
dpx
√
−gp+1J

0 (3.40)

where the integral is taken over the p dimensional spatial manifold. Let us now define the

(conserved) energy of our system. Whenever the divergence of the stress tensor vanishes, the

current −vλTµλ is conserved provided vλ is a killing vector field. We cannot directly apply

this result to the killing vector field vλ = (1, . . . , 0), as the stress tensor in this section is not

divergence free in general (see (3.17)). However it is easily verified that the shifted current

JµE = −Tµ0 −A0J
µ (3.41)

is conserved in equilibrium. As a consequence we define

E =

∫
dpx
√
−gp+1J

0
E =

∫
dpx
√
−gp+1

(
−T 0

0 −A0J
0
)

(3.42)

Q and E defined in (3.40) and (3.42) may be shown to be Kaluza Klein gauge invariant. For

instance, the Kaluza Klein gauge variation of the RHS of (3.40) is given by∫
dpx
√
−gp+1J

i∂iφ

=

∫
dpx
√
−gp+1J

µ∂µφ

= −
∫
dpx
√
−gp+1 φ∇µJµ = 0

(3.43)

18In this formula A0 is refers to the gauge field in Lorentzian space. Note that µ0 is gauge equivalent to an

imaginary shift of A0 in Euclidean space.
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(where we have used the fact that the gauge parameter φ is independent of t, integrated by

parts, and used the fact that Jµ is a conserved current). The gauge invariance of E follows

from an almost identical argument.

We will now demonstrate that the expressions (3.40) and (3.42) agree exactly with the

thermodynamical definitions of the charge and energy that follow from the partition function.

In great generality, the charge of any thermodynamical system may be obtained from its

partition function (3.10) via the thermodynamical formula

Q = T0
∂W

∂µ0

where the partial derivative is taken at constant T0,A0,Ai, gij , ai, σ. In the current context

T0
∂W

∂µ0
= T0

∫
dpx

(
δW

δA0(x)
− ai

δW
δAi(x)

)
=

∫
dpx
√
−gp+1J

0 = Q

(3.44)

where we have used (3.39), J0 = −e−2σJ0 − aiJ
i (this follows from the fact that J0 =

g00J
0 + g0iJ

i) and explicit expressions for J0 and J i listed in (3.38). Let us note that, in the

presence of anomaly 3.17 current Jµ is neither gauge invariant nor conserved19.

The thermodynamical energy

T 2
0

∂W

∂T0
+ µ0Q

(where the partial derivative is taken at constant µ0,A0,Ai, gij , ai, σ). may be processed, in

the current context, as

T 2
0

∂W

∂T0
+ µ0Q =

= T0

∫ [
− δW

δσ
+ ai

δW
δai
− δW
δA0

A0 +
δW
δA0

µ0 − µ0ai
δW
δAi

]
=

∫ √
−gp+1

[(
e−2σT00 + aiT

i
0

)
−A0J

0
]

=

∫ √
−gp+1

[
−T 0

0 −A0J
0
]

= E

(3.45)

19One can construct a conserved current which is given by

Ĵµ = Jµ +
C

12
εµνρσAνFρσ.
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where we have used (3.39), the fact that −T 0
0 = e−2σT00 + aiT

i
0 and the explicit expressions

for T00 and T i0 in (3.38)). In summary

E = T 2
0

∂W

∂T0
+ µ0Q

Q = T0
∂W

∂µ0

(3.46)

Even in the presence of anomaly one can show that the current JµE in 3.41 remains conserved,

where Jµ is defined as in 3.36. Thus, the thermodynamic formula 3.45 holds for anomalous

system as well.

We conclude that the conserved charge and energy in our system are given, in terms of

the partition function, by the usual thermodynamical formulae. It follows that the entropy

of our system should also be given by the standard statistical formula

S =
∂(T0W )

∂T0
(3.47)

Later in this thesis we obtain constraints on the entropy current of our system by equating

(3.47) with
∫
dpx
√−gp+1J

0
S .

3.2.6 Consistent and Covariant Anomalies

20 In this subsubsection we discuss the relationship between the consistent charge current (the

current obtained by differentiating the partition function w.r.t. the background gauge field)

and the gauge invariant charge current in arbitrary 3 + 1 dimensional U(1) gauge theories

with a U(1)3 anomaly. Readers who are familiar with the issue of consistent and covariant

anomalies in quantum field theories can skip this section. The equations which will be used

later are (3.53),(3.48),(3.59).

In this thesis we will have occasion to study field theories in 4 spacetime dimensions

whose U(1) current obeys the anomalous conservation

∇µJµ = − C
24
∗ (F ∧ F) (3.48)

Jµ in (3.48) is the so called ‘consistent’ current defined by Jµ = δW
δAµ . As all gauge fields in

this thesis are always time independent

∗ (F ∧ F) = −8e−σεijk∂iA0∂jAk (3.49)

(here ε123 = 1√
g3

) so that the anomaly equation may be rewritten as

∇µJµ =
C

3
e−σεijk∂iA0∂jAk (3.50)

20 We would like to thank S. Trivedi and S. Wadia for discussions and on this topic and S. Wadia for referring

us to [17].
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21 It follows that the variation of the action under a gauge transformation is given by

δS =

∫ √
−g4

δS

δAµ
∂µφ =

C

24

∫
d4x
√
−g4φ ∗ (F ∧ F) = −C

3

∫
d4x
√
g3φε

ijk∂iA0∂jAk (3.51)

We now follow the discussion of Bardeen and Zumino [17] to determine the gauge transfor-

mation property of Jµ. The principle that determines this transformation law is simply that

the result of first performing an arbitrary variation of the gauge field Aµ → δAµ and then a

gauge transformation generated by δφ must be the same as that obtained upon reversing the

order of these operations. The variation of the action under the first order of operations, to

quadratic order in variations, is given by∫ √
−g4δJ

µ(δAµ)

(where δJµ denotes the variation of the consistent current Jµ under the gauge transformation

δφ). The reverse order gives

C

24

∫
δφ
δ(F ∧ F)

δAµ
δAµ =

C

24

∫
δφ
δ(F ∧ F)

δAµ
δAµ =

C

6

∫ √
−g4δAαεαβγδ∂βφFγδ

Comparing the two expressions it follows that under a gauge transformation

δJα =
C

6
εαβγδ∂βφFγδ (3.52)

It follows that the shifted current

J̃µ = Jµ − C

6
εµνγδAνFγδ (3.53)

is gauge invariant. J̃µ is the current that is most familiar to most field theorists; for instance

it is the current whose divergence is computed by the usual triangle diagram in standard text

books. It follows from (3.53) that the divergence of J̃µ is given by

∇µJ̃µ = −C
8
∗ (F ∧ F) (3.54)

Using (3.49), the anomaly equations may be rewritten as

∇µJµ =
C

3
e−σεijk∂iA0∂jAk

∇µJ̃µ = Ce−σεijk∂iA0∂jAk
(3.55)

Let us summarize. J̃µ is the gauge invariant current that we will use in the fluid dynamical

analysis in this section. It obeys the anomalous conservation equation (3.54). On the other

21In order to forestall all possible confusion we list our conventions. Fµν = ∂µAν − ∂νAµ , ∗(F ∧ F) =

εµναβFµνFαβ where ε0123 = 1√
−g4

. The variation of the gauge field Aµ under a gauge transformation is given

by δAµ = ∂µφ.
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hand the non gauge invariant current Jµ is simply related to the action W (it is the functional

derivative of W w.r.t. Aµ). These two currents are related by (3.53).

To end this subsection we will now derive the stress tensor conservation equation (3.17)

in the presence of a potential anomalous background gauge field. We start by noting that the

variation of W under an arbitrary variation of gµν and Aµ is given by

δW =

∫ √
−g4

(
−1

2
δgµνTµν + JµδAµ

)
(3.56)

Let us now choose the variations of the metric and gauge fields to be of the form generated

by an infinitesimal coordinate transformation, i.e.

δgµν = ∇µεν +∇νεµ, δAµ = − (∇µενAν + εν∇νAµ)

General coordinate invariance (which we assume to be non anomalous) demands that δW =

0 in this special case. Plugging these variations into (3.56), setting the LHS to zero and

integrating by parts yields∫
d4x
√
−g4ε

ν

(
∇µTµν − Jµ (∇νAµ −∇µAν) +∇µJµAν

)
(3.57)

Using (3.48) together with the identity

AσεµναβFµνFαβ = −4εµναβAνFαβFσµ (3.58)

we conclude that

∇µTµν = Fνµ(Jµ − C

6
εµσαβAσFαβ) = FνµJ̃µ (3.59)

Thus the two equation of motion of charged fluids are given by (3.48),(3.59).

3.2.7 Perfect fluid hydrodynamics from the zero derivative partition function

It is well known (and obvious on physical grounds) that the equations of perfect fluid dynamics

are completely determined by the equation of state of the fluid (i.e, for instance, the pressure

as a function of temperature and velocity).

In this subsubsection we will ‘rederive’ the fact that the equations of hydrodynamics,

at zero derivative order, are determined in terms of a single function of two variables, by

comparison with the equilibrium partition function on a general background of the form

(3.1). The the results we obtain in this subsection are obvious on physical grounds. However

this subsubsection illustrates the basic idea behind the work out in subsequent subsections.

At zero order in the derivative expansion, the most general symmetry allowed constitutive

relations of fluid dynamics take the form

Tµν = (ε+ P)uµuν + Pgµν , Jµ = quµ, (3.60)

At this stage ε, P and q are arbitrary functions of any two thermodynamical fluid variables.

ε, P and q (which will, of course, eventually turn out to be the fluid energy density, pressure
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and charge density) are as yet independent and arbitrary functions of the temperature and

velocity.

We will now show that ε, P and q cannot be independent functions, but are all determined

in terms of a single ‘master’ function of two variables. In order to do that we note that the

most general p dimensional gauge and diffeomorphism invariant partition function for our

system on (3.1) must take the form

W = lnZ =

∫
d3x
√
g3

eσ

T0
P
(
T0e
−σ, e−σA0

)
(3.61)

for some function of two variables P (it is convenient to regard P as a function of e−σ and

e−σA0 rather than simply σ and A0 as we will see below). The stress tensor and charge

current that follows from the partition function (3.61) are easily evaluated using (3.38). The

results are most simply written once we introduce some notation. Let

a = e−σT0, b = e−σA0

Let Pa denote the partial derivative of P w.r.t its first argument, and Pb the partial derivative

of P w.r.t. its second argument. Below, unless otherwise specified, the functions P , Pa and

Pb will always evaluated at (a, b), and we will notationally omit the dependence of these

functions on their arguments. In terms of this notation

T ij = Pgij , T00 = e2σ (P − aPa − bPb) , J0 = e−σPb (3.62)

T i0 = 0, J i = 0, (3.63)

Comparing the expression for J i in (3.60) with the same quantity in (3.62) we conclude that

uµ = e−σ(1, 0, . . . , 0)

Comparing the other quantities it follows that

P = P, ε = −P + aPa + bPb, q = Pb (3.64)

In the special case of flat space the variables a and b reduce to the temperature and chemical

potential. It is clear on physical grounds that P, ε and q are functions only of local values

of thermodynamical variables. Consistency requires us to identify the local value of the

temperature with a and the local chemical potential with b. The function P that appears

in the partition is simply the pressure as a function of T and µ. Standard thermodynamical

identities then allow us to identify ε with the energy density of the fluid and q with the the

charge density of the fluid.

Let us summarize the net upshot of this analysis. Symmetries determine the form of

the perfect fluid constitutive relations upto three undetermined functions ε, P and q, of the

temperature and chemical potential. On the other hand the equilibrium partition function

is given by a single unknown function, P , of two variables. Comparison of the partition
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function with the fluid hydrodynamics allow us to determine P, ε and q in terms of P ; as a

bonus we also find expressions for the temperature and chemical potential in equilibrium on

an arbitrary background of the form (3.1), (3.9).

As the results of this subsection are obvious, and very well known. However a similar pro-

cedure leads non obvious constraints for higher derivative corrections of the fluid constitutive

relations, as we now explain.

3.3 3 + 1 dimensional Charged fluid dynamics at first order in the derivative

expansion

In this subsection we will derive the constraints imposed on the equations of charged fluid

dynamics, at first order in the derivative expansion, by comparison with the most general

equilibrium partition function.

The final results of this subsection agree with the slight generalization of Son and Surowka

[3] presented in [16],[4] as we now explain.

Recall that [3] argued that the hydrodynamic charge currents in field theories with a U(1)3

anomaly must contain a term proportional to the vorticity and another term proportional

to the background magnetic field. [3] used the principle of entropy increase to find a set of

differential equations that constrain these coefficients, and determined one solution to these

differential equations. It was later demonstrated that the most general solution to these

differential equations is a two parameter generalization of the Son Surowka result [16],[4].

The further requirement of CPT invariance disallows one of these two additional coefficients.

As we describe in detail below, our method for determining the hydrodynamical expansion

starts with the action (3.131), and then proceeds to determine the coefficients terms in the

charge current proportional to vorticity and the magnetic field in a purely algebraic manner.

Nowhere in this procedure do we solve a differential equation, so our procedure generates no

integration constants. However the starting point of our procedure, the partition function

(3.131) itself, depends on the three constants C0, C1 and C2. As we demonstrate below,

C1 and C2 map to the integration constants obtained from the differential equations of [3].

The third constant C0 is new, and does not arise from the analysis of [3]. As we explain

below, this coefficient corresponds to the freedom of adding a U(1) gauge non invariant term

to the entropy current, subject to the physical requirement that the contribution to entropy

production from this term is gauge invariant. It turns out, however, that the requirement

of CPT invariance forces C0 to vanish. As a consequence this new term cannot arise in the

hydrodynamical expansion of any system that obeys the CPT theorem.

3.3.1 Equilibrium from Hydrodynamics

In Table (4) we have listed all scalar, vector and tensor expressions that one can form out of

fluid fields and background metric and gauge fields (not necessarily in equilibrium) at first

order in the derivative expansion. It follows from the listing of this table that the most general
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Type Data Evaluated at equilibrium

T = T0e
−σ, µ = e−σA0, u

µ = uµK
Scalars ∇.u 0

Vectors Eµ = Fµνu
ν , e−σ∂iA0

Pµα∂αT, -T0e
−σ∂iσ

(Eµ − TPµα∂αν) 0

Pseudo-Vectors ερλαβu
λ∇αuβ eσ

2 εijkf
jk

Bµ = 1
2ερλαβu

λFαβ Bi = 1
2gijε

jkl(Fkl +A0fkl)

Tensors PµαPνβ
(∇αuβ+∇βuα

2 − ∇.u3 gαβ
)

0

Table 4. One derivative fluid data

Scalars None

Vectors ∂iA0 , ∂iσ

Pseudo-Vectors εijk∂jAk , εijk∂jak
Tensors None

Table 5. One derivative background data

symmetry allowed one derivative expansion of the constitutive relations is given by

πµν = −ζθPµν − ησµν
Jµdiss = σ

(
Eµ − TPαµ ∂αν

)
+ α1E

µ + α2Pµα∂αT + ξωω
µ + ξBB

µ
(3.65)

where the shear viscosity η, bulk viscosity ζ, conductivity σ and the remaining possible

transport coefficients b1, b2, b3 and b4 are arbitrary functions of σ and A0.

We are interested in the stationary equilibrium solutions of these equations. In general,

every fluid variable can receive derivative corrections in terms of derivatives of the back

ground data. The equilibrium temperature, chemical potential and velocity of our system to

first order is given by,

T = T(0) + δT = T0e
−σ + δT, µ = µ(0) + δµ = e−σA0 + δµ,

uµ = uµ(0) + δuµ = e−σ(1, 0, 0, 0) + δuµ,

δu0 is determined in terms of δui (which we would specify in a moment) as follows. Since

both uµ and uµ(0) is normalized to (−1), we have

u(0)µ
δuµ = 0 ⇒ δu0 = −aiδui. (3.66)

Thus, the nontrivial part of velocity correction δuµ is encoded in δui.

Solutions in equilibrium are determined entirely by the background fields σ, A0, ai, Ai and

gij . In Table(5,4) we have listed all coordinate and gauge invariant one derivative scalars,

vectors and tensors constructed out of this background data. As Table (5,4) lists no one
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derivative scalars, it follows immediately that the equilibrium temperature field T (x) = e−σT0

and chemical potential field µ(x) = e−σA0 receive no corrections at first order in the derivative

expansion. The velocity field in equilibrium can, however, be corrected. The most general

correction to first order is proportional to the vectors and pseudo vectors listed in Table (5,4)

and is given by

δui = −e
−σb1
4

εijkfjk + b2B
i
K + b3∂

iσ + b4∂
iA0 (3.67)

where

fjk = ∂jak − ∂kaj
Fjk = ∂jAk − ∂kAj
Aj = Aj − ajA0

Bi
K =

1

2
εijk(Fjk +A0fjk)

ε123 =
1
√
g3

(3.68)

The fluid stress tensor evaluated on this equilibrium configuration evaluates to (3.62) corrected

by an expression of first order in the derivative expansion. The one derivative corrections have

two sources.

The first set of corrections arises from the corrections (3.65) evaluated on the zero order

equilibrium fluid configuration (3.21). 22 Using Table(5), we then conclude that the change

in the stress tensors and charge current due to the modified constitutive relations is given by

δT00 = δT i0 = δJ0 = δT ij = 0

δJ̃ i = α1e
−σ∂iA0 − α2T0e

−σ∂iσ +
1

2
(ξBA0 −

1

2
ξωe

σ)εijkfjk +
1

2
ξBε

ijkFjk
(3.69)

The second source of corrections arises from inserting the velocity correction (3.67) into

the zero order (perfect fluid) constitutive relations. At the order at which we work these veloc-

ity corrections do not modify T00, J0 or T ij . A short calculation shows that the modification

of the stress tensor and charge corrections due to these corrections takes the form

δT00 = δJ0 = δT ij = 0

δT i0 = −eσ(ε+ P )
[1

2
(b2A0 −

1

2
b1e

σ)εijkfjk +
1

2
b2ε

ijkFjk − b3T0e
−σ∂iσ + b4∂

iA0

]
δJ̃ i =

[1

2

(
qb2A0 −

1

2
qb1e

σ
)
εijkfjk +

1

2
qb2ε

ijkFjk

− qb3T0e
−σ∂iσ + qb4∂

iA0

]
(3.70)

22When uµ ∝ (1, 0 . . . , 0) the Landau frame condition employed in this section sets π00 = π0i = Jdiss0 = 0.

Consequently T00, T0i and J0 receive no one derivative corrections of this sort.
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The net change in T i0 and J i is given by summing (3.70) and (3.69) and is given by

δT i0 = −eσ(ε+ P )
[1

2
(b2A0 −

1

2
b1e

σ)εijkfjk +
1

2
b2ε

ijkFjk − b3T0e
−σ∂iσ + b4∂

iA0

]
δJ̃ i =

[1

2

(
(ξB + qb2)A0 −

1

2
(ξω + qb1)eσ

)
εijkfjk +

1

2
(ξB + qb2)εijkFjk

− (qb3 + α2)T0e
−σ∂iσ + (qb4 + α1)∂iA0

]
.

(3.71)

3.3.2 Equilibrium from the Partition Function

We now turn to the study of the first correction to the perfect fluid equilibrium partition

function (3.61) at first order in the derivative expansion. From the fact that Table (5,4) lists

no gauge invariant scalars, one might be tempted to conclude that the equilibrium partition

function can have no gauge invariant one derivative corrections. We have already explained in

the introduction that this is not the case; the three (constant) parameter set of Chern Simons

terms listed in the third line of (3.11) yield perfectly local and gauge invariant contributions

to the partition function, even though they cannot be written as integrals of local gauge

invariant expressions. In addition to these gauge invariant pieces we need a term in the

action that results in its anomalous gauge transformation property (3.51). This requirement

is precisely met by the term in the last line of (3.11). 23

With the action (3.11) in hand it is straightforward to use (3.38) to obtain the stress

tensor and current corresponding to this equilibrium solution. We find

T00 = 0, T ij = 0,

T i0 = e−σεijk
[
(−1

2
CA2

0 + 2C0A0 + C2)∇jAk + (2C1 −
C

6
A3

0 − C2A0)∇jak
]

J0 = −eσεijk
[
C

3
Ai∇jAk +

C

3
A0Ai∇jak

]
J i = e−σεijk

[
2

(
C

3
A0 + C0

)
∇jAk +

(
C

6
A2

0 + C2

)
∇jak +

C

3
Ak∇jA0

]
,

(3.73)

Using (3.53) it follows that

J̃0 = 0,

J̃ i = e−σεijk
[
(CA0 + 2C0)∇jAk + (

1

2
CA2

0 + C2)∇jak
]
,

(3.74)

23In order to see this we first note that the last line of (3.11) may be rewritten as

C

3

∫
d3x
√
g3A0ε

ijkAi∂jAk

The variation of this term under a gauge transformation is given by

− C

3

∫
d3x
√
g3ε

ijk∂iA0Ai∂jAk (3.72)

in perfect agreement with (3.51).
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3.3.3 Constraints on Hydrodynamics

Equating the coefficients of independent terms in the two expressions for T i0 (3.71),(3.73)

determines the one derivative corrections of the velocity field in equilibrium. We find.

b1 =
T 3

ε+ P

(2

3
ν3C + 4ν2C0 − 4νC2 + 4C1

)
,

b2 =
T 2

ε+ P

(1

2
ν2C + 2νC0 − C2

)
,

b3 = b4 = 0. (3.75)

where ν = µ
T = A0

T0
.

Equating coefficients of independent terms in J i in equations 3.71 and 3.74 and using

(3.75) gives

ξω = Cν2T 2
(
1− 2q

3(ε+ P )
νT
)

+ T 2
[
(4νC0 − 2C2)− qT

ε+ P
(4ν2C0 − 4νC2 + 4C1)

]
,

ξB = CνT
(
1− q

2(ε+ P )
νT
)

+ T
(
2C0 −

qT

ε+ P
(2νC0 − C2)

)
,

α1 = α2 = 0 (3.76)

Let us summarize. We have found that the hydrodynamical charge current and stress

tensor are given by

πµν = −ζθPµν − ησµν
Jµdiss = σ

(
Eµ − TPαµ ∂αν

)
+ ξωω

µ + ξBB
µ

(3.77)

In (3.77) the viscosities ζ and η together with the conductivity σ are all dissipative param-

eters. These parameters multiply expressions that vanish in equilibrium and are completely

unconstrained by the analysis of this subsection. On the other hand ζω and ζB - together

with α1 and α2 in (3.65) - are non dissipative parameters. They multiply expressions that do

not vanish in equilibrium. The analysis of this subsection has demonstrated that α1 and α2

vanish and that ζω and ζB are given by (3.77). The expressions (3.77) agree exactly with the

results of Son and Surowka - based on the requirement of positivity of the entropy current -

upon setting C0 = C1 = C2 = 0. Upon setting C0 = 0 they agree with the generalized results

of [16] (see also [4],[8]). We will return to the role of the additional parameter C0 later in this

section.

3.3.4 The Entropy Current

The entropy of our system is given by

S =
∂

∂T0
(T0 logZ)

=

∫
d3x
√
g3ε

ijk
[
C0Ai∇jAk + 3C1T

2
0 ai∇jak + 2C2T0Ai∇jak

]
.

(3.78)
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In this subsubsection we determine the constraints on the entropy current JµS of our

system from the requirement that (3.78) agree with the local integral

S =

∫
d3x
√
−g4J

0
S (3.79)

Notice that the first term in (3.78) (the term proportional to C0) cannot be written as

the integral of a U(1) gauge invariant entropy density. It follows immediately that (3.79)

and (3.78) cannot agree unless JµS has a non gauge invariant term proportional to C0. Is

it permissible for the entropy current of a system to be non gauge invariant (and therefore

ambiguous)? Entropy in equilibrium is physical and should be well defined. Moreover, if we

start a system in equilibrium, kick the system (by turning on time dependent background

metric and gauge fields) and let it settle back into equilibrium, then the difference between

the entropy of the initial and final state, is also unambiguous. It follows that the entropy

production (i.e. divergence of the entropy current) as well as (3.79) are necessarily gauge

invariant. However these requirements leaves room for the entropy current itself to be gauge

dependent.

Over the next few paragraphs we find it useful to dualize the entropy current to a 3

form. The addition of an exact form to the entropy three form contributes neither to entropy

production nor to the total integrated value of the entropy in equilibrium. For this reason we

regard any two entropy 3-forms that differ by an exact three form as equivalent. With this

understanding, the unique non gauge invariant entropy 3 form whose exterior derivative (the

Hodge dual of entropy production) is gauge invariant is given by

A ∧ dA

The requirement that the exterior derivative of this 3 form to be gauge invariant forces its

coefficient to be constant.24

The most general physically allowed form for the entropy current, at one derivative order,

may then be read off from Table 5

JµS = suµ − νJµdiss +DθΘu
µ +Dc (Eµ − TPµα∂αν) +DEE

µ +Daa
µ

+Dωω
µ +DBB

µ + hεµνλσAν∂λAσ
where h is a constant

(3.81)

24Naively, another candidate for a non gauge invariant contribution to the entropy three form is given by

A ∧ d (h(T, µ)U) (3.80)

where U = uµdx
µ and h is an arbitrary function of temperature and chemical potential. But this term can be

rewritten as follows.

A ∧ d (h(T, µ) U) = d (h(T, µ) U ∧ A)− h(T, µ) U ∧ dA

It follows that this addition is actually equivalent to a gauge invariant addition to the entropy 3 form.
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How is the entropy current (3.81) constrained by the requirement that its integral agrees

with (3.78)? The one derivative entropy, as computed from the formula
∫
d3x
√
g4J

0
S has two

sources. First, the perfect fluid entropy current su0 has a first derivative piece that comes

from the one derivative correction of the equilibrium fluid velocity (see above). Second,

from the one derivative correction to the entropy current (evaluated on the leading order

equilibrium fluid configuration). The terms with coefficients Dθ and Dc vanish on the leading

order equilibrium fluid configuration. Therefore these two coefficients can not be determined

by comparing with the total entropy as derived from action. All the other correction terms

computed from this procedure are parity odd, except those multiplying Da and DE . It is

possible to verify that the integrals of the terms multiplying Da and DE are nonvanishing

and linearly independent. As all first derivative entropy corrections in (3.78) are parity odd,

it follows immediately that

Da = DE = 0.

Therefore the zero component of the entropy current at first derivative order is given by the

following expression.

J0
S |correction = sδu0 + (−νξB +DB)B0 + (−νξω +Dω)ω0 + hε0νλσAν∂λAσ (3.82)

Using

ν =
A0

T0

B0 = −εijkai∂j (Ak + T0νak)

ω0 =
eσ

2
εijkai∂jak

ε0νλσAν∂λAσ = e−σεijk
[
Ai∂jAk + 2T0νai∂jAk + T 2

0 ν
2ai∂jak + ∂i (T0νajAk)

]
δu0 = −aiδui = b1

[
eσ

2
εijkai∂jak

]
− b2

[
εijkai∂j (Ak + T0νak)

]
(3.83)

and the expressions for ξB, ξω, b1 and b2 as computed in the previous subsection (see (3.75)

and (3.76)), we find∫
d3x
√
−g4J

0
s |correction

=

∫
d3x
√
g3ε

ijk

[
T 2

0

(
3C1 + hν2 +

dω
2
− νdB

)
ai∂jak

+ T0(2C2 + 2hν − dB)ai∂jAk + hAi∂jAk

] (3.84)

where

dB =
DB

T
−
(
Cν2

2
− C2

)
, dω =

Dω

T 2
−
(
Cν3

3
− 2C2ν + 2C1

)
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Comparing this expression with (3.78) we find

h = C0, dB = 2C0ν, dω = 2C0ν
2 (3.85)

This result agrees precisely with that of Son and Surowka as generalized in [5]

3.3.5 Entropy current with non-negative divergence

In the previous subsubsection we have determined the entropy current by comparing with the

total entropy derived from the equilibrium partition function and we have allowed for terms

which are not gauge invariant provided their divergence is gauge-invariant.

Now we shall try to constrain the most general entropy current (as given in (3.81)) by

demanding that its divergence is always non-negative for every possible fluid flow, consistent

with the equations of motion. The analysis will be a small modification of [3] because of the

new gauge non-invariant term with constant coefficient C0 added. The steps are as follows.

• First we have to compute the divergence of the current given in (3.81). The new term

in the entropy current contributes to the divergence in the following way.

∇µ
[
C0ε

µναβAν∇αAβ
]

=
C0

4
εµναβFµνFαβ = −2C0EµB

µ

The full divergence of the entropy current is given by

∇µJµS = ησµνσ
µν + ζΘ2 + σTQµQ

µ − ξE(QµE
µ)− ξa(Qµaµ)

+ Θ(u.∇)Dθ + (a.∇)Da + (Q.∇)Dc + (E.∇)DE

+Dθ(u.∇)Θ +Da(∇.a) +Dc(∇.Q) +DE(∇.E)

+

[
∂DB

∂T
− DB

T

]
(Bµ∂µT ) +

[
∂Dω

∂T
− 2

Dω

T

]
(ωµ∂µT )

+

[
∂DB

∂ν
− CTν − 2C0T

]
(Bµ∂µν) +

[
∂Dω

∂ν
− 2DB

]
(ωµ∂µν)

+

[
−ξω −

2qT

ε+ P
Dω + 2DBT

]
(ωµQ

µ)

+

[
−ξB −

qT

ε+ P
DB + CTν + 2C0T

]
(BµQ

µ)

(3.86)

where

Qµ = ∂µν −
Eµ
T

and

Jµdiss = −σTQµ + ξEE
µ + ξaa

µ + ξωω
µ + ξBB

µ, and πµν = −ησµν − ζΘPµν

• As explained in [4], the divergence computed in (3.86) can be non-negative ifDθ, DE , Dc, ξE
and ξa are set to zero in the parity even sector.
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Field C P T CPT

σ + + + +

ai + − − +

gij + + + +

A0 − + + −
Ai − − − −

Table 6. Action of CPT

• Since there is no B2 or ω2 term present in (3.86), for positivity, in the parity odd sector

we need all the terms that are linear in Bµ and ωµ to vanish. This condition imposes

the following 6 constraints.

∂DB

∂T
− DB

T
= 0,

∂Dω

∂T
− 2Dω

T
= 0

∂DB

∂ν
− CTν − 2C0T = 0,

∂Dω

∂ν
− 2DB = 0

− ξω −
2qT

ε+ P
Dω + 2DBT = 0

− ξB −
qT

ε+ P
DB + CTν + 2C0T = 0

(3.87)

• We can determine ξω, ξB, DB and Dω by solving these equations. The solution is

identical to the solution determined from the partition function (as given in (3.76) and

(3.85)).

3.3.6 CPT Invariance

In this subsubsection we explore the constraints imposed on the partition function (3.11) by

the requirement of 4 dimensional CPT invariance. In Table 3.3.6 we list the action of CPT

on various fields appearing in the partition function. Using this table one can easily see that

the terms with coefficient C1 and C0 change sign under CPT transformation while the terms

with coefficient C2 and C remains invariant. Thus the requirement of CPT invariance of the

partition function forces C1 = 0 and C0 = 0. Further it also tell us that the function P

appearing in the perfect fluid partition function, W 0, must be an even function of A0 (i.e.

that equilibrium does not distinguish between positive and negative charges).

3.4 Parity odd first order charged fluid dynamics in 2+1 dimensions

In this subsection we will derive the constraints imposed on the equations of 2+1 dimensional

charged fluid dynamics, at first order in the derivative expansion, by comparison with the

most general equilibrium partition function. The parity even constraints are identical to the

ones found in 3+1 dimensions (which has been extensively discussed in §3.3). Therefore in this
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subsection we shall primarily focus on the parity odd constraints which are qualitatively much

different from their 3+1 dimensional counterpart. These constraints have been obtained using

a local form of the second law of thermodynamics in [19], which we shall reproduce starting

from the most general equilibrium partition function.

3.4.1 Equilibrium from Hydrodynamics

Partially borrowing some notations from equation (1.2) in [19], the the most general symmetry

allowed one derivative expansion of the constitutive relations is given by 25

Tµν = εuµuν + (P − ζ∇αuα − χ̃BB − χ̃ΩΩ)Pµν − ησµν − η̃σ̃µν , (3.88a)

Jµ = ρuµ + σV µ + σ̃Ṽ µ + χ̃EẼ
µ + χ̃T T̃

µ . (3.88b)

The various quantities appearing in the constitutive relations (3.88) are defined as

Ω = −εµνρuµ∇νuρ, B = −1

2
εµνρuµFνρ, (3.89a)

Eµ = Fµνuν , V µ = Eµ − TPµν∇ν
µ

T
, (3.89b)

Pµν = uµuν + gµν , σµν = PµαP νβ
(
∇αuβ +∇βuα − gαβ∇λuλ

)
, (3.89c)

and

Ẽµ = εµνρuνEρ , Ṽ µ = εµνρuνVρ , (3.89d)

σ̃µν =
1

2

(
εµαρuασ

ν
ρ + εναρuασ

µ
ρ

)
, T̃µ = εµνρuν∇ρT. (3.89e)

The thermodynamic quantities P , ε and ρ are the values of the pressure, energy density and

charge density respectively in equilibrium. The transport coefficients χ̃B, χ̃Ω, χ̃E and χ̃T are

arbitrary functions of σ and A0. The only non-zero quantities in equilibrium are B, ω, Ẽµ

and T̃µ. The rest of the first order quantities appearing on the RHS of (3.88) vanish on

our equilibrium configuration. In Table 7 we list all the parity odd diffeomorphism invariant

background field data. In Table 8 we list the first order quantities occurring in the constitutive

relations that are non-zero in equilibrium and express them in terms of the background metric

and gauge fields26.

We are interested in the stationary equilibrium solutions of the fluid equations arising

from constitutive relations (3.88). Solutions in equilibrium are determined entirely by the

background fields σ, A0, ai, Ai and gij . Just like in 3+1 dimensions the zeroth order solution

of the fluid fields are given by

uµ0 = {e−σ, 0, 0}; T(0) = T0e
−σ; µ(0) = e−σA0. (3.90)

25Note that in this constitutive relation the parity even constraint, namely the Einstein relation, have already

been taken into account.
26In the following, we shall use ε12 = 1√

g2
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Pseudo-scalars εij∂iAj , εij∂iaj

Pseudo-vectors εij∂iA0 , εij∂iσ

Pseudo-tensors None

Table 7. One derivative parity odd diffeomorphism and gauge invariant background data. Here εij

is defined so that ε12 = 1√
g2

.

Type Data Evaluated at equilibrium

Pseudo-Scalars B εij∂iAj +A0ε
ij∂iaj

Ω -eσεij∂iaj

Pseudo-Vectors Ẽµ Ẽ0 = 0, Ẽi = e−σεij∂jA0

T̃µ T̃0 = 0, T̃ i = −e−σεij∂jσ
Pseudo-Tensors none

Table 8. One derivative fluid data which are non-zero in equilibrium.

The unit normalized vector in the killing direction is,

uµK = e−σ(1, 0, 0)

In Table(7,8) we have listed all coordinate and gauge invariant one derivative parity odd

scalars, vectors and tensors constructed out of this background data. Since there are 2 pseudo-

scalars and 2 pseudo-vectors we can have the following most general parity odd corrections

to the fluid fields at first order

uµ = uµ(0) + ξE ẼµK + ξT T̃
µ
K ,

T = T(0) + τB BK + τΩ ΩK ,

µ = µ(0) +mB BK +mΩ ΩK ,

(3.91)

where ξE , ξT , τB, τΩ,mB and mΩ are taken to be arbitrary functions of σ and A0 to be

determined by matching with the equilibrium partitions function in §3.4.3. EµK , T
µ
K , BK , ωK

are the vectors and scalars, defined in equations3.89a and 3.89c, velocity u replaced by uK .

Just like in 3+1 dimensions the fluid stress tensor evaluated on this equilibrium configu-

ration evaluates to (3.62) corrected by an expression of first order in the derivative expansion.

The one derivative corrections again have two sources.

The first set of corrections arises from the corrections (3.88) evaluated on the zero or-

der equilibrium fluid configuration (3.90). 27 The second source of corrections arises from

inserting the fluid field corrections in (3.91) into the zero order (perfect fluid) constitutive

relations. The net change in the stress tensor and the charge current at first order is obtained

27When uµ ∝ (1, 0 . . . , 0) the Landau frame condition employed in this section sets π00 = π0i = Jdiss0 = 0.

Consequently T00, T0i and J0 receive no one derivative corrections of this sort.
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by summing these two contributions and is given by

δTµν =

(
∂P

∂T
τB +

∂P

∂µ
mB − χ̃B

)
BKP

µν
(0) +

(
∂P

∂T
τΩ +

∂P

∂µ
mΩ − χ̃Ω

)
ΩKP

µν
(0)

+

(
∂ε

∂T
τB +

∂ε

∂µ
mB

)
BKu

µ
(0)u

ν
(0) +

(
∂ε

∂T
τΩ +

∂ε

∂µ
mΩ

)
ΩKu

µ
(0)u

ν
(0)

+ (ε+ P )ξE(uµ(0)Ẽ
ν
K + uν(0)Ẽ

µ
K) + (ε+ P )ξT (uµ(0)T̃

ν
K + uν(0)T̃

µ
K).

δJµ =

(
∂ρ

∂T
τB +

∂ρ

∂µ
mB

)
BKu

µ
(0) +

(
∂ρ

∂T
τΩ +

∂ρ

∂µ
mΩ

)
ΩKu

µ
(0)

+ (χ̃E + ρξE)ẼµK + (χ̃T + ρξT )T̃µK

(3.92)

For future reference it will be convenient to to write down some of the components of the stress

tensor and current in (3.92) purely in terms of the background fields using the expressions

listed in the third column of Table 8.

δT ij =

(
∂P

∂T
τB +

∂P

∂µ
mB − χ̃B

)
BKg

ij +

(
∂P

∂T
τΩ +

∂P

∂µ
mΩ − χ̃Ω

)
ΩKg

ij

δT00 = e2σ

((
∂ε

∂T
τB +

∂ε

∂µ
mB

)(
εij∂iAj +A0ε

ij∂iaj
)
− eσ

(
∂ε

∂T
τΩ +

∂ε

∂µ
mΩ

)
εij∂iaj

)
,

δT i0 =
(
−(ε+ P )ξEε

ij∂jA0 + (ε+ P )ξT ε
ij∂jσ

)
δJ0 = eσ

(
−
(
∂ρ

∂T
τB +

∂ρ

∂µ
mB

)(
εij∂iAj +A0ε

ij∂iaj
)

+ eσ
(
∂ρ

∂T
τΩ +

∂ρ

∂µ
mΩ

)
εij∂iaj

)
,

δJ i = e−σ
(
(χ̃E + ρξE) εij∂jA0 − (χ̃T + ρξT )εij∂jσ

)
.

(3.93)

3.4.2 Equilibrium from the Partition Function

We now turn to the study of the first correction to the perfect fluid equilibrium partition

function (3.61) at first order in the derivative expansion. From the fact that Table (7,8) lists

two gauge invariant Hence the most general parity odd equilibrium partition function is given

by

W =
1

2

∫
(α(σ,A0)dA+ T0β(σ,A0)da) , (3.94)

where α and β are two arbitrary functions in terms of which all the 4 transport coefficients

and the 6 first order corrections to the velocity, temperature and chemical potential are to be

determined.

With the action (3.94) in hand it is straightforward to use (3.38) to obtain the stress
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tensor and current corresponding to this equilibrium solution. We find

T ij = 0,

T00 = −T0e
σ

(
∂α

∂σ
εij∂iAj + T0

∂β

∂σ
εij∂iaj

)
,

T i0 = T0e
−σ
((

T0
∂β

∂σ
−A0

∂α

∂σ

)
εij∂jσ +

(
T0

∂β

∂A0
−A0

∂α

∂A0

)
εij∂jA0

)
,

J0 = −T0e
σ

(
∂α

∂A0
εij∂iAj + T0

∂β

∂A0
εij∂iaj

)
,

J i = T0e
−σ
(
∂α

∂σ
εij∂jσ +

∂α

∂A0
εij∂jA0

)
.

(3.95)

3.4.3 Constraints on Hydrodynamics

In this subsubsection we shall equate the coefficients of independent terms in (3.92) (or (3.93))

with those in (3.95), to determine the first order transport coefficients and fluid corrections

in terms of the two arbitrary functions in the action (3.94).

The fact that T ij as evaluated from the action (3.94) vanishes immediately implies from

(3.93)

χ̃B =
∂P

∂T
τB +

∂P

∂µ
mB,

χ̃Ω =
∂P

∂T
τΩ +

∂P

∂µ
mΩ,

(3.96)

Comparing T00 from (3.93) and (3.95) we have

∂ε

∂T
τB +

∂ε

∂µ
mB = −T0e

−σ ∂α

∂σ
,

∂ε

∂T
τΩ +

∂ε

∂µ
mΩ = T0e

−2σ

(
T0
∂β

∂σ
−A0

∂α

∂σ

)
,

(3.97)

Comparing T i0 from (3.93) and (3.95) we have

ξE = − T0e
−σ

(ε+ P )

(
T0

∂β

∂A0
−A0

∂α

∂A0

)
,

ξT =
T0e
−σ

(ε+ P )

(
T0
∂β

∂σ
−A0

∂α

∂σ

)
.

(3.98)

Comparing J0 from (3.93) and (3.95) we have

∂ρ

∂T
τB +

∂ρ

∂µ
mB = T0

∂α

∂A0
,

∂ρ

∂T
τΩ +

∂ρ

∂µ
mΩ = −T0e

−σ
(
T0

∂β

∂A0
−A0

∂α

∂A0

)
,

(3.99)
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Finally, comparing J i from (3.93) and (3.95) we have

χ̃E + ρξE = T0
∂α

∂A0
,

χ̃T + ρξT = −∂α
∂σ

.

(3.100)

In order to compare the constraints obtained in this section with that in [19] we find the

following thermodynamical identities useful

∂P

∂ε
=

(
∂P

∂T

∂ρ

∂µ
− ∂P

∂µ

∂ρ

∂T

)/(
∂ρ

∂µ

∂ε

∂T
− ∂ρ

∂T

∂ε

∂µ

)
,

∂P

∂ρ
=

(
− ∂P

∂T

∂ε

∂µ
+
∂P

∂µ

∂ε

∂T

)/(
∂ρ

∂µ

∂ε

∂T
− ∂ρ

∂T

∂ε

∂µ

)
,

(3.101)

Now solving for τB, τΩ,mB and mΩ from (3.97) and (3.99), plugging the answer in to

(3.96) and using the thermodynamical identities (3.101), we have

χ̃B =
∂P

∂ε

(
− T0e

−σ ∂α

∂σ

)
+
∂P

∂ρ

(
T0

∂α

∂A0

)
,

χ̃Ω =
∂P

∂ε

(
T0e
−2σ

(
T0
∂β

∂σ
−A0

∂α

∂σ

))
+
∂P

∂ρ

(
− T0e

−σ
(
T0

∂β

∂A0
−A0

∂α

∂A0

))
,

(3.102)

Finally plugging in the values of ξE and ξT from (3.98) into (3.100) we have

χ̃E =

(
T0

∂α

∂A0

)
− ρ

ε+ P

(
− T0e

−σ
(
T0

∂β

∂A0
−A0

∂α

∂A0

))
T χ̃T =

(
− T0e

−σ ∂α

∂σ

)
− ρ

ε+ P

(
T0e
−2σ

(
T0
∂β

∂σ
−A0

∂α

∂σ

)) (3.103)

Thus through (3.102) and (3.103) we are able to express the 4 transport coefficients

in terms two arbitrary functions in the action. The two dimensional manifold of allowed

transport coefficients is identical to that in equation (1.8) in [19]28. In particular it easy to

eliminate α and β from (3.102) and (3.103) so as to obtain the following relation between the

transport coefficients

χ̃B −
ρ

ε+ P
χ̃Ω =

∂P

∂ρ
χ̃E +

∂P

∂ε
T χ̃T . (3.104)

Note that this relation is identical to equation (4.29) in [19].

3.4.4 The Entropy Current

In this system lnZ is simply given by the action

lnZ =
1

2

∫
(α(σ,A0)dA+ T0β(σ,A0)da) (3.105)

28Note that the additional function fΩ(T ) may be reabsorbed into a redefinition of MΩ(µ, T ) in equation

(1.8) in [19].
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The entropy that follows from this partition function is

S =
∂

∂T0
(T0 lnZ)

=
1

2

∫ (
α− ∂α

∂σ
−A0

∂α

∂A0

)
dA+ T0

(
2β − ∂β

∂σ
−A0

∂β

∂A0

)
da

(3.106)

We will now utilize (3.106) to constrain the hydrodynamical entropy current of the system.

The entropy current must take the ‘canonical’ form suµ − νJµdiss corrected by first derivative

terms. As in the rest of this section we keep track only of parity odd terms. It follows from

Table 8 that the most general one derivative entropy current is given by 29

Jµ(s) = suµ − µ

T

(
χ̃EẼ

µ + χ̃T T̃
µ
)

+
(
nEẼ

µ + nT T̃
µ
)

+ (nBB + nΩΩ)uµ, (3.108)

nE , nT , nB and nΩ are functions of temperature and the chemical potential. On substituting

the equilibrium values of temperature and chemical potential they turn into functions of σ

and A0. We find it convenient to define the quantities

ñE = nE −
µ

T
χ̃E + sξE ,

ñT = nT −
µ

T
χ̃T + sξT .

(3.109)

in terms of which the first order part of the entropy current is given by

δJµ(s) =

((
∂s

∂T
τB +

∂s

∂µ
mB + nB

)
B +

(
∂s

∂T
τΩ +

∂s

∂µ
mΩ + nΩ

)
Ω

)
uµ(0)

+ ñEẼ
µ + ñT T̃

µ

(3.110)

As we have explained above, the entropy current is necessarily divergence free in equilib-

rium. This condition yields one condition

∂ñE
∂σ

= −T0
∂ñT
∂A0

. (3.111)

(3.111) is solved by the ansatz

ñE = T0
∂n

∂A0
; ñT = −∂n

∂σ
, (3.112)

where n is a arbitrary function of σ and A0. Plugging in this solution, we now have a 3

parameter set of entropy currents parameterized by nB, nω and n. The entropy (3.106) is an

integral over the two parity odd scalars of the system. Equating (3.106) with
∫
d3x
√
−g3J

0
S ,

29The map between the corrections to the entropy current in this section to that in [19], considering first

order terms which are non-zero in the equilibrium, is given by

nT = ν̃1 +
ν̃5

T
; nE = ν̃2 + ν̃4 +

ν̃3

T
; nB = ν̃4; nΩ = ν̃5. (3.107)
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and equating the coefficients of these two scalars, yields two equations for nB, nω and n. We

now explain how this works in more detail

Using the fact

Ẽ0 = −e−σεijai∂jA0; T̃ 0 = e−σεijai∂jσ, (3.113)

and the expressions of B and Ω in terms of the background field (from Table 8), the entropy

can be evaluated from the entropy current in a manifestly Kaluza-Klein gauge invariant way

S =

∫
d2x
√
−g3J

0
(s)

=
1

2

∫ ((
∂s

∂T
τB +

∂s

∂µ
mB + nB

)
(dA+A0da)

−
(
∂s

∂T
τΩ +

∂s

∂µ
mΩ + nΩ

)
eσda− T0nda

)
.

(3.114)

Comparing (3.114) with (3.106) and using the thermodynamic identities

∂s

∂ε
=

1

T
,
∂s

∂ρ
= −µ

T
, (3.115)

we get the following simple expressions

nB = α

nΩ = T0e
−σ (A0α− 2β − n)

(3.116)

In other words, we have managed to evaluate nB, and one linear combination of nΩ and n in

terms of the functions, α and β, that appear in the partition function of our system. Note

that we have not been able to completely determine the non dissipative part of the entropy

current using our method (the method based on positivity of the entropy current achieves this

determination). However, it straightforward to verify that the constraints (equations 3.11,

3.17, 3.18, and 3.20) in [19] on the corrections to the entropy current from the second law of

thermodynamics, are consistent with the relations (3.116) and (3.112).

3.4.5 Comparison with Jensen et.al.

In this subsubsection we shall give a precise connection between partition function coefficients

α, β in equation (3.94) and MΩ, M that appears in [19]. Comparing equations (3.102),(3.103)

with equation 1.8 of [19], we get the following differential equations

∂M

∂µ
= T0

∂α

∂A0
,

T
∂M

∂T
+ µ

∂M

∂µ
−M = −T ∂α

∂σ
,

∂MΩ

∂µ
−M = −T

(
T0

∂β

∂A0
−A0

∂α

∂A0

)
,

T
∂MΩ

∂T
+ µ

∂MΩ

∂µ
+ fΩ − 2MΩ = Te−σ

(
T0
∂β

∂σ
−A0

∂α

∂σ

)
.

(3.117)
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Field C P T CPT

σ + + + +

a1 + − − +

a2 + + − −
A0 − + + −
A1 − − − −
A2 − + − +

Table 9. Action of CPT

By solving first two equations in 3.117, we get

α =
M

T0e−σ
+ c (3.118)

where c is some constant. Infact the entropy current presented in this section matches that

of [19] only if we set c = 0 (see equation (3.22) of [19]). Solving last two equations in 3.117,

we get

β = −e
2σ

T 2
0

MΩ +
1

T 2
0

∫
fΩ(T0e

−σ)e2σdσ +
A0

T0

(
M

T0e−σ

)
+ c1, (3.119)

where c1 is some other constant.

Also comparing (3.102) and (3.103) with equations (3.17) and (3.18) in [19] one can

express the entropy current corrections in terms of α and β in the following way

T 2∂ν̃4

∂T
= −T0e

−σ ∂α

∂σ
,

∂ν̃4

∂( µT )
= T0

∂α

∂A0
,

T 2

(
∂ν̃5

∂T
+ ν̃1

)
= T0e

−2σ

(
T0
∂β

∂σ
−A0

∂α

∂σ

)
,

∂ν̃5

∂( µT )
+ ν̃3 = −T0e

−σ
(
T0

∂β

∂A0
−A0

∂α

∂A0

)
.

(3.120)

Note that with this identification, the equation (3.20) in [19] automatically follows.

3.4.6 Constraints from CPT invariance

Imposing CPT invariance of the partition function 3.94 constrains the form of the otherwise

arbitrary functions α, β. (and hence all transport coefficients determined in terms of α and

β). Note that we define parity in 2+1 dimensions as x1 → −x1 and x2 → x2. In Table 9 we

list the action of CPT on various fields appearing in the partition function 3.94. Based on

the Table 9 we see, in 3.94 “dA” changes sign where as “da” does not, which implies α is odd

under CPT and β is even under CPT.
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3.5 3+1 dimensional uncharged fluid dynamics at second order in the derivative

expansion

In this subsection we will derive the constraints imposed on the equations of uncharged fluid

dynamics, at second order in the derivative expansion, by comparison with the most general

equilibrium partition function. We do not assume that our system enjoys invariance under

parity transformations.

Before getting into the details let us summarize our results. Symmetry considerations

determine the expansion of the hydrodynamical stress tensor upto 15 parity even and 5 parity

odd transport coefficients. It turns out the 7 of the parity even and 2 of the odd terms vanish

in equilibrium. In other words, on symmetry grounds our system has 7 parity odd and 2

parity even dissipative coefficients. In addition we have 8 parity even and 3 parity odd non

dissipative coefficients. The most general fluid dynamical partition function, on the other

hand, is given in terms of three functions of σ. It turns out that this partition function

is automatically even under parity transformations. As a consequence, implementing the

procedure spelt out in the introduction, we are able to show that the three nondissipative

parity odd coefficients all vanish. In addition the 8 nondissipative parity even coefficients are

all determined in term of three functions. In other words we are able to derive 5 relations

between these 8 parity even coefficients.

The problem of constraining fluid dynamics at second order in the derivative expansion,

using the principle of entropy increase, was studied by one of the coauthors of this work in

[10]. In that work the fluid was assumed to enjoy invariance under parity transformations. It

was demonstrated that the principle of entropy increase indeed implies 5 relations between

the 8 non dissipative transport coefficients. It turns out that the five relations determined in

this section agree exactly with those of [10].

Even from a practical point of view the method used in this subsection appears to have

some advantages over the more traditional entropy method utilized in [10]. To start with the

algebra required for the analysis in this subsection is considerably less formidable than that

employed in [10]. As a consequence we are able, rather effortlessly, to generalize our results to

allow for the possibility of parity violation. Such a generalization would involve considerable

extra effort using the method of [10], and has not yet been done.

3.5.1 Equilibrium from Hydrodynamics

In Tables 1, 2, 3, 7 of [10], all scalar, vector and tensor expressions that one can form out

of fluid fields and background metric (not necessarily in equilibrium) at second order in the

derivative expansion are listed. It follows from the listing of these tables that the most general
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symmetry allowed two derivative expansion of the constitutive relations is given by

Πµν = − ησµν − ζPµνΘ

+ T

[
τ (u.∇)σ〈µν〉 + κ1R̃〈µν〉 + κ2K〈µν〉 + λ0 Θσµν

+ λ1 σ〈µ
aσaν〉 + λ2 σ〈µ

aωaν〉 + λ3 ω〈µ
aωaν〉 + λ4 a〈µaν〉

]
+ TPµν

[
ζ1(u.∇)Θ + ζ2R̃+ ζ3R̃00 + ξ1Θ2 + ξ2σ

2 + ξ3ω
2 + ξ4a

2

]
+ T

[ 4∑
i=1

δit
(i)
µν + δ5Pµνaαl

α

]
(3.121)

where

uµ = The normalised four velocity of the fluid

Pµν = gµν + uµuν = Projector perpendicular to uµ

Θ = ∇.u = Expansion, aµ = (u.∇)uµ = Acceleration

σµν = PµαP νβ
(
∇αuβ +∇βuα

2
− Θ

3
gαβ

)
= Shear tensor

ωµν = PµαP νβ
(
∇αuβ −∇βuα

2

)
= Vorticity

Kµν = R̃µaνbuaub, R̃µν = R̃aµbνgab (R̃abcd = Riemann tensor)

σ2 = σµνσ
µν , ω2 = ωµνω

νµ

(3.122)

and

A〈µν〉 ≡ Pαµ P βν
(
Aαβ +Aβα

2
−
[
AabP

ab

3

]
gαβ

)
For any tensor Aµν

The parity odd terms in the last bracket in (3.121) are defined in Table 10.

The expansion (3.121) is given in terms of 15 undetermined parity even and five unde-

termined parity odd transport coefficients, each of which is, as yet, an arbitrary function of

temperature).

We are interested in the stationary equilibrium solutions of these equations. Solutions in

equilibrium are determined entirely by the background fields σ, ai and gij . In Table(5,4) we

have seen that the Θ and σµν evaluates to zero in equilibrium. This sets seven of the fifteen

parity even terms in equation 3.121 to zero. Two of the five parity odd terms two terms (t
(2,3)
µν

in table 10) evaluate to zero in equilibrium. The remaining 8 parity even and 3 parity odd

coefficients are non dissipative; the non dissipative part of Πµν is given by

Πµν

T
= κ1R̃〈µν〉 + κ2K〈µν〉 + λ3ω

α
〈µ ωαν〉 + λ4a〈µaν〉

+ Pµν(ζ2R̃+ ζ3R̃00(u0)2 + ξ3ω
2 + ξ4a

2)

+ δ1t
1
µν + δ4t

4
µν + δ5Pµνaαl

α (3.123)
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Type Data Evaluated on equilibrium

Pseudo-Scalars lµaµ
1
2e
σεijk∂iσfjk

Pseudo-Vectors (∇.u)lµ, 0

σµν l
ν , 0

u.∇lµ 1
2e

2σ (εijk∂iσfjk , fijε
jklfkl)

Pseudo-Tensors t
(1)
µν = l<µaν>, 1

2e
σ∂〈iσεj〉klf

kl

t
(2)
µν = ελραβuλaρσα<µgν>β , 0

t
(3)
µν = ελραβuλ∇ρσα<µgν>β , 0

t
(4)
µν = ubR̃

bcd
<µεν>cdqu

q 1
2d1e

σ∂〈iσεj〉klf
kl + 1

2d2e
σ∇〈iεj〉klfkl

Table 10. Two derivative parity violating fluid data(Here d1,2 are function of σ determined by

evaluating t4µν on equilibrium, but we will not need there explicit expression.)

In order to proceed further, we list all coordinate invariant two derivative scalars, vectors

and tensors constructed out of background data are listed in table (11). The temperature

and velocity in equilibrium receives correction at second order. The most general symmetry

allowed form of corrected temperature and velocity is

uµ = b0u
µ
0 +

(
2∑

m=1

vmV
i

(m)

)
+ ṽṼ i,

T = T0e
−σ +

(
4∑

m=1

tmSm

)
+ t̃S̃

where, Vm(Ṽ ) and Si(S̃)are Vectors(pseudo) and scalars(pseudo) respectively that are listed

in table 11. Also b0 can be fixed following equation 3.66 as,

b0 = 1− eσa.

(
2∑

m=1

vmV(m) + ṽṼ

)
(3.124)

As in previous sections, the stress tensor in equilibrium received corrections at second

order in the derivative expansion. The two derivative corrections have two sources. The first

set of corrections arises from the corrections (3.121) evaluated on the zero order equilibrium

fluid configuration. Using

R̃00(u0)2 = R̃µνu
µuν =

1

4
e2σf2 + (∇σ)2 +∇2σ

ωij = −e
σ

2
f ij , ai = gim∂mσ, (3.125)
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Scalars S1 = R, S2 = ∇2σ, S3 = (∇σ)2, S4 = f2e2σ

Pseudo-Scalars S̃ = εijk∂iσfjk
Vectors V1 = eσ∇iσf ij , V2 = eσ∇if ij ,

Pseudo-Vectors Ṽi = fijfklε
jkl

Tensors Rij , f
k

i fkj ,∇i∇jσ,∇iσ∇jσ
Pseudo-Tensors ∂〈iσεj〉klf

kl, ∇〈iεj〉klfkl

Table 11. Two derivative background data

R̃<ij> = Rij −∇iσ∇jσ −∇i∇jσ +
1

2
f k
i fjke

2σ

− 1

3

(
R− (∇σ)2 −∇2σ +

1

2
f2e2σ

)
gij

K<ij> = ∇iσ∇jσ +∇i∇jσ +
1

4
f k
i fjke

2σ

− 1

3

(
(∇σ)2 +∇2σ +

1

4
f2e2σ

)
gij

ωa<iωaj> = e2σ

(
f a
i fja −

1

3
f2gij

)
a<iaj> = ∇iσ∇jσ −

1

3
(∇σ)2gij (3.126)

we find that these corrections are given by

Πeq
ij = a1

(
Rij −

R

2
gij

)
+ a2

(
∇i∇jσ −∇2σgij

)
+ a3

(
∇iσ∇jσ −

(∇σ)2

2
gij

)
+ a4

(
fki fkj +

f2

4
gij

)
e2σ + gij

(
b1R+ b2∇2σ + b3(∇σ)2 + b4f

2e2σ

)
(3.127)

+
1

2
T (δ1 + δ4d1)eσ∂〈iσεj〉klf

kl +
1

2
Td2δ4e

σεkl〈i∇j〉fkl +
1

2
Tδ5e

σgijεmlk∂
mσf lk where,

b1
T

= ζ2 −
1

6
κ1,

b2
T

=
2

3
(κ2 − κ1) +

1

3
λ4 + 2ζ2 + ζ3 + ξ4

b3
T

= −1

3
(κ2 − 2κ2)− 1

3
λ3 +

1

2
λ4 +

1

4
(ζ2 + ζ3) + ξ3

b4
T

=
1

24
(11κ1 − 5κ2)− 2ζ2 + ζ3 +

1

4
λ4,

a1

T
= κ1

a2

T
= κ2 − κ1,

a3

T
= κ2 − κ1 + λ4,

a4

T
= −1

4
(2κ1 + κ2) + λ4. (3.128)

Here, the indicies are contracted with the lower dimensional metric gij and its inverse. The

coefficients are determined by evaluating the t
(1,4)
µν in equilibrium, but we will not need the

explicit expressions.

The second source of corrections arises from inserting the velocity correction (3.67) into

the zero order (perfect fluid) constitutive relations. We find that the modification of the stress
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tensor due to these corrections is given by

T ij = PT g
ij
(∑

tmSm + t̃S̃
)

T00 = T 2
0

PTT
T

(∑
tmSm + t̃S̃

)
T i0 = −(ε+ P )eσ

(∑
vmV

i
m + ṽṼ i

) (3.129)

The net change in T i0 and J i is given by summing(3.127) and (3.129) and is given by

T ij = PT g
ij
(∑

tmSm + t̃S̃
)

+ Πij
eq

T00 = T 2
0

PTT
T

(∑
tmSm + t̃S̃

)
T i0 = −(ε+ P )eσ

(∑
vmV

i
m + ṽṼ i

) (3.130)

where Πij
eq was listed in (3.127).

3.5.2 Equilibrium from the Partition Function

We now turn to the study of the first correction to the perfect fluid equilibrium partition

function (3.61) at second order in the derivative expansion. We observe that the Table (11)

lists four scalars and one pseudo-scalar. The most generic partition function for this system

at two derivative order is,

W = logZ = −1

2

∫
d3x
√
g3

[
P̃1(T0e

−σ)R+ T 2
0 P̃2(T0e

−σ)fijf
ij + P̃3(T0e

−σ)(∂σ)2
]

where P̃i(T0e
−σ) = Pi(σ) and P ′i ≡

dPi(σ)

dσ
(i = 1, 2, 3)

(3.131)

where P1, P2, P3 are three arbitrary function of σ and from now on we will remove the

explicit dependence. In partition function, the fourth scalar ∇2σ and the pseudo-scalar

εijk∂
iσf jk do not appear as they are total derivatives.

With the action (3.131) in hand it is straightforward to use analog of (3.38) for uncharged

– 62 –



case30 to obtain the equilibrium stress tensor. We find

T ij = TP1

(
Rij − 1

2
Rgij

)
+ 2T 2

0 TP2

(
f ikfjk −

1

4
f2gij

)
+ T (P3 − P ′′1 )

(
∇iσ∇jσ

− 1

2
(∇σ)2gij

)
− TP ′1

(
∇i∇jσ − gij∇2σ

)
+

1

2
TP ′′1 (∇σ)2gij

T00 =
T 2

0

2T

(
P ′1R+ T 2

0P
′
2f

2 − P ′3(∇σ)2 − 2P3∇2σ)
)

T i0 = 2T 2
0 T
(
P ′2∇jσf ji + P2∇jf ji

)
, (3.133)

where ′ denotes derivative with respect to σ.

3.5.3 Constraints on Hydrodynamics

Comparing non trivial components of the stress tensor T i0, T00 in equations 3.130,3.133 and

equating coefficients of independent sources one obtains the velocity and temperature correc-

tions in terms of the coefficients P appearing in 3.131. We find

v1 = −2T 2

PT
P ′2, v2 = −2T 2

PT
P2, ṽ = 0,

t1 =
1

2PTT
P ′1, t2 = − 1

PTT
P3, t3 = − 1

2PTT
P ′3, t4 =

T 2

2PTT
P ′2, t̃ = 0.

(3.134)

Now comparing Tij in equations 3.130,3.133, and using expressions for temperature cor-

rections, one can express the transport coefficients in terms of the three coefficients P ap-

pearing in 3.131. We find

a1 = TP1, a2 = −TP ′1 a4 = −2T 3P2, a3 = T (P3 − P ′′1 ),

b1 = − PT
2PTT

P ′1, b2 =
PT
PTT

P3, b4 = −PTT
2

2PTT
P ′2,

b3 =
1

2
TP ′′1 +

PT
2PTT

P ′3, δ1 = δ4 = δ5 = 0.

(3.135)

One can eliminate the coefficients P ′s from above set of relations which gives five relations

among transport coefficients,

a1 + a2 − T∂Ta1 = 0,
TPTT
PT

b1 +
1

2
(a1 − T∂Ta1) = 0

TPTT
PT

b2 + (a2 − T∂Ta2)− a3 = 0, 4
TPTT
PT

b4 − (3a4 − T∂Ta4) = 0,

2
TPTT
PT

b3 +
(TPTT
PT

+ 1
)
(a2 − T∂Ta2)− T∂T (a2 − T∂Ta2)− (a3 − T∂Ta3) = 0.

(3.136)

30 The stress tensor can be evaluated as

T00 = − T0e
2σ√

−g(p+1)

δW

δσ
, T i0 =

T0√
−g(p+1)

δW

δai
,

T ij = − 2T0√
−g(p+1)

gilgjm
δW

δglm
. (3.132)
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Note that parity odd contributions, both to the equilibrium value of the temperature

and velocity, as well as to the constitutive relations, are forced to vanish. The simple reason

for this is that the most general two derivative correction to the partition function 3.131 is

parity even. Note also that the eight parity even non dissipative transport coefficients are

all determined in terms of the three functions that parameterize the two derivative partition

function. This leaves us five relations among the transport coefficients; these relations may

be obtained by substituting the definitions of the a and b coefficients in (3.127) into (3.136);

we find

κ2 = κ1 + T
dκ1

dT

ζ2 =
1

2

[
s
dκ1

ds
− κ1

3

]
ζ3 =

(
s
dκ1

ds
+
κ1

3

)
+

(
s
dκ2

ds
− 2κ2

3

)
+
s

T

(
dT

ds

)
λ4

ξ3 =
3

4

( s
T

)(dT
ds

)(
T
dκ2

dT
+ 2κ2

)
− 3κ2

4
+
( s
T

)(dT
ds

)
λ4

+
1

4

[
s
dλ3

ds
+
λ3

3
− 2

( s
T

)(dT
ds

)
λ3

]
ξ4 = − λ4

6
− s

T

(
dT

ds

)(
λ4 +

T

2

dλ4

dT

)
− T

(
dκ2

dT

)(
3s

2T

dT

ds
− 1

2

)
− Ts

2

(
dT

ds

)(
d2κ2

dT 2

)

(3.137)

This is in perfect agreement with the relations obtained in [10] using the second law of

thermodynamics.

3.5.4 The Entropy Current

The entropy of our system is given by

S =
∂

∂T0
(T0 logZ)

(3.138)

The partition function of our system is given by

logZ = −1

2

∫
d3x
√
g3

[
P̃1(T0e

−σ)R+ T 2
0 P̃2(T0e

−σ)fijf
ij + P̃3(T0e

−σ)(∂σ)2
]

(3.139)

(we are careful to explicitly keep track of the temperature dependence in the partition func-

tion, see the equation (3.131) for a definition of the functions P̃ ). The total entropy as
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evaluated from this partition function is

S =
∂

∂T0
(T0 logZ)

=
1

2

∫
√
g
[
(P ′1 − P1)R+ T 2

0 (P ′2 − 3P2)fijf
ij + (P ′3 − P3)(∂σ)2

] (3.140)

To second order in the derivative expansion, the most general symmetry allowed entropy

current is given by [10]

JµS =suµ + J̃µS

where

J̃µS =∇ν [A1(uµ∇νT − uν∇µT )] +∇ν (A2Tω
µν)

+A3

(
R̃µν − 1

2
gµνR̃

)
uν +

[
A4(u.∇)Θ +A5R̃+A6(R̃αβu

αuβ)
]
uµ

+ (B1ω
2 +B2Θ2 +B3σ

2)uµ +B4

[
(∇s)2uµ + 2sΘ∇µs

]
+
[
Θ∇µB5 − P ab(∇buµ)(∇aB5)

]
+B6Θaµ +B7aνσ

µν

(3.141)

The terms above with A1 and A2 as coefficients are total derivative and do contribute to

the total entropy. It follows that A1 and A2 are unconstrained by comparison with equilibrium

(even though these terms do not pointwise vanish in equilibrium). Terms with coefficients

A4, B2, B3, B6 and B7 vanish on the equilibrium solution. Consequently these coefficients

are also unconstrained by the considerations of this section. The entropy current coefficients

that can be are constrained by comparison with (3.140) are A3, A5, A6, B1, B4 and B5

As above, there are two sources for the second order correction to the entropy of our

system. The suµ part in JµS contributes to the total entropy at second order in derivative

expansion because of the second order corrections δuµ to the equilibrium velocity uµ and δT

to the equilibrium temperature.More precisely, if the equilibrium temperature and velocity of

our system to second order is given by

T = T(0) + δT = T0e
−σ + δT and uµ = uµ(0) + δuµ = e−σ(1, 0, 0, 0) + δuµ

then clearly

su0|2nd order = e−σ
(
ds

dT

)
δT + sδu0

.

Using (3.134) and (3.124) we find(
ds

dT

)
δT =

1

2

[
P ′1 R+ P ′2 T

2
0 f

2 − P ′3 (∂σ)2 − 2P3 ∇2σ
]

=
1

2

[
P ′1 R+ P ′2 T

2
0 f

2 + P ′3 (∂σ)2 − 2∇i
(
P3∇iσ

)]
sδui = −2e−σT 2

0

[
P ′2 ∇jσf ji + P2 ∇jf ji

]
= −2T 2

0 e
−σ∇j

(
P2 f

ji
)

(3.142)
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Therefore using 3.66, the second order correction to J0
S , from the perfect fluid piece su0,

evaluates to

su0|2nd order =
e−σ

2

[
P ′1 R+ (P ′2 − 2P2) T 2

0 f
2 + P ′3 (∂σ)2

]
+ e−σ∇j

[
2T 2

0P2 f
jiai − P3∇jσ

]
(3.143)

The second source of two derivative corrections to the entropy current come from the

explicit two derivative corrections to the entropy current (3.141) evaluated on the perfect

fluid equilibrium configurations. Using

f2 ≡ fijf ij

Pµa∇auν = σµν + ωµν + Pµν
Θ

3

R̃ = R− 2(∂σ)2 − 2∇2σ +
e2σ

4
f2

R̃αβu
αuβ = (∂σ)2 +∇2σ +

e2σ

4
f2

R̃i0 =
e2σ

2

[
∇jf ji + 3(∇jσ)f ji

]
R̃0

0 = −
(
e−2σR̃00 + aiR̃

i
0

)
eσω0i∂iT = −Te

2σ

2
(∂iσ)f jiaj

(3.144)

we find that the zero component of J̃µS evaluates on equilibrium to

J̃0
S =e−σ

[
A3

(
R̃0

0 −
R̃

2

)
+A5R̃+A6(R̃00e

−2σ) +B1ω
2 +B4(∂s)2 + eσ

(
dB5

dT

)
ω0i(∂iT )

]

=e−σ
[(

A5 −
A3

2

)
R+

(
2A5 + 2A6 − 3A3 − 2B1

8

)
e2σf2 + T 2

(
ds

dT

)2

B4(∂σ)2

+ (A6 − 2A5)
[
∇2σ + (∂σ)2

]
− A3e

2σ

2
ai∇jf ji −

(
3A3 − T dB5

dT

)
e2σ

2
aif

ji∂jσ

]

=e−σ
[(

A5 −
A3

2

)
R+

(
2A5 + 2A6 −A3 − 2B1

8

)
e2σf2

+

[(
T
ds

dT

)2

B4 + T
d

dT
(A6 − 2A5)

]
(∂σ)2 +

T

2

(
dB5

dT
− A3

T
− dA3

dT

)
aif

ji∂jσ

− 1

2
∇j
(
A3e

2σaif
ji
)

+∇i
[
(A6 − 2A5)∇iσ

] ]
(3.145)
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Summing (3.143) and (3.145) and ignoring total derivatives, we find our final result for

the two derivative correction to the total entropy.

Total Entropy

=

∫
d3x
√
g3

[(
A5 −

A3

2
+
P ′1
2

)
R+

[
2A5 + 2A6 −A3 − 2B1 + T 2

0 (4P ′2 − 8P2)e−2σ

8

]
e2σf2

+

[(
T
ds

dT

)2

B4 + T
d

dT
(A6 − 2A5) +

P ′3
2

]
(∂σ)2 +

T

2

(
dB5

dT
− A3

T
− dA3

dT

)
aif

ji∂jσ

]
(3.146)

While the first three terms in (3.146) are Kaluza Klein gauge invariant, the last term is

not. Let us pause, for a moment to explain this. In subsubsection 3.2.5 we have demonstrated

that the integral
∫ √
−g4J

0
S is Kaluza Klein gauge invariant provided that ∂µJ

µ
S = 0. Now

it must certainly be true that the correct entropy current is divergence free in equilibrium.

However the most general entropy current (3.141) is not divergence free in equilibrium. The

non gauge invariant term ion (3.146) results from such terms. The coefficients of these terms

must immediately be set to zero (even without comparison with a particular form of the

entropy). The coefficients of the remaining three terms in (3.146) must be equated with the

coefficients of the corresponding terms in (3.140). In net we have four equations which allow

us to solve for four of the entropy current coefficients, B5, A3, B1 and B4 in terms of the

other two (A5 and A6) and Pi (the coefficients that appear in the partition function ie.the Pi
).

dB5

dT
=
A3

T
+
dA3

dT

A3 = P1 +A5

B1 = −P1

2
+ 2T 2

0 e
−2σP2 +A5 +A6(

T
ds

dT

)2

B4 = −P3

2
− T d

dT
(A6 − 2A5)

(3.147)

3.5.5 Entropy current with non-negative divergence

Above we have discussed the constraints on the entropy current from comparison with the

total entropy of our system. In this subsubsection we will discuss the relationship between

these constraints and those obtained by imposing the requirement of positivity of the entropy

current.

In the study of the positivity of the divergence of the entropy current, it turns out that

some coefficients in the entropy current are determined in terms of transport coefficients,

while others are left free (more precisely these coefficients are constrained by inequalities

involving transport coefficients). The determined coefficients turn out to be precisely those

that multiply terms that are nonvanishing in equilibrium, namely A3, A5, A6, B1, B4 and
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B5. The six equations that determine these six parameters are

A5 = 0

A6 = 0

dB5

dT
=
A3

T
+
dA3

dT

A3 = κ1

B1 =
1

4

[
−λ3 + T

dκ1

dT
+ κ1

]
(
T
ds

dT

)2

B4 = −1

2

[
λ4 + 2T

dκ1

dT
+ T 2d

2κ1

dT 2

]
(3.148)

The results (3.148) satisfy the constraints (3.147). In order to verify this one plugs in explicit

results

ξ3 = −P1

2
+

2

3
(P ′1 − T 2

0 e
−2σP2) +

(
s

T

dT

ds

)(
2T 2

0 e
−2σP ′2 + P3 −

3

2
P ′1

)
ξ4 =

2

3

(
P ′′1 − P ′1 −

P3

4

)
+

(
s

T

dT

ds

)(
P ′3
2
− P3

)
ζ2 = −P1

6
−
(
s

T

dT

ds

)
P ′1
2

ζ3 =
2P ′1 − P1

3
+

(
s

T

dT

ds

)(
P3 − P ′1

)
λ3 = 3P1 − 8T 2

0 e
−2σP2 − P ′1

λ4 = P3 + P ′1 − P ′′1
κ2 = P1 − P ′1
κ1 = P1

(3.149)

for the transport coefficients in terms of action parameters into (3.148) and checks that the

results are consistent with (3.147)

Our results (3.147) are compatible with but weaker than (3.148). (3.148) is equivalent to

(3.147) together with A5 = A6 = 0. As A5 and A6 multiply terms that are nonvanishing in

equilibrium, we find it surprising that ’ our equilibrium study has not been powerful enough

to demonstrate that A5 and A5 must actually vanish. It is possible that we have overlooked

a simple principle that forces these coefficients to vanish without invoking the principle of

entropy increase.

3.5.6 The conformal limit

31Let us consider Weyl transformation of the full four dimensional metric

ḡµν = gµνe
2φ(x).

31This subsubsection has been worked out in collaboration with R. Loganayagam.
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In this subsection first we would like to write an partition function which is invariant under

this transformation. In order to have conformal invariance this partition function will have

fewer coefficients than the partition function given in (3.131). Then we shall analyze how it

will constrain the stress tensor for a conformal fluid.

Under this transformation several three dimensional quantities transform as follows.

σ̄ = σ + φ, āi = ai, ḡij = e2φgij

(∇σ̄)2 = e−2φ
[
(∇σ)2 + 2(∇σ).(∇φ) + (∇φ)2

]
R̄ = e−2φ

[
R− 4∇2φ− 2(∇φ)2

]
f̄ij f̄

ij = e−4φfijf
ij

√
ḡ3 = e3φ√g3

(3.150)

Using (3.150) we can see that under this transformation the partition function (as given

in(3.131)) will be invariant (assuming that the total derivative terms will integrate to zero)

only if the coefficients Pi’s satisfy the following constraints.

P1(σ) = e1T0e
−σ, P2(σ) =

e2

T0e−σ
and P3(σ) = 2P1(σ) (3.151)

where e1 and e2 are two dimensionless constants.

Substituting (3.151) in (3.149) we find

ξ3 = ξ4 = ζ2 = ζ3 = λ4 = 0

κ2 = 2κ1 = 2e1T0e
−σ

λ3 = 4T0e
−σ(e1 − 2e2)

(3.152)

These relations precisely match with our expectation for the independent transport coef-

ficients of a conformally covariant stress tensor. Since for a conformally covariant stress tensor

only two terms (ω〈µaω
a
ν〉 with coefficient λ3 and

[
R〈µν〉 +K〈µν〉

]
with coefficient κ1) can be

non zero in equilibrium and a conformally invariant action also has only two free parameters,

it follows that the existence of a partition function does not constrain the stress tensor of a

conformal fluid.

3.6 Counting for second order charged fluids in 3+1 dimensions

In this subsection we will use the methods developed in previous subsections to answer the

following question: how many transport coefficients are needed to specify the fluid dynamics

of a relativistic charged fluid that may not preserve parity, at second order in the derivative

expansion? We do not attempt to derive the detailed form of the equations so obtained; our

presentation is merely at the level of counting. If the conjecture at the heart of this work

is correct, then an analysis of entropy positivity would yield the same number of transport

coefficients; however that analysis is much more difficult to perform (even at the level of

counting), and we do not attempt it here.
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Type fluid+background data In equilibrium

scalars 16 9

vectors 17 6

tensors 18 9

Table 12. parity even data for charged fluids at second order

3.6.1 Parity Invariant case

Let us first consider the parity invariant case. Table 3.6.1 list the number of all the the parity

preserving fluid plus background onshell independent data at second order. From this table

this we see that the total number of symmetry allowed transport coefficients in stress-energy

tensor and charge current in landau frame is

tensors(16) + scalars(18) + vectors(17) = 51. (3.153)

Now let us consider the equilibrium of this system. The third column of table 3.6.1 also list

the number of scalars, vectors and tensors that can be constructed out of σ, A0, ai, Ai and gij .

The coefficient of these terms that are survive in equilibrium we refer to as ‘non dissipative’

coefficients while the remaining we refer to as ‘dissipative’ coefficients. In this case we have

a total of 24 non dissipative coefficients. Now there are 9 scalars than can be constructed in

equilibrium. We list them below

Rii, ∇iσ∇iσ, fijf
ij , FijF

ij , Fijf
ij , ∇iσ∇iA0, ∇iA0∇iA0, ∇i∇iσ, ∇i∇iA0 (3.154)

The last two scalars are total derivatives and hence do not appear in the partition function.

This tell us that the 24 non dissipative coefficients are determined in term of 7 independent

coefficients that appear in the partition function which means that there will be 17 relation

among the 24 non dissipative coefficients.

In summary the methods developed in this section predict that parity invariant charged

fluid dynamics is characterized by 7 non dissipative transport coefficients, together with 28

dissipative coefficients (7 scalars, 12 vectors and 9 tensors). Each of these 35 transport

coefficients is an unspecified function of T and µ.

3.6.2 Parity Violating case

Let us now consider the parity non invariant charged fluids at second order. Table 3.6.2 lists

all the parity odd data at second order. From this table we see that number of transport

coefficients in the parity odd sector is

pseudo tensors(12) + pseudo scalars(6) + pseudo vectors(9) = 27. (3.155)

The third column of table 3.6.2 that out of the 28 parity odd transport coefficients 12 are

non dissipative. Now we have 4 new scalars(pseudo) can be added to the partition function.

These are listed below

εijk∂iσfjk , εijk∂iA0fjk , εijk∂iσFjk , εijk∂iA0Fjk (3.156)
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Type fluid+background In equilibrium

pseudo scalars 6 4

pseudo vectors 9 2

pseudo tensors 12 6

Table 13. parity odd data for charged fluid at second order

As such all of these 3.156 are total derivatives by themselves but they can not be written as

total derivatives in the partition function since the coefficients that they will appear with are

arbitrary functions of σ and A0. Thus we see that the 12 parity odd non dissipative coefficients

are determined in terms of 4 parity odd coefficients in the partition function which means

that their would be 8 relation in parity odd sector.

In summary we predict that, at second order, we have 4 parity odd nondissipative trans-

port coefficients, together with 2 pseudo scalar, 7 pseudo vector and 6 pseudo tensor dissipa-

tive coefficients, and total of 20 new coefficients.

3.7 Discussion

The main result of our section is that two apparently different physical requirements, namely

the requirement of existence of equilibrium in appropriate circumstances and the requirement

of the existence of a point wise positive divergence entropy current, give the same constraints
32 on the equations of hydrodynamics in three specific contexts. Two questions immediately

suggest themselves. Do the results of our paper extend to arbitrary order in the derivative

expansion, as we have conjectured in this section? If so, why is this the case? Definitive

answers to these questions would be very interesting. A proof that the existence of equilibrium

plus certain inequalities imply the existence of a positive divergence entropy current could

demystify arguments based on the existence of an entropy current, and lead towards a fuller

understanding of the second law of thermodynamics.

In the main text of this section we have derived constraints on the constitutive relations

of hydrodynamics starting from the assumption of the existence of a partition function. In

the appendices to this section we have, however, demonstrated that all the constraints derived

in this paper may also be derived from the weaker assumption that fluid admit stationary

equilibrium configurations in stationary backgrounds. The integrability conditions from the

demand that the currents and stress tensors in equilibrium follow from an action turned out

to be automatic in the three examples studied in this paper. Is this always the case (we find

this unlikely). In appropriate situations, do the Onsager relations follow from the demand

that equilibrium is generated from a partition function?

In another direction, the analysis of this section has led to the consideration of partition

functions dual to equilibrium hydrodynamics as a function of background metrics and gauge

fields. Given a partition function as a function of sources, it is standard in quantum field

32 We ignore the inequalities that follow from the principle of entropy increase in this statement.
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theory to Legendre transform this object in order to obtain an offshell 1PI effective action for

the theory. It may be possible implement this procedure on our partition function to obtain

an offshell action for fluid dynamics (albeit one applies only to equilibrium configurations)

(see [31] for related work). If so, what is the interpretation of this action in the context of

the fluid gravity map of the AdS/CFT correspondence?

It would be very interesting to generalize the work presented in this paper away from

equilibrium. Time dependent partition functions are not in general local functionals of their

sources. These partition functions are, however usually generated by coupling local field the-

ory dynamics to sources. Can time dependent correlators (perhaps in a Schwinger - Keldysh

set up) be generated by minimally coupling a local ‘action’ for hydrodynamics to the back-

ground metric or gauge field? How does this tie in with the fluid gravity map of the AdS/CFT

correspondence?

Apart from the traditional requirement of positivity of the entropy current, and the

requirement of the existence of equilibrium, emphasized in this paper, one may also attempt to

constrain the equations of fluid dynamics by demanding that correlation functions computed

from these equations obey all the symmetry properties that follow from the existence of

an underlying action (see e.g. [19]). Any system that posseses a well defined partition

function, as studied in this paper, automatically obeys all these symmetry properties for

time independent correlators. Do the constraints on hydrodynamics that follow from the

existence of an equilibrium partition function automatically also guarantee that the symmetry

requirements on time dependent correlators are also met?

Finally, it would be very interesting to investigate the interplay of the principal constraint

described in this paper (namely the existence of equilibrium for an arbitrary static metric)

with the AdS/CFT correspondence. Is this constraint merely from the structure of AdS/CFT,

for an arbitrary bulk Lagrangian, or does it impose constraints on possible α′ corrections to

the equations of Einstein gravity? Within gravity can one prove directly that the existence

of equilibrium implies the existence of a Wald entropy increase theorem (and so the existence

[32] of a positive divergence entropy current)(see [33] for related discussion)?

3.8 Appendices to chapter 2

3.8.1 First order charged fluid dynamics from equilibrium in 3+1 dimensions

In this appendix we shall rederive the results obtained in section 3.3 making fewer assumptions

than in that section. In this Appendix we make no reference to the equilibrium partition

function, and nowhere assume its existence. The only demand that we make on our system

is that it admit an equilibrium solution in an arbitrary background of the form (3.1), (3.9).

We also assume that the zeroth order equilibrium configuration is given by equation 3.21.

As discussed in section 3.3 for the parity violating first order charged fluid, one can

not construct any scalar or pseudo scalar at equilibrium and hence temperature or chemical

potential does not get corrected to this order. To the first order, the velocity corrections can
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be written as

δui = −e
−σb1
4

εijkfjk + b2B
i
K + b3∂

iσ + b4∂
iA0 (3.157)

The dissipative part of the stress tensor and the current are written in equation 3.65.

Since, ∂α
µ
T −

Eα
T , θ, σµν evaluate to zero on equilibrium, we are left with

πµν = 0

Jµdiss = α1E
µ + α2Pµα∂αT + ξωω

µ + ξBB
µ

(3.158)

We shall now impose that the equations 3.158,3.157 obeys the conservation laws

∇µTµν = FνλJ̃λ
∇µJ̃µ = CE.B

(3.159)

where

Eµ = Fµνuν , Bµ =
1

2
εµνρσuνFρσ

ωµ =
1

2
εµνρσuν∇ρuσ.

(3.160)

For computational simplicity, we shall take thermodynamic variables temperature T and

ν = µ
T as the independent ones. Some useful formulas that are used in computation are

∇µν =
Eµ
T
, ∇µP = qEµ +

ε+ P

T
∇µT

∂P

∂T

∣∣∣
ν

=
ε+ P

T
,
∂P

∂ν

∣∣∣
T

= qT

∇µωµ = − 2

T
ωµ∇µT, ∇µBµ = −2ωµE

µ − 1

T
Bµ∇µT.

(3.161)

Now using formulas in equation 3.161, it is straight forward to evaluate the scalar equations

namely

uν∇µTµν = uνFνλJ̃λ
∇µJ̃µ = CE.B.

(3.162)

On setting coefficients of independent data in 3.162, one obtains

T∂T (ξω + qb1) = 2(ξω + qb1), T∂T (ξB + qb2) = (ξB + qb2)

∂ν(ξω + qb1) = 2T (ξB + qb2), ∂ν(ξB + qb2) = CT

∂ν [(ε+ P )b2] = T (ξB + qb2), ∂T [(ε+ P )b2] =
2

T
(ε+ P )b2

∂ν [(ε+ P )b1] = T (ξω + qb1) + 2T (ε+ P )b2, ∂T [(ε+ P )b1] =
3

T
(ε+ P )b1

α1 = α2 = b3 = b4 = 0.

(3.163)
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The vector equation Pµσ∇µTµν = PµσFνλJ̃λ gives only one new constraint, which is given

by

2b2 =
(ξω + qb1)

ε+ P
. (3.164)

On solving 3.163, one obtains solution for b′s and ξ′s but with four arbitrary constants.

Now using 3.164 one can eliminate one of the constants in terms of other one. Finally we

obtain

b1 =
T 3

ε+ P

(2

3
ν3C + 2ν2z0 + 4νz2 + z1

)
,

b2 =
T 2

ε+ P

(1

2
ν2C + νz0 + z2

)
(3.165)

and

a1 = Cν2T 2
(
1− 2q

3(ε+ P )
νT
)

+ T 2
[
(2νz0 + 2z2)− qT

ε+ P
(2ν2z0 + 4νz2 + z1)

]
,

a2 = CνT
(
1− q

2(ε+ P )
νT
)

+ T
(
z0 −

qT

ε+ P
(νz0 + z2)

)
. (3.166)

Now identifying z0 = 2C0, z2 = C2 and z1 = 4C1 we see that equations 3.165, 3.166 are

exactly same as equations 3.75, 3.76.

3.8.2 First order parity odd charged fluid dynamics from equilibrium in 2+1

dimension

In this appendix we shall derive the constraints on parity odd charged fluid dynamics in 2+1

dimension at first order using just the assumption that there exists a equilibrium solution.

As discussed in §3.4, in this case there are 4 transport coefficients and there are 6 corrections

to the fluid fields. In §3.4, we were able to express all these 10 functions in terms of 2

arbitrary functions in the action (3.94). This implies that among these 10 functions only 2

are independent which in turn implies there should exist 8 relations among these 10 functions.

In this appendix we shall present these 8 relations which follows just by demanding that there

exists a equilibrium solution.

We consider the corrections to the fluid fields as in (3.91) and write down the first order

corrections to the stress tensor and the charge current. The equation of motion of fluid

dynamics are given by

∇µTµν = FνλJλ
∇µJµ = 0

(3.167)

Note in particular that the charge current is conserved even in the presence of a background

gauge field due to the absence of any anomaly in 2+1 dimension.

– 74 –



Now the scalar equations ∇µJµ = 0 and u
(0)
ν

(
∇µTµν −FνλJλ

)
= 0 yields the following

constraints respectively

T
∂

∂T
(χ̃E + ρξE)− T ∂

∂µ
(χ̃T + ρξT ) + µ

∂

∂µ
(χ̃E + ρξE) = 0,

T
∂

∂T
((ε+ P )ξE)− T ∂

∂µ
((ε+ P )ξT ) + µ

∂

∂µ
((ε+ P )ξE) + T (χ̃T + ρξT ) = 0.

(3.168)

The vector fluid equations P
(0)
ρν

(
∇µTµν −FνλJλ

)
= 0, yields the rest of the 6 constraints

χ̃B =
∂P

∂T
τB +

∂P

∂µ
mB,

χ̃Ω =
∂P

∂T
τΩ +

∂P

∂µ
mΩ,

(ε+ P ) ξE =
∂ρ

∂T
τΩ +

∂ρ

∂µ
mΩ,

(ε+ P ) T ξT =
∂ε

∂T
τΩ +

∂ε

∂µ
mΩ,

χ̃E + ρξE =
∂ρ

∂T
τB +

∂ρ

∂µ
mB,

T (χ̃T + ρξT ) =
∂ε

∂T
τB +

∂ε

∂µ
mB.

(3.169)

Note that the first two constraints in (3.169) are identical to the constraints (3.96) obtained

from comparison with most general equilibrium action in §3.4.3. It is straightforward to show

that the rest of the constraints in (3.168) and (3.169) are solved by the (3.97), (3.98), (3.99)

and (3.100).

3.8.3 Second order uncharged fluid dynamics from equilibrium in 3+1 dimen-

sions

In this appendix we will do a similar computation as done in last two appendices for 3+1

dimensional uncharged fluids at second order. The non-trivial second order (stress tensor

conservation equation orthogonal to fluid velocity) equation is,

∇i(T2e
σ) + eσ

(
2∑

n=1

vnV
j
n + ṽṼ

)
fij +

eσ

PT
∇µΠµ

i = 0 (3.170)

Since, temperature correction is a scalar, we can assume the most generalized temperature

correction to be of the following form,

T2e
σ =

4∑
m=1

tmSm + t̃S̃ (3.171)
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Four dimensional divergence can be expressed as,

∇µΠµ
ν =

1√
−g4

∂µ

(√
−g4g̃

µαΠαν

)
− 1

2
∂ν(gαβ)Παβ

= ∇iΠik +∇iσΠik

= (αA − T∂TαA)∇mσΠA
mi + αA∇mΠA

mi, (3.172)

where, we have expressed the two derivative correction to equilibrium stress tensor Π of 3.127

in a compact form as, (Πij = αAΠA
ij , A = 1, 11). Using following simple derivative formulae

∇i
(
Rik −

R

2
gik
)

= 0, ∇i(∇i∇k − gik∇2)σ = ∇iRik,

∇i(∇iσ∇kσ − gik(∇σ)2) = ∇2σ∇kσ,

∇i
(
(f j
i fjk +

f2

4
gik)e

2σ
)

= e2σ
(
(∇ifij)f j k + 2∇iσ(f j

i fjk +
f2

4
gik)

)
, (3.173)

we solve for complete equilibrium solution. In the equation 3.170, we get following three

different kinds of terms in parity even sector

∇i(Tensor)ik, ∇k(Scalar), ∇kσ(Scalar), (3.174)

and following four kinds of terms in the parity odd sector,

εmklfklfjif
j
m, εimnf

mn∇2σ, εmni∇2fmn

εmnl∇i(∇mσfnl), εmnl∇iσ∇mσfnl (3.175)

Setting the coefficients of ∇k(Scalar) to zero, we get the temperature correction as 33,

t1 = − b1
PT

, t2 = − b2
PT

, t4 = − b4
PT

, t3 = −
b3 + 1

2(a2 − T∂Ta2)

PT
. (3.176)

Setting the coefficients of the other terms to zero and using 3.176, we get, the velocity cor-

rections as

v1 =
3a4 − T∂Ta4

T 2PT
, v2 =

a4

T 2PT
(3.177)

and the relations among the transport coefficients as given in 3.136. Similarly, setting the

coefficients of the independent terms in the parity odd sector to zero, we get all parity odd

coefficients zero, that is

t̃ = ṽ = δ1 = δ4 = δ5 = 0.

33we have used ∇iσ∇i∇kσ = 1
2
∇k(∇σ)2.
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4 Anomalous charged fluids in 1+1d from equilibrium partition function

4.1 Introduction

In this section we study the anomalous charged fluid dynamics in 1+1 dimensions using the

equilibrium partition function method discused in detail in the previous section. This system

has earlier been studied in [34] using the second law of thermodynamics as well as from an

action point of view. In this section we write down the equilibrium partition function for this

system at zero derivative order which reproduces the anomalous charge conservation and on

comparison with the most general constitutive relations in fluid dynamics, gives the results

obtained in [34].

4.2 1+1d parity violating charged fluid dynamics

Consider the parity violating charged fluids in 1+1 dimensions with background metric and

gauge field

ds2 = −e2σ(dt+ a1dx)2 + g11dx
2

A = A0dt+A1dx
1 .

(4.1)

The equations of motion are the following anomalous conservation laws

∇µTµν = FνλJ̃λ
∇µJ̃µ = cεµνFµν

∇µJµ =
c

2
εµνFµν

(4.2)

here J̃ , J are covariant and consistent currents respectively ([35], see also [36]).

The most general partition function consistent with Kaluza-Klein gauge invariance34,

diffeomorphism along the spatial direction and U(1) gauge invariance upto anomaly is

W =Winv +Wanom

Winv = C1T0

∫
A1dx− C2T0

∫
a1dx

Wanom = − C
T0

∫
A0A1dx

(4.4)

where C, C1 and C2 are constants independent of σ and A0 and

A0 = A0 + µ0, Ai = Ai −A0ai. (4.5)

Equation 4.4 is written in terms of Ai which unlike Ai, are Kaluza-Klein gauge invariant.

34

V ′i = Vi − ∂iφV0, (V ′)0 = V 0 + ∂iφV
i. (4.3)
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Field C P T CPT

σ + + + +

a1 + − − +

g11 + + + +

A0 − + + −
A1 − − − −

Table 14. Action of CPT

Under U(1) gauge transformation A0 → A0, A1 → A1 + ∂1φ, we obtain35

δWinv = 0

δWanom =
C

T0

∫
φ ∂1A0dx = −C

2

∫
d2x
√
−g2 φ ε

µνFµν .
(4.6)

Table (14) lists the action of 2 dimensional C, P and T on various fields. Requiring CPT

invariance sets C1 to zero since the term with coefficient C1 is odd under CPT.

Now let us look at the most general constitutive relations allowed by symmetry in the

parity violating case at zero derivative order. At this order, there are no gauge invariant

parity odd scalar or tensor. But one can construct a gauge invariant vector 36

ũµ = εµνuν . (4.8)

The most general allowed constitutive relations allowed by symmetry in Landau frame

thus take the form

Tµν = (ε+ p)uµuν + pgµν

J̃µ = quµ + ξj ũ
µ.

(4.9)

4.2.1 Equilibrium from Partition Function

In this subsubsection we will use the equilibrium partition function (4.4) to obtain the stress

tensor and charge current at zero derivative order. Setting C1 to zero in (4.4) we have

W = − C
T0

∫
A0A1dx− C2T0

∫
a1dx (4.10)

35Since we are interested in time independent background fields, we consider only time independent gauge

transformations.
36In components the parity odd vector is

ũ0 = 0, ũ1 = ε10u0 = ε1 (4.7)

where ε1 = eσε01 = 1√
g11

.
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Type Data Evaluated at equilibrium

T = T0e
−σ, µ = e−σA0, u

µ = uµK
Scalars None None

Vectors uµ δµ0 e
−σ

Pseudo-Vectors εµνu
ν ε1

Tensors None None

Table 15. Zero derivative fluid data

Scalars None

Vectors none , none

Pseudo-Vectors ε1f(σ,A0)

Tensors None

Table 16. Zero derivative background data

Using the partition function (4.10) it is straightforward to compute the stress tensor and

charge current37 in equilibrium to be

T00 = 0, T 11 = 0, T 1
0 = e−σε1

(
−T 2

0C2 + CA2
0

)
,

J0 = Cε1A1e
σ, J1 = −Cε1e−σA0.

(4.12)

The covariant current (J̃µ) can be obtained from the consistent current (Jµ) by an appropriate

shift as follows

J̃µ = Jµ + Jµsh, Jµsh = CεµνAν . (4.13)

In components the covariant current is then

J̃0 = 0, J̃1 = −2Ce−σε1A0. (4.14)

4.2.2 Equilibrium from Hydrodynamics

We are interested in the stationary equilibrium solutions to conservation equations corre-

sponding to the constitutive relations (4.9). The equilibrium solution in the parity even

sector in background (4.1) at zero derivative order is

uµ = uµ(0) = e−σ(1, 0), T = T0e
−σ, µ = A0e

−σ. (4.15)

37

T00 = − T0e
2σ√

−g(p+1)

δW

δσ
, T i0 =

T0√
−g(p+1)

(
δW

δai
−A0

δW

δAi

)
,

T ij = − 2T0√
−g(p+1)

gilgjm
δW

δglm
, J0 = − e2σT0√

−g(p+1)

δW

δA0
, J i =

T0√
−g(p+1)

δW

δAi
. (4.11)

where, for instance, the derivative w.r.t A0 is taken at constant σ, ai, Ai, g
ij , T0 and µ0. See [36] for details.
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Since there are no gauge invariant parity odd scalars in table 16, temperature and chemical

potential do not receive any correction. However, the fluid velocity in equilibrium receives

correction as

uµ = uµ(0) + bεµνu(0)
ν . (4.16)

From (4.9), (4.15) and (4.16) we get the parity odd correction to the equilibrium stress

tensor and charge current, which receive contribution from correction to the constitutive

relations as well as from correction to the equilibrium fluid velocity, to be

δT00 = δJ0 = δT ij = 0,

δT 1
0 = −eσ(ε+ P )bε1,

δJ̃1 = (qb+ ξj)ε
1.

(4.17)

4.2.3 Constraints on Hydrodynamics

Comparing the non trivial components of the equilibrium stress tensor and charge current of

(4.12) and (4.17) we find that the coefficient of velocity correction (4.16) is

b = − T 2

ε+ p

(
−C2 + Cν2

)
(4.18)

and the coefficient in correction to charge current (4.9) is

ξj = C

(
qµ2

ε+ p
− 2µ

)
− C2

qT 2

ε+ p
. (4.19)

where ν = µ
T = A0

T0
.

The expressions (4.19) agree exactly with the results of [34] based on the requirement of

positivity of the entropy current and effective action.

4.2.4 The Entropy Current

The equilibrium entropy can be obtained from the partition function using

S =
∂

∂T0
(T0 logZ)

= −2C2T0

∫
√
g11ε

1a1dx .

(4.20)

In this subsection we determine the constraints on the hydrodynamical entropy current

JµS from the requirement that (4.20) agree with the local integral

S =

∫
dx
√
−g2J

0
S . (4.21)

The most general form of the entropy current allowed by symmetry 38, at zero derivative

order is

JµS = suµ + ξsũ
µ + hεµνAν , (4.22)

38Let us note that the entropy current need not be gauge invariant, see [36] for more details.
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where h is a constant.

The parity odd correction to the entropy current in equilibrium, which receives contribu-

tions both from correction to the hydrodynamical entropy current and equilibrium velocity,

is given by

J0
S |correction = sδu0 + ξsũ

0 + hε01A1. (4.23)

Now using

ν =
A0

T0
, δu0 = −a1δu

1 = −bε1a1, ũ0 = −ε1a1

the correction to the hydrodynamical entropy in equilibrium is given by∫
dx
√
−g2J

0
s |correction =

∫
dx eσ

(
(−sb− ξs)ε1a1 + hε1(A1 +A0a1)

)
. (4.24)

Comparing this expression with (4.20) and using (4.19) we find

ξs = C
sµ2

ε+ p
+ C2T

(
1 +

ρµ

ε+ p

)
, h = 0. (4.25)

This result is in precise agreement with those of [34].
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5 Constraints on anomalous fluids in arbitrary even dimensions

5.1 Introduction

Anomalies are a fascinating set of phenomena exhibited by field theories and string theories.

For the sake of clarity let us begin by distinguishing between three quite different phenomena

bearing that name.

The first phenomenon is when a symmetry of a classical action fails to be a symmetry at

the quantum level. One very common example of an anomaly of this kind is the breakdown

of classical scale invariance of a system when we consider the full quantum theory. This

breakdown results in renormalization group flow, i.e., a scale-dependence of physical quantities

even in a classically scale-invariant theory. Often this classical symmetry cannot be restored

without seriously modifying the content of the theory. Anomalies of this kind are often serve

as a cautionary tale to remind us that the symmetries of a classical action like scale invariance

will often not survive quantisation.

The second set of phenomena are what are termed as gauge anomalies. A system is said

to exhibit a gauge anomaly if a particular classical gauge redundancy of the system is no more

a redundancy at a quantum level. Since such redundancies are often crucial in eliminating

unphysical states in a theory, a gauge anomaly often signifies a serious mathematical incon-

sistency in the theory. Hence this second kind of anomalies serve as a consistency criteria

whereby we discard any theory exhibiting gauge anomaly as most probably inconsistent.

The third set of phenomena which we would be mainly interested in this work is when a

genuine symmetry of a quantum theory is no more a symmetry when the theory is placed in

a non-trivial background where we turn on sources for various operators in the theory. This

lack of symmetry is reflected in the fact that the path integral with these sources turned on is

no more invariant under the original symmetry transformations. If the sources are non-trivial

gauge/gravitational backgrounds (corresponding to the charge/energy-momentum operators

in the theory) the path integral is no more gauge-invariant. In fact as is well known the gauge

transformation of the path-integral is highly constrained and the possible transformations are

classified by the Wess-Zumino descent relations39.

Note that unlike the previous two phenomena here we make no reference to any specific

classical description or the process of quantisation and hence this kind of anomalies are

well-defined even in theories with multiple classical descriptions (or theories with no known

classical description). Unlike the first kind of anomalies the symmetry is simply recovered at

the quantum level by turning off the sources. Unlike the gauge anomalies the third kind of

anomalies do not lead to any inconsistency. In what follows when we speak of anomaly we

will always have in mind this last kind of anomalies unless specified otherwise.

Anomalies have been studied in detail in the least few decades and their mathematical

structure and phenomenological consequence for zero temperature/chemical potential situ-

ations are reasonably well-understood. However the anomaly related phenomena in finite

39The Wess-Zumino descent relations are dealt with in detail in various textbooks[37–39] and lecture notes

[40, 41].
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temperature setups let alone in non-equilibrium states are still relatively poorly understood

despite their obvious relevance to fields ranging from solid state physics to cosmology. It is

becoming increasingly evident that there are universal transport processes which are linked

to anomalies present in a system and that study of anomalies provide a non-perturbative way

of classifying these transport processes say in solid-state physics[? ].

While the presence of transport processes linked to anomalies had been noticed before

in a diversity of systems ranging from free fermions40 to holographic fluids41 a main advance

was made in [3]. In that work it was shown using very general entropy arguments that the

U(1)3 anomaly coefficient in an arbitrary 3 + 1d relativistic field theory is linked to a specific

transport process in the corresponding hydrodynamics. This argument has since then been

generalised to finite temperature corrections [8, 16] and U(1)n+1 anomalies in d = 2n space

time dimensions [8, 46]. In particular the author of [8] identified a rich structure to the

anomaly-induced transport processes by writing down an underlying Gibbs-current which

captured these processes in a succinct way. Later in a microscopic context in ideal Weyl

gases, the authors of [30] identified this structure as emerging from an adiabatic flow of chiral

states convected in a specific way in a given fluid flow.

While these entropy arguments are reasonably straightforward they appear somewhat

non-intuitive from a microscopic field theory viewpoint. It is especially important to have

a more microscopic understanding of these transport processes if one wants to extend the

study of anomalies far away from equilibrium where one cannot resort to such thermodynamic

arguments. So it is crucial to first rephrase these arguments in a more field theory friendly

terms so that one may have a better insight on how to move far away from equilibrium.

Precisely such a field-theory friendly reformulation in 3+1d and 1+1d was found recently

in the references [47] and [48] respectively. Our main aim in this section is to generalise their

results to arbitrary even space time dimensions. So let us begin by repeating the basic physical

idea behind this reformulation in the next few paragraphs.

Given a particular field theory exhibiting certain anomalies, one begins by placing that

field theory in a time-independent gauge/gravitational background at finite temperature/chemical

potential. We take the gauge/gravitational background to be spatially slowly varying com-

pared to all other scales in the theory. Using this one can imagine integrating out all the

heavy modes42 in the theory to generate an effective Euler-Heisenberg type effective action

for the gauge/gravitational background fields at finite temperature/chemical potential.

In the next step one expands this effective action in a spatial derivative expansion and

40It would be an impossible task to list all the references in the last few decades which have discovered (and

rediscovered) such effects in free/weakly coupled theories in various disguises using a diversity of methods .

See for example [42] for what is probably the earliest study in 3 + 1d. See [30] for a recent generalisation to

arbitrary dimensions.
41See for example [43–45] for some of the initial holographic results.
42Time-independence at finite temperature and chemical potential essentially means we are doing a Euclidean

field theory. Unlike the Lorentzian field theory (which often has light-hydrodynamic modes) the Euclidean field

theory has very few light modes except probably the Goldstone modes arising out of spontaneous symmetry

breaking. We thank Shiraz Minwalla for emphasising this point.
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then imposes the constraint that its gauge transformation be that fixed by the anomaly. This

constrains the terms that can appear in the derivative expansion of the Euler-Heisenberg

type effective action. As is clear from the discussion above, this effective action and the

corresponding partition function have a clear microscopic interpretation in terms of a field-

theory path integral and hence is an appropriate object in terms of which one might try to

reformulate the anomalous transport coefficients.

The third step is to link various terms that appear in the partition function to the

transport coefficients in the hydrodynamic equations. The crucial idea in this link is the

realisation that the path integral we described above is essentially dominated by a time-

independent hydrodynamic state (or more precisely a hydrostatic state ). This means in

particular that the expectation value of energy/momentum/charge/entropy calculated via the

partition function should match with the distribution of these quantities in the corresponding

hydrostatic state.

These distributions in turn depend on a subset of transport coefficients in the hydrody-

namic constitutive relations which determine the hydrostatic state. In this way various terms

that appear in the equilibrium partition function are linked to/constrain the transport coeffi-

cients crucial to hydrostatics. Focusing on just the terms in the path-integral which leads to

the failure of gauge invariance we can then identify the universal transport coefficients which

are linked to the anomalies. This gives a re derivation of various entropy argument results in

a path-integral language thus opening the possibility that an argument in a similar spirit with

Schwinger-Keldysh path integral will give us insight into non-equilibrium anomaly-induced

phenomena.

Our main aim in this section is twofold - first is to carry through in arbitrary dimensions

this program of equilibrium partition function thus generalising the results of [47, 48] and re

deriving in a path-integral friendly language the results of [8, 46].

Our second aim is to clarify the relation between the Gibbs current studied in [8, 30] and

the partition function of [47, 48]. Relating them requires some care on carefully distinguishing

the consistent from covariant charge , the final result however is intuitive : the negative

logarithm of the equilibrium partition function (times temperature) is simply obtained by

integrating the equilibrium Gibbs free energy density (viz. the zeroeth component of the

Gibbs free current) over a spatial hyper surface. This provides a direct and an intuitive link

between the local description in terms of a Gibbs current vs. the global description in terms

of the partition function.

This section is organised as follows. We will begin by mainly reviewing known results

in subection §5.2. First we review the formalism/results of [8] in subsubsection§§5.2.1 where

entropy arguments were used to constrain the anomaly-induced transport processes a Gibbs-

current was written down which captured those processes in a succinct way. This is followed by

subsubsection§§5.2.4 where we briefly review the relevant details of the equilibrium partition

function formalism for fluids as developed in [47]. A recap of the relevant results in (3+1)

and (1+1) dimensions[47, 48] and a comparison with results in this section are relegated to

appendix 5.9.1.
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Subsection §5.3 is devoted to the derivation of transport coefficients for 2n dimensional

anomalous fluid using the partition function method. The next section§5.4 contains construc-

tion of entropy current for the fluid and the constraints on it coming from partition function.

This mirrors similar discussions in [47, 48]. We then compare these results to the results of

[8] presented before in subsubsection§§5.2.1 and find a perfect agreement.

Prodded by this agreement, we proceed in next subsection§5.5 to a deeper analysis of the

relation between the two formalisms. We prove an intuitive relation whereby the partition

function could be directly derived from the Gibbs current of [8] by a simple integration (after

one carefully shifts from the covariant to the consistent charge).

This is followed by subsection §5.6 where we generalise all our results for multiple U(1)

charges. We perform a CPT invariance analysis of the fluid in subsection §5.7 and this

imposes constraints on the fluid partition function.

Various technical details have been pushed to the appendices for the convenience of the

reader. After the appendix 5.9.1 on comparison with previous partition function results in

(3+1) and (1+1) dimensions, we have placed an appendix 5.9.4 detailing various specifics

about the hydrostatic configuration considered in [47]. We then have an appendix 5.9.5

where we present the variational formulae to obtain currents from the partition function in

the language of differential forms. This is followed by an appendix 5.9.6 on notations and

conventions (especially the conventions of wedge product etc.).

5.2 Preliminaries

In this subsection we begin by reviewing and generalising various results from [8] where con-

straints on anomaly-induced transport in arbitrary dimensions were derived using adiabaticity

(i.e., the statement that there is no entropy production associated with these transport pro-

cesses). Many of the zero temperature results here were also independently derived by the

authors of [46].

We will then review the construction of equilibrium partition function (free energy) for

fluid in the rest of the subsection. The technique has been well explained in [47] and familiar

readers can skip this part.

5.2.1 Adiabaticity and Anomaly induced transport

Hydrodynamics is a low energy (or long wavelength) description of a quantum field theory

around its thermodynamic equilibrium. Since the fluctuations are of low energy, we can

express physical data in terms of derivative expansions of fluid variables (fluid velocity u(x),

temperature T (x) and chemical potential µ(x)) around their equilibrium value.

The dynamics of the fluid is described by some conservation equations. For example, the

conservation equations of the fluid stress-tensor or the fluid charge current. These are known

as constitutive equations. The stress tensor and charged current of fluid can be expressed in

terms of fluid variables and their derivatives. At any derivative order, a generic form of the

stress tensor and charged current can be written demanding symmetry and thermodynamics

of the underlying field theory. These generic expressions are known as constitutive relations.
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As it turns out, validity of 2nd law of thermodynamics further constraints the form of these

constitutive relations.

The author of [8] assumed the following form for the constitutive relations describing

energy, charge and entropy transport in a fluid

Tµν ≡ εuµuν + pPµν + qµanomu
ν + uµqνanom + Tµνdiss

Jµ ≡ quµ + Jµanom + Jµdiss

JµS ≡ su
µ + JµS,anom + JµS,diss

(5.1)

where uµ is the velocity of the fluid under consideration which obeys uµuµ = −1 when

contracted using the space time metric gµν . Further, Pµν ≡ gµν + uµuν , pressure of the

fluid is p and {ε, q, s} are the energy,charge and the entropy densities respectively. We

have denoted by {qµanom, Jµanom, JµS,anom} the anomalous heat/charge/entropy currents and

by {Tµνdiss, J
µ
diss, J

µ
S,diss} the dissipative currents.

5.2.2 Equation for adiabaticity

A convenient way to describe adiabatic transport process is via a covariant anomalous Gibbs

current
(
GCovanom

)µ
.

The adjective covariant refers to the fact that the Gibbs free energy and the corre-

sponding partition function are computed by turning on chemical potential for the covariant

charge. This is to be contrasted with the consistent partition function and the corresponding

consistent anomalous Gibbs current
(
GConsistentanom

)µ
.

Since this distinction is crucial let us elaborate this in the next few paragraphs - it is

a fundamental result due to Noether that the continuous symmetries of a theory are closely

linked to the conserved currents in that theory. Hence when the path integral fails to have a

symmetry in the presence of background sources, there are two main consequences - first of

all it directly leads to a modification of the corresponding charge conservation and a failure

of Noether theorem. The second consequence is that various correlators obtained by varying

the path integral are not gauge-covariant and a more general modifications of Ward identities

occur.

A simple example is the expectation value of the current obtained by varying the path

integral with respect to a gauge field (often termed the consistent current ) as,

JµConsistent ≡
∂S

∂Aµ
.

The consistent current is not covariant under gauge transformation.

As has been explained in great detail in [17] thus there exists another current in anomalous

theories: the covariant current. The covariant current JµCov is a current shifted with respect

to the consistent current by an amount Jµc . The shift is such that its gauge transformation

is anomalous and it exactly cancels the gauge non invariant part of the consistent current.

Thus, the covariant current is covariant under the gauge transformation, as suggested by its

name.
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The covariant Gibbs current describes the transport of Gibbs free energy when a chemical

potential is turned on for the covariant charge. We will take a Hodge-dual of this covariant

Gibbs current to get a d− 1 form in d-space time dimensions. Let us denote this Hodge-dual

by ḠCovanom. The anomalous parts of charge/entropy/energy currents can be derived from this

Gibbs current via thermodynamics

J̄Covanom = −∂Ḡanom
∂µ

J̄CovS,anom = −∂Ḡanom
∂T

q̄Covanom = Ḡanom + T J̄S,anom + µJ̄anom

(5.2)

Then according to [8] the condition for adiabaticity is

dq̄Covanom + a ∧ q̄Covanom − E ∧ J̄Covanom = TdJ̄CovS,anom + µdJ̄Covanom − µĀCov (5.3)

where a, E are the acceleration 1-form and the rest-frame electric field 1-form respectively

defined via

a ≡ (u.∇)uµ dx
µ , E ≡ uνFµνdxµ

Further the rest frame magnetic field/vorticity 2-forms are defined by subtracting out the elec-

tric part from the gauge field strength and the acceleration part from the exterior derivative

of velocity, viz.,

B ≡ F − u ∧ E , 2ω ≡ du+ u ∧ a

The symbol ĀCov is the d-form which is the Hodge dual of the rate at which the covariant

charge is created due to anomaly,i.e.,

dJ̄Cov = ĀCov

where J̄Cov is the entire covariant charge current including both the anomalous and the non-

anomalous pieces. For simplicity we have restricted our attention to a single U(1) global

symmetry which becomes anomalous on a non-trivial background.

In terms of the Gibbs current , we can write the adiabiticity condition (5.3) as,

dḠCovanom + a ∧ ḠCovanom + µĀCov = (dT + aT ) ∧ ∂Ḡ
Cov
anom

∂T
+ (dµ+ aµ− E) ∧ ∂Ḡ

Cov
anom

∂µ
(5.4)

5.2.3 Construction of the polynomial Fωanom

The main insight of [8] is that in d-space time dimensions the solutions of this equation are

most conveniently phrased in terms of a single homogeneous polynomial of degree n + 1 in

temperature T and chemical potential µ.

Following the notation employed in [30] we will denote this polynomial as Fωanom[T, µ].

As was realised in [30], this polynomial is often closely related to the anomaly polynomial of
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the system43 . More precisely, for a variety of systems we have a remarkable relation between

Fωanom[T, µ] and the anomaly polynomial Panom [F ,R]

Fωanom[T, µ] = Panom
[
F 7→ µ, p1(R) 7→ −T 2, pk>1(R) 7→ 0

]
(5.5)

Let us be more specific : on a (2n− 1) + 1 dimensional space time consider a theory with

Fωanom[T, µ] = Canomµn+1 +
n∑

m=0

CmT
m+1µn−m (5.6)

Assuming that the theory obeys the replacement rule (5.5) such a Fωanom[T, µ] can be obtained

from an anomaly polynomial44

Panom = CanomFn+1 +
n∑

m=0

Cm [−p1(R)]
m+1

2 Fn−m + . . . (5.7)

where we have presented the terms which do not involve the higher Pontryagin forms. Re-

stricting our attention only to the U(1)n+1 anomaly (and ignoring the mixed/pure gravita-

tional anomalies ) we can write

dJ̄Consistent = CanomFn

dJ̄Cov = (n+ 1)CanomFn
(5.8)

and their difference is given by

J̄Cov = J̄Consistent + nCanomÂ ∧ Fn−1 (5.9)

The solution of (5.4) corresponding to the homogeneous polynomial (5.6) is given by

ḠCovanom = C0T Â ∧ Fn−1 +

n∑
m=1

[
Canom

(
n+ 1

m+ 1

)
µm+1

+
m∑
k=0

Ck

(
n− k
m− k

)
T k+1µm−k

]
(2ω)m−1Bn−m ∧ u

(5.10)

43We remind the reader that the anomalies of a theory living in d = 2n spacetime dimensions is succinctly

captured by a 2n+ 2 form living in two dimensions higher. This 2n+ 2 form called the anomaly polynomial

(since it is a polynomial in external/background field strengths F and R) is related to the variation of the

effective action δW via the descent relations

Panom = dΓCS , δΓCS = dδW

We will refer the reader to various textbooks[37–39] and lecture notes [40, 41] for a more detailed exposition.
44Since all relativistic theories only have integer powers of Pontryagin forms the constants Cm should vanish

whenever m is even. As we shall see later that another way to arrive at the same conclusion is to impose CPT

invariance.
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Here Â is the U(1) gauge-potential 1-form in some gauge with F ≡ dÂ being its field-strength

2-form. Further, B, ω are the rest frame magnetic field/vorticity 2-forms and T, µ are the local

temperature and chemical potential respectively. They obey

(dB) ∧ u = −(2ω) ∧ E ∧ u , d(2ω) ∧ u = (2ω) ∧ a ∧ u (5.11)

Using these equations it is a straightforward exercise to check that (5.10) furnishes a solution

to (5.4).

We will make a few remarks before we proceed to derive charge/entropy/energy currents

from this Gibbs current. Note that if one insists that the Gibbs current be gauge-invariant

then we are forced to put C0 = 0 - in the solution presented in [8] this condition was implicitly

assumed and the C0 term was absent. The authors of [47] later relaxed this assumption

insisting gauge-invariance only for the covariant charge/energy currents. Since we would be

interested in comparison with the results derived in [47] it is useful to retain the C0 term.

Now we use thermodynamics to obtain the charge current as

J̄Covanom

= −
n∑

m=1

[
(m+ 1)Canom

(
n+ 1

m+ 1

)
µm

+

m∑
k=0

(m− k)Ck

(
n− k
m− k

)
T k+1µm−k−1

]
(2ω)m−1Bn−m ∧ u

(5.12)

and the entropy current is given by

J̄CovS,anom = −C0Â ∧ Fn−1

−
n∑

m=1

m∑
k=0

(k + 1)Ck

(
n− k
m− k

)
T kµm−k(2ω)m−1Bn−m ∧ u

(5.13)

The energy current is given by

q̄Covanom

= −
n∑

m=1

m

[
Canom

(
n+ 1

m+ 1

)
µm+1

+
m∑
k=1

Ck

(
n− k
m− k

)
T k+1µm−k

]
(2ω)m−1Bn−m ∧ u

(5.14)

These currents satisfy an interesting Reciprocity type relationship noticed in [8]

δq̄Covanom

δB
=
δJ̄Covanom

δ(2ω)
(5.15)
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While this is a solution in a generic frame one can specialise to the Landau frame (where

the velocity is defined via the energy current) by a frame transformation

uµ 7→ uµ − qµanom
ε+ p

,

Jµanom 7→ Jµanom − q
qµanom
ε+ p

,

JµS,anom 7→ JµS,anom − s
qµanom
ε+ p

,

qµanom 7→ 0

(5.16)

to get

J̄Cov,Landauanom =

n∑
m=1

ξm(2ω)m−1Bn−m ∧ u

J̄Cov,LandauS,anom =
n∑

m=1

ξ(s)
m (2ω)m−1Bn−m ∧ u+ ζ Â ∧ Fn−1

(5.17)

where

ξm ≡
[
m

qµ

ε+ p
− (m+ 1)

]
Canom

(
n+ 1

m+ 1

)
µm

+

m∑
k=0

[
m

qµ

ε+ p
− (m− k)

]
Ck

(
n− k
m− k

)
T k+1µm−k−1

ξ(s)
m ≡

[
m

sT

ε+ p

]
Canom

(
n+ 1

m+ 1

)
T−1µm+1

+

m∑
k=0

[
m

sT

ε+ p
− (k + 1)

]
Ck

(
n− k
m− k

)
T kµm−k

ζ = −C0

(5.18)

Often in the literature the entropy current is quoted in the form

J̄Cov,LandauS,anom = −µ
T
J̄Cov,Landauanom +

n∑
m=1

χm(2ω)m−1Bn−m ∧ u+ ζ Â ∧ Fn−1 (5.19)

where

ζ = −C0

χm ≡ ξ(s)
m +

µ

T
ξm

= −Canom
(
n+ 1

m+ 1

)
T−1µm+1 −

m∑
k=0

Ck

(
n− k
m− k

)
T kµm−k

(5.20)
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where we have used the thermodynamic relation sT + qµ = ε + p. By looking at (5.10) we

recognise these to be the coefficients occurring in the anomalous Gibbs current :

ḠCovanom = −T

[
n∑

m=1

χm(2ω)m−1Bn−m ∧ u+ ζ Â ∧ Fn−1

]
(5.21)

In fact this is to be expected from basic thermodynamic considerations : the above equation

is a direct consequence of the relation G = −T (S+ µ
TQ−

U
T ) and the fact that energy current

receives no anomalous contributions in the Landau frame.

This ends our review of the main results of [8] adopted to our purposes. Our aim in

the rest of the section would be to derive all these results purely from a partition function

analysis.

5.2.4 Equilibrium Partition Function

In this subsubsection we review (and extension) an alternative approach to constrain the

constitutive relations, namely by demanding the existence of an equilibrium partition function

(or free energy) for the fluid as described in [47, 48] 45.

Let us keep the fluid in a special background such that the background metric has a time

like killing vector and the background gauge field is time independent. Any such metric can

be put into the following Kaluza-Klein form

ds2 = −e2σ(dt+ aidx
i)2 + gijdx

idxj ,

Â = A0dt+Aidxi
(5.22)

here i, j ε (1, 2 . . . 2n− 1) are the spatial indices. We will often use the notation γ ≡ e−σ for

brevity. This background has a time-like killing vector ∂t and let uµk = (e−σ, 0, 0, . . .) be the

unit normalized vector in the killing direction so that

uµk∂µ = γ∂t and uk = −γ−1(dt+ a)

In the corresponding Euclidean field theory description of equilibrium, the imaginary time

direction would be compactified into a thermal circle with the size of circle being the inverse

temperature of the underlying field theory. In the 2n-1 dimensional compactified geometry,

the original 2n background field breaks as follow

• metric(gµν) : scalar(σ), KK gauge field(ai), lower dimensional metric(gij).

• gauge field(Âµ) : scalar(A0), gauge field(Ai)

Under this KK type reduction the 2n dimensional diffeomorphisms breaks up into 2n-1

dimensional diffeomorphisms and KK gauge transformations. The components of 2n di-

mensional tensors which are KK-gauge invariant in 2n-1 dimensions are those with lower

45For similar discussions, see for example [49, 50].
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time(killing direction) and upper space indices. Given a 1-form J we will split it in terms of

KK-invariant components as

J = J0(dt+ aidx
i) + gijJ

idxj

Other KK non-invariant components of J are given by

J0 = −
[
γ2J0 + aiJ

i
]

Ji = gijJ
j + aiJ0

(5.23)

To take care of KK gauge invariance we will identify the lower dimensional U(1) gauge

field (denoted by non script letters) as follows

A0 = A0 + µ0, Ai = Ai

⇒ Ai = Ai −A0ai and

Fij = ∂iAj − ∂jAi = Fij −A0fij − (∂iA0 aj − ∂jA0 ai).

(5.24)

where fij ≡ ∂iaj − ∂jai and µ0 is a convenient constant shift in A0 which we will define

shortly. We can hence write

Â = A0dt+A = A0(dt+ aidx
i) +Aidx

i − µ0dt

We are now working in a general gauge - often it is useful to work in a specific class of gauges

: one class of gauges we will work on is obtained from this generic gauge by performing a

gauge transformation to remove the µ0dt piece. We will call these class of gauges as the ‘zero

µ0’ gauges. In these gauges the new gauge field is given in terms of the old gauge field via

Âµ0=0 ≡ Â+ µ0dt

We will quote all our consistent currents in this gauge. The field strength 2-form can then be

written as

F ≡ dÂ = dA+A0da+ dA0 ∧ (dt+ a)

We will now focus our attention on the consistent equilibrium partition function which

is the Euclidean path-integral computed on space adjoined with a thermal circle of length

1/T0. We will further turn on a chemical potential µ - since there are various different notions

of charge in anomalous theories placed in gauge backgrounds we need to carefully define which

of these notions we use to define the partition function46. While in the previous subsection we

used the chemical potential for a covariant charge and the corresponding covariant Gibbs

free-energy following [8] , in this subsection we will follow [47] in using a chemical potential

for the consistent charge to define the partition function. This distinction has to be kept in

mind while making a comparison between the two formalisms as we will elaborate later in

section§5.5.

46 See, for example, section§3 of [? ] for a discussion of some of the subtleties.
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The consistent partition function ZConsistent that we write down will be the most general

one consistent with 2n-1 dimensional diffeomorphisms, KK gauge invariance and the U(1)

gauge invariance up to anomaly. It is a scalar S constructed out of various background

quantities and their derivatives. The most generic form of the partition function is

W = lnZConsistent =

∫
d2n−1x

√
g2n−1S(σ,A0, ai, Ai, gij). (5.25)

Given this partition function, we compute various components of the stress tensor and charged

current from it. The KK gauge invariant components of the stress tensor Tµν and charge

current Jµ can then be obtained from the partition function as follows [47],

T00 = − T0e
2σ

√
−g2n

δW

δσ
, JConsistent0 = − e2σT0√

−g2n

δW

δA0
,

T i0 =
T0√
−g2n

(
δW

δai
−A0

δW

δAi

)
, J iConsistent =

T0√
−g2n

δW

δAi
,

T ij = − 2T0√
−g2n

gilgjm
δW

δglm
.

(5.26)

here {σ, ai, gij , A0, Ai} are chosen independent sources, so the partial derivative w.r.t any

of them in the above equations means that others are kept constant. We will sometimes

use the above equation written in terms of differential forms - we will refer the reader to

appendix 5.9.5 for the differential-form version of the above equations.

Next we parameterize the most generic equilibrium solution and constitutive relations for

the fluid as,

u(x) = u0(x) + u1(x), T (x) = T0(x) + T1(x), µ(x) = µ0(x) + µ1(x),

Tµν = (ε+ p)uµuν + pgµν + πµν , Jµ = quµ + jµdiss, (5.27)

where, u1, T1, µ1, πµν , j
µ
diss are various derivatives of the background quantities. Note that we

will work in Landau frame throughout.

These corrections are found by comparing the fluid stress tensor Tµν and current Jµ
in Eqn.(5.27) with Tµν and Jµ in Eqn.(5.26) as obtained from the partition function. This

exercise then constrains various non-dissipative coefficients that appear in the constitutive

relations in Eqn.(5.27).

This then ends our short review of the formalism developed in [47]. In the next section we

will apply this formalism to a theory with U(1)n+1 anomaly in d = 2n space time dimensions.

5.3 Anomalous partition function in arbitrary dimensions

Let us consider then a fluid in a 2n dimensional space time. The fluid is charged under a

single U(1) abelian gauge field Aµ. We will generalise to multiple abelian gauge fields later

in section §5.6 and leave the non-abelian case for future study. We will continue to use the

notation in the subsection §§5.2.1.
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The consistent/covariant anomaly are then given by Eqn.(5.8) which can be written in

components as

∇µJµConsistent = Canomεµ1ν1...µnνn∂µ1Âν1 . . . ∂µnÂνn

=
Canom

2n
εµ1ν1...µnνnFµ1ν1 . . .Fµnνn .

∇µJµCov = (n+ 1)Canomεµ1ν1...µnνn∂µ1Âν1 . . . ∂µnÂνn

= (n+ 1)
Canom

2n
εµ1ν1...µnνnFµ1ν1 . . .Fµnνn .

(5.28)

and Eqn.(5.9) becomes

JµCov = JµConsistent + Jµ(c). (5.29)

where

Jλ(c) = nCanomελαµ1ν1...µn−1νn−1Âα∂µ1Âν1 . . . ∂µn−1Âνn−1

= n
Canom
2n−1

ελαµ1ν1...µn−1νn−1ÂαFµ1ν1 . . .Fµn−1νn−1 .
(5.30)

The energy-momentum equation becomes

∇µTµν = FνµJ
µ
Cov, (5.31)

where JµCov is the covariant current. This has been explicitly shown in [47] 47.

5.3.1 Constraining the partition function

We want to write the equilibrium free energy functional for the fluid. For this purpose, let us

keep the in the following 2n-dimensional time independent background,

ds2 = −e2σ(dt+ aidx
i)2 + gijdx

idxj , A = (A0,Ai). (5.32)

Now, we write the (2n−1) dimensional equilibrium free energy that reproduces the same

anomaly as given in (5.76). The most generic form for the anomalous part of the partition

function is ,

Wanom =
1

T0

∫
d2n−1x

√
g2n−1

{ n∑
m=1

αm−1(A0, T0)
[
εA(da)m−1(dA)n−m

]
+ αn(T0)

[
εa(da)n−1

]}
.

(5.33)

where, εijk... is the (2n− 1) dimensional tensor density defined via

εi1i2...id−1 = e−σε0i1i2...id−1

47One required identity is,

Âαεµ1ν1...µnνnFµ1ν1 . . .Fµnνn = 2n Âµ1ε
µ1ν1µ2ν2...µnνnFαν1Fµ2ν2 . . .Fµnνn

for arbitrary 2n−dimensions
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The indices (i, j) run over (2n− 1) values. We have used the following notation for the sake

of brevity[
εA(da)m−1(dA)n−m

]
≡ εij1k1...jm−1km−1p1q1...pn−mqn−mAi∂j1ak1 . . . ∂jm−1akm−1∂p1Aq1 . . . ∂pn−mAqn−m[

ε(da)m−1(dA)n−m
]i

≡ εij1k1...jm−1km−1p1q1...pn−mqn−m∂j1ak1 . . . ∂jm−1akm−1∂p1Aq1 . . . ∂pn−mAqn−m

(5.34)

The invariance under diffeomorphism implies that αn is a constant in space .For m < n

however αm can have A0 dependence, as the gauge symmetry is anomalous, but they are

independent of σ, due to diffiomorphism invariance.

The consistent current computed from this partition function is,

(Janom)Consistent0 = −eσ
n∑

m=1

∂αm−1

∂A0

[
εA(da)m−1(dA)n−m

]
(Janom)iConsistent = e−σ

{ n∑
m=1

(n−m+ 1)αm−1

[
ε(da)m−1(dA)n−m

]i
−

n−1∑
m=1

(n−m)
∂αm−1

∂A0

[
εAdA0(da)m−1(dA)n−m−1

]i}
(5.35)

Next, we compute the covariant currents, following (5.29). The correction piece for the

0-component of the current is,

(J(c))0 = −nCanomeσ
n∑

m=1

Am0

(
n− 1

m− 1

)[
εA(da)m−1(dA)n−m

]
(5.36)

where, we have used the following identification for 2n dimensional gauge field Aµ and (2n−1)

dimensional gauge fields Ai, ai and scalar A0,

Ai = Ai + aiA0

A0 = A0.
(5.37)

where we are working in a‘zero µ0’ gauge.

Thus, the 0-component of the covariant current is,

(Janom)Cov0 = −eσεijkl...
n∑

m=1

[
∂αm−1

∂A0
+ n

(
n− 1

m− 1

)
Am−1

0 Canom
] [
εA(da)m−1(dA)n−m

]
.

(5.38)

Every term in the above sum is gauge non-invariant. So the covariance of the covariant current

demands that we chose the arbitrary functions αm appearing in the partition function (5.33)

such that the current vanishes. Thus, we get,

∂αm−1

∂A0
+ n

(
n− 1

m− 1

)
Am−1

0 Canom = 0. (5.39)
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The solution for the above equation is,

αm = −Canom
(

n

m+ 1

)
Am+1

0 + C̃mT
m+1
0 , m = 0, . . . , n− 1

αn = C̃nT
n+1
0 (5.40)

Here, C̃m are constants that can appear in the partition function.

Thus, at this point, a total of n + 1 coefficients can appear in the partition function. A

further study of CPT invariance of the partition function will reduce this number. We will

present that analysis later in details and here we just state the result. CPT forces all C̃2k = 0.

For even n, the number of constants are n
2 where as for odd n, the number is (n+1

2 ).

5.3.2 Currents from the partition function

With these functions the i−component of the covariant current is,

(Janom)iCov = e−σ
n∑

m=1

[
A0
∂αm−1

∂A0
+ (n−m+ 1)αm−1

] [
ε(da)m−1(dA)n−m

]i
= e−σ

n∑
m=1

[
− (n+ 1)Canom

(
n

m

)
T0A

m
0

+ (n−m+ 1)Tm0 C̃m−1

] [
ε(da)m−1(dA)n−m

]i
,

(5.41)

As expected, this current is U(1) gauge invariant. The different components of stress-tensor

computed from the partition function are,

T anom00 = 0, T ijanom = 0(
T i0
)
anom

= e−σ
n∑

m=1

(mαm − (n−m+ 1)A0αm−1)
[
ε(da)m−1(dA)n−m

]i
= e−σ

n∑
m=1

[
mC̃mT

m+1
0 − (n+ 1−m)C̃m−1T

m
0 A0

+

(
n+ 1

m+ 1

)
CanomAm+1

0

] [
ε(da)m−1(dA)n−m

]i
(5.42)

5.3.3 Comparison with Hydrodynamics

Next, we find the equilibrium solution for the fluid variables. As usual, we keep the fluid in

the time independent background (5.32). The equilibrium solutions for perfect charged fluid

(with out any dissipation) are,

uµ∂µ = e−σ∂t, T = T0e
−σ, µ = A0e

−σ. (5.43)
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The most generic constituitive relations for the fluid can be written as,

Tµν = (ε+ p)uµuν + pgµν + ησµν + ζΘPµν
JµCov = quµ + Jµeven + Jµodd,

Jµeven = σ(Eµ − TPµα∂αν) + α1E
µ + α2TPµα∂αν + higher derivative terms

Jµodd =
n∑

m=1

ξmε
µν γ1δ1...γm−1δm−1 α1β1...αn−mβn−muν(∂γuδ)

m−1(∂αAβ)n−m + . . . . (5.44)

Here, Jµeven is parity even part of the charge current and Jµodd is parity odd charge current.

εµναβγδ... is a 2n dimensional tensor density whose (n−m) indices are contracted with ∂αAβ
and (m− 1) indices are contracted with ∂γuδ.

We notice that the higher derivative part of the current gets contribution from both

parity even and odd vectors. Parity even vectors can be at any derivative order but parity

odd vectors always appear at (n − 1) derivative order. Thus, for a generic value of n (other

than n = 2) , the parity even and odd parts corrections to the current will always appear at

different derivative orders. From now on, we will only concentrate on the parity odd sector.

It is also straight forward to check that Jodd0 = 0.

Next, we look for the equilibrium solution for this fluid. Since, there exist no gauge

invariant parity odd scalar, the temperature and chemical potential do not get any correction.

Also, in 2n dimensional theory, the parity odd vectors that we can write are always (n − 1)

derivative terms. No other parity odd vector at any lower derivative order exists. Since the

fluid velocity is always normalized to unity, we have,

δT = 0, δµ = 0, δu0 = −aiδui. (5.45)

where, the most generic correction to the fluid velocity is,

δui =

n∑
m=1

Um(σ,A0)
[
ε(da)m−1(dA)n−m

]i
. (5.46)

Here, Um(σ,A0) are arbitrary coefficients and factors of eσ is introduced for later conve-

nience. Similarly, we can parameterize the i−component of the parity-odd current as,

J iodd =
n∑

m=1

Jm(σ,A0)
[
ε(da)m−1(dA)n−m

]i
. (5.47)

The coefficients Jm(σ,A0) are related to the transport coefficients ξm via

Jm =

m∑
k=1

(
n− k
m− k

)
ξk (−eσ)k−1Am−k0 . (5.48)
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With all these data, we can finally compute the corrections to the stress tensor and

charged currents and they take the following form,

δT00 = 0, δT ij = 0, δJ̃0 = 0

δT i0 = −eσ(ε+ p)εijk...
n∑

m=1

Um(σ,A0)(da)m−1(dA)n−m

δJ iCov = εijk...
n∑

m=1

(Jm(σ,A0) + qUm(σ,A0))(da)m−1(dA)n−m (5.49)

Comparing the expressions for various components of stress tensor and covariant current of

the fluid obtained from equilibrium partition function (5.42), (5.41) and fluid constitutive

relations (5.49), we get,

Um = − e
−2σ

ε+ p
[mαm − (n−m+ 1)A0αm−1]

= − e
−2σ

ε+ p

[
mC̃mT

m+1
0 − (n+ 1−m)C̃m−1A0T

m
0

+

(
n+ 1

m+ 1

)
CanomAm+1

0

]
(5.50)

Similarly, we can evaluate Jm(σ,A0) as follows,

Jm = e−σ
[
−(m+ 1)CanomAm0

(
n+ 1

m+ 1

)
+ (n−m+ 1)C̃m−1T

m
0

]
+
qe−2σ

ε+ p

[
mC̃mT

m+1
0 − (n+ 1−m)C̃m−1A0T

m
0

+

(
n+ 1

m+ 1

)
CanomAm+1

0

] (5.51)

We want to now use this to obtain the transport coefficients ξm in the last relation of (5.44).

For this we have to invert the relations (5.48) for ξm. We finally get

ξm =

[
m

qµ

ε+ p
− (m+ 1)

]
Canom

(
n+ 1

m+ 1

)
µm

+

m∑
k=0

[
m

qµ

ε+ p
− (m− k)

]
(−1)k−1C̃k

(
n− k
m− k

)
T k+1µm−k−1

(5.52)

This then is the prediction of this transport coefficient via partition function methods. This

exactly matches with the expression from [8] in (5.18) provided we make the following iden-

tification among the constants C̃m = (−1)m−1Cm.

5.4 Comments on Most Generic Entropy Current

Another physical requirement which has long been used as a source of constraints on fluid

dynamical transport coefficients is the local form of second law of thermodynamics. As we
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reviewed in the subsection§§5.2.1 this principle had been used in [8] to obtain anomaly in-

duced transports coefficients in arbitrary even dimensions.

In this section we will determine the entropy current in equilibrium by comparing the

total entropy with that obtained from the equilibrium partition function. In the examples

studied in [47, 48] it was seen that in general the comparison with equilibrium entropy (

obtained from partition function) did not fix all the non dissipative coefficients in fluid dy-

namical entropy current. However it did determine the anomalous contribution exactly. Here

we will see that this holds true in general even dimensions.

Let us begin by computing the entropy from the equilibrium partition function. We begin

with the anomalous part of the partition function

Wanom =
1

T0

∫
d2n−1x

√
g2n−1

{ n∑
m=1

αm−1

[
εA(da)m−1(dA)n−m

]
+ αn

[
εa(da)n−1

]} (5.53)

where the functions αm are given in (5.40).

The anomalous part of the total entropy is easily computed to be

Sanom =
∂

∂T0
(T0Wanom)

=

∫
d2n−1x

√
g2n−1

{ n∑
m=1

m Tm−1
0 C̃m−1

[
εA(da)m−1(dA)n−m

]
+ (n+ 1)C̃n T

n
0

[
εa(da)n−1

]}
=

∫
d2n−1x

√
g2n−1

{ n∑
m=1

(m+ 1) Tm0 C̃m
[
εa(da)m−1(dA)n−m

]
+ C̃0

[
εA(dA)n−1

]}
(5.54)

Now we will determine the most general form of entropy current in equilibrium by com-

parison with (5.54). In [47] it was argued that the entropy current by itself is not a physical

object, but entropy production and total entropy are. This gave a window for gauge non in-

variant contribution to entropy current but the contribution was removed by CPT invariance.

Here also we will allow for such gauge non invariant terms in the entropy current. The most

general form of entropy current, allowing for gauge non invariant pieces, is then

JµS = suµ − µ

T
Jµodd +

n∑
m=1

χmε
µν...uν(∂u)m−1(∂Â)n−m

+ ζεµν...Âν(∂Â)n−1

(5.55)
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where χm is a function of T and µ whereas ζ is a constant . The correction to the local

entropy density (i.e., the time component of the entropy current) can be written after an

integration by parts as

δJ0
S = ε0ij...

[
ζA(dA)n−1 +

n∑
k=1

f̃k a (da)k−1 (dA)n−k

]
ij...

+ total derivatives (5.56)

where

f̃m ≡ −sUm +
µ

T
Jm + ζAm0

(
n

m

)
+

m∑
k=1

(
n− k
m− k

)
χk (−eσ)k Am−k0 (5.57)

The correction to the entropy is then,

δS =

∫
d2n−1x

√
g2n J

0
S

=

∫
d2n−1x

√
g2n−1

[
ζ
[
εA(dA)n−1

]
+

n∑
m=1

f̃m

[
εa (da)m−1 (dA)m−k

]] (5.58)

Comparing the two expressions of total equilibrium entropy (5.54) and (5.58) we find the

following expressions of the various coefficients in the entropy current (5.56),

ζ = C̃0 and f̃k = (k + 1) T k0 C̃k for 0 ≤ k ≤ n (5.59)

This in turn implies that

T0

m∑
k=1

(
n− k
m− k

)
χk (−eσ)k Am−k0

= C̃mT
m+1
0 +m

(
n

m

)
CanomAm+1

0 − C̃0T0A
m
0

(
n

m

) (5.60)

which can be inverted to give

χm = −Canom
(
n+ 1

m+ 1

)
T−1µm+1 −

m∑
k=0

C̃k(−1)k−1

(
n− k
m− k

)
T kµm−k

ζ = C̃0

(5.61)

which matches with the prediction from [8] in equation (5.20) again with the identification

Cm(−1)m−1 = C̃m. We see that in the entropy current we have a total of n+ 1 constants as

in the equilibrium partition function.

This completes our partition function analysis and our re derivation of the results of

[8] via partition function techniques. We see that the transport coefficients match exactly

with the results obtained via entropy current (provided the analysis of [8] is extended by

allowing gauge-non-invariant pieces in the entropy current). This detailed match of transport

coefficients warrants the question whether the form of the equilibrium partition function itself

can be directly derived from the expressions of [8] quoted in 5.2.1. We turn to this question

in the next section.
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5.5 Gibbs current and Partition function

We begin by repeating the expression for the Gibbs current in (5.10) which was central to

the results of [8].

ḠCovanom = C0T Â ∧ Fn−1 +

n∑
m=1

[
Canom

(
n+ 1

m+ 1

)
µm+1

+
m∑
k=0

Ck

(
n− k
m− k

)
T k+1µm−k

]
(2ω)m−1Bn−m ∧ u

(5.62)

The subscript ‘anom’ denotes that we are considering only a part of the entropy current

relevant to anomalies. The superscript ‘Cov’ refers to the fact that this is the Gibbs free

energy computed by turning on a chemical potential for the covariant charge.

Let us ask how this expression would be modified if the Gibbs free energy was computed by

turning on a chemical potential for the consistent charge instead. The change from covariant

charge to consistent charge/current is simply given by a shift as given by the equation(5.9).

This shift does not depend on the state of the theory but is purely a functional of the

background gauge fields. Thinking of Gibbs free energy as minus temperature times the

logarithm of the Eucidean path integral, a conversion from covariant charge to a consistent

charge induces a shift

ḠCovanom = ḠConsistentanom − µ n CanomÂ ∧ Fn−1

which gives

ḠConsistentanom

=
n∑

m=1

[
Canom

(
n+ 1

m+ 1

)
µm+1 +

m∑
k=0

Ck

(
n− k
m− k

)
T k+1µm−k

]
(2ω)m−1Bn−m ∧ u

+ [C0T + nCanomµ] Â ∧ Fn−1

(5.63)

This now a Gibbs current whose µ derivative gives the consistent current rather than a

covariant current. It is easy to check that this solves an adiabaticity equation very similar to

the one quoted in equation(5.4)

dḠConsistentanom + a ∧ ḠConsistentanom + nCanom
(
Â+ µu

)
∧ E ∧ Bn−1

= (dT + aT ) ∧ ∂Ḡ
Consistent
anom

∂T
+ (dµ+ aµ− E) ∧ ∂Ḡ

Consistent
anom

∂µ

(5.64)

The question we wanted to address is how this Gibbs current is related to the partition

function in equation (5.33).

The answer turns out to be quite intuitive - we would like to argue in this section that

Wanom = ln ZanomConsistent = −
∫
space

1

T
ḠConsistentanom (5.65)
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This equation instructs us to pull back the 2n − 1 form in equation (5.63) (divided by local

temperature) and integrate it on an arbitrary spatial hyperslice to obtain the anomalous

contribution to negative logarithm of the equilibrium path integral. Note that pulling back

the Hodge dual of Gibbs current on a spatial hyperslice is essentially equivalent to integrating

its zero component (i.e., the Gibbs density) on the slice. Seen this way the above relation is

the familiar statement relating Gibbs free energy to the grand-canonical partition function.

5.5.1 Reproducing the Gauge variation

Before giving an explicit proof of the relation(5.65) we will check in this subsection that the

relation(5.65) essentially gives the correct gauge variation to the path-integral at equilibrium.

This will provide us with a clearer insight on how the program of [47] to write a local expression

in the partition function to reproduce the anomaly works.

The gauge variation of(5.65) under δÂ = dδλ is

δWanom = δ ln ZanomConsistent = −
∫
space

1

T
δḠConsistentanom

= −
∫
space

[
C0 + nCanom

µ

T

]
δÂ ∧ Fn−1

= −
∫
space

[
C0 + nCanom

µ

T

]
dδλ ∧ Fn−1

= −
∫
surface

δλ
[
C0 + nCanom

µ

T

]
∧ Fn−1 + nCanom

∫
space

δλd
(µ
T

)
∧ Fn−1

(5.66)

We will now ignore the surface contribution and use the fact that chemical equilibrium

demands that

Td
(µ
T

)
= E

where E ≡ uνFµνdxν is the rest frame electric-field. This is essentially a statement (familiar

from say semiconductor physics) that in equilibrium the diffusion current due to concentration

gradients should cancel the drift ohmic current due to the electric field. Putting this in along

with the electric-magnetic decomposition F = B + u ∧ E , we get

δWanom = δ ln ZanomConsistent = Canom
∫
space

δλ

T
nE ∧ Bn−1

(5.67)

which is the correct anomalous variation required of the equilibrium path-integral ! In d =

2n = 4 dimensions for example we get the correct E.B variation along with the 1/T factor

coming from the integration over euclidean time-circle. The factor of n comes from converting

to electric and magnetic fields

Fn = n u ∧ E ∧ Bn−1

Thus the shift piece along with the chemical equilibrium conspires to reproduce the correct

gauge variation. The reader might wonder why this trick cannot be made to work by just

keeping the shift term alone in the Gibbs current - the answer is of course that other terms

are required if one insists on adiabaticity in the sense that we want to solve (5.64).
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5.5.2 Integration by parts

In this subsubsection we will prove (5.65) explicitly. We will begin by evaluating the consistent

Gibbs current in the equilibrium configuration. We will as before work in the ‘zero µ0’ gauge.

Using the relations in the appendix 5.9.4 we get the consistent Gibbs current as

− 1

T
ḠConsistentanom

=
1

T0

n∑
m=1

[
Cm(−1)m−1Tm+1

0 − C0(−1)0−1

(
n

m

)
T0A

m
0

−
(

n

m+ 1

)
CanomAm+1

0

]
(da)m−1(dA)n−m ∧ (dt+ a)

− 1

T0
[nCanomA0 + C0T0]A ∧ (dA+A0da)n−1

− (n− 1)

T0
[nCanomA0 + C0T0]A ∧ dA0 ∧ (dt+ a) ∧ (dA+A0da)n−2

(5.68)

After somewhat long set of manipulations one arrives at the following form for the con-

sistent Gibbs current

− 1

T
ḠConsistentanom

= d

{
A

T0

n−1∑
m=1

[
Cm(−1)m−1Tm+1

0 − C0(−1)0−1

(
n− 1

m

)
T0A

m
0

+m

(
n

m+ 1

)
CanomAm+1

0

]
(da)m−1(dA)n−1−m ∧ (dt+ a)

}
+
A

T0

n∑
m=1

[
Cm−1(−1)m−2Tm0 −

(
n

m

)
CanomAm0

]
(da)m−1(dA)n−m

+ Cn(−1)n−1Tn0 (da)n−1 ∧ (dt+ a)

(5.69)

Here we have taken out a surface contribution which we will suppress from now on since it

does not contribute to the partition function. This final form is easily checked term by term.

Suppressing the surface contribution we can write

− 1

T
ḠConsistentanom

= d [. . .] +
A

T0

n∑
m=1

[
Cm−1(−1)m−2Tm0 −

(
n

m

)
CanomAm0

]
(da)m−1(dA)n−m

+ Cn(−1)n−1Tn0 (da)n−1 ∧ (dt+ a)

= d [. . .] +
A

T0
∧

n∑
m=1

αm−1(da)m−1(dA)n−m +
dt+ a

T0
∧ αn(da)n−1

(5.70)
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where we have defined

αm = Cm(−1)m−1Tm+1
0 −

(
n

m+ 1

)
CanomAm+1

0 for m < n

αn = Cn(−1)n−1Tn+1
0

(5.71)

To get the contribution to the equilibrium partition function, we integrate the above

equation over the spatial slice (putting dt = 0). We will neglect surface contributions to get

(lnZ)Consistentanom

=

∫
space

A

T0
∧

n∑
m=1

[
Cm−1(−1)m−2Tm0 −

(
n

m

)
CanomAm0

]
(da)m−1(dA)n−m

+

∫
space

Cn(−1)n−1Tn0 a ∧ (da)n−1

=

∫
space

A

T0
∧

n∑
m=1

αm−1(da)m−1(dA)n−m +

∫
space

a

T0
∧ αn(da)n−1

(5.72)

with αms given by (5.71). We are essentially done - we have got the form in (5.33) and

comparing the equations (5.71) and (5.40) we find a perfect agreement with the usual rela-

tion Cm(−1)m−1 = C̃m. Now by varying this partition function we can obtain currents as

before (the variation can be directly done in form language using the equations we provide in

appendix 5.9.5). With this we have completed a whole circle showing that the two formalisms

for anomalous transport developed in [8] and [47] are completely equivalent.

Before we conclude, let us rewrite the partition function in terms of the polynomial

Fωanom[T, µ] as

(lnZ)Consistentanom

=

∫
space

A

T0da
∧
[
Fωanom[−T0da, dA]− Fωanom[−T0da, 0]

dA
− Fωanom[0, dA+A0da]

dA+A0da

]
+

∫
space

Fωanom[−T0da, 0]

(T0da)2
∧ T0a

(5.73)

We will consider an example. Using adiabaticity arguments, the authors of [30] derived the

following expression for a theory of free Weyl fermions in d = 2n spacetime dimensions

(Fωanom)free Weyl
d=2n = −2π

∑
species

χ
d=2n

[ τ
2T

sin τ
2T

e
τ
2π
qµ

]
τn+1

(5.74)

where χ
d=2n

is the chirality and the subscript τn+1 denotes that one needs to Taylor-expand

in τ and retain the coefficient of τn+1. Substituting this into the above expression gives the

anomalous part of the partition function of free Weyl fermions.
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5.6 Fluids charged under multiple U(1) fields

In this subsection, we will generalize our results to cases where we have multiple abelian U(1)

gauge fields in arbitrary 2n−dimensions.

We can take

Fωanom[T, µ] = CA1...An+1
anom µA1 . . . µAn+1 +

n∑
m=0

CA1...An−m
m Tm+1µA1...An−m . (5.75)

In this case, the anomaly equation takes the following form,

∇µJµ,An+1

Cov =
n+ 1

2n
CA1A2...An+1
anom εµ1ν1µ2ν2...µnνn (Fµ1ν1)A1

. . . (Fµnνn)An . (5.76)

Where, in 2n dimensions Canom has n+1 indices denoted by (A1, A2 ·An+1) and it is symmetric

in all its indices. It is straightforward to carry on the above computation for the case of

multiple U(1) charges and most of the computations remains the same. Now, for the multiple

U(1) case, in partition function 5.33 the functions αm and the constants C̃m (and the constants

Cm appearing in Fωanom) have n−m number of indices which are contracted with n− 1−m
number of dA and one A. The constant ζ appearing in the entropy current has n indices.

The constant C̃n (and αn) has no index. All these constants are symmetric in their

indices. Considering the above index structure into account, we can understand that the

functions Um appearing in velocity correction and χm appearing in entropy corrections has

n −m indices and the function Jm appearing in the charge current has n −m + 1 indices.

Now, we can write the generic form of these functions as follows:

UA1A2...An−m
m = − e

−2σ

ε+ p

[
mC̃A1A2...An−m

m Tm+1
0

− (n+ 1−m)C̃
A1A2...An−mB1

m−1 (A0)B1T
m
0

+

(
n+ 1

m+ 1

)
CA1...An−mB1...Bm+1
anom (A0)B1 . . . (A0)Bm+1

] (5.77)

where (A0)B1
comes from the B1th gauge field.

Similarly, we can write the coefficients appearing in A’th charge current (JA) as,

(
JA
)A1A2...An−m
m

= e−σ
[
−(m+ 1)CAA1...An−mB1...Bm

anom (A0)B1 . . . (A0)Bm

(
n+ 1

m+ 1

)
+(n−m+ 1)C̃

AA1...An−m
m−1 Tm0

]
+
qAe−2σ

ε+ p

[
mC̃A1A2...An−m

m Tm+1
0

− (n+ 1−m)C̃
A1A2...An−mB1

m−1 (A0)B1T
m
0

+

(
n+ 1

m+ 1

)
CA1...An−mB1...Bm+1
anom (A0)B1 . . . (A0)Bm+1

]
(5.78)
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Name Symbol CPT

Temperature T +

Chemical Potential µ -

Velocity 1-form u +

Gauge field 1-form Â -

Exterior derivative d -

Field strength 2-form F = dÂ +

Magnetic field 2-form B +

Vorticity 2-form ω -

Table 17. Action of CPT on various forms

We can also express the transport coefficients for fluids charged under multiple U(1)

charges, generalising equation (5.52) as,(
ξA
)A1A2...An−m
m

=

[
m
qAµB
ε+ p

− (m+ 1)δAB

]
CBA1...An−mB1...Bm
anom

(
n+ 1

m+ 1

)
µB1 . . . µBm

+
m−1∑
k=0

[
m
qAµB
ε+ p

− (m− k)δAB

]
× (−1)k−1C̃

BA1...An−mB1...Bm−k−1

k

(
n− k
m− k

)
T k+1µB1 . . . µBm−k−1

+

[
m

qA

ε+ p

]
(−1)m−1C̃A1...An−m

m Tm+1

(5.79)

Similarly the coefficieints χm appearing entropy current become

χA1...An−m
m = −CA1...An−mB1...Bm+1

anom

(
n+ 1

m+ 1

)
T−1µB1 . . . µBm+1

−
m∑
k=0

(−1)k−1

(
n− k
m− k

)
T kC̃

A1...An−mB1...Bm−k
k µB1 . . . µBm−k

(5.80)

This finishes the analysis of anomalous fluid charged under multiple abelian U(1) gauge

fields.

5.7 CPT Analysis

In this subsection we analyze the constraints of 2n dimensional CPT invariance on the analysis

of our previous sections.

Let us first examine the CPT transformation of the Gibbs current proposed in [8]. Using

the Table§17 we see that the Gibbs current in Eqn.(5.10) is CPT-even provided the coefficients

{Canom, C2k+1} are CPT-even and the coefficients C2k are CPT-odd. Since in a CPT-invariant
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fields C P T CPT

σ + + + +

ai + - - +

gij + + + +

A0 - + + -

Ai - - - -

Table 18. Action of CPT on various field

theory all CPT-odd coefficients should vanish, we conclude that Cm = 0 for even m. This

conclusion can be phrased as

CPT : Cm(−1)m−1 = Cm (5.81)

Note that this is the same conclusion as reached by assuming the relation to the anomaly

polynomial.

Next we analyze the constraints of 2n dimensional CPT invariance on the partition func-

tion (5.33). Our starting point is a partition function of the fluid and we expect it to be

invariant under 2ndimensional CPT transformation of the fields. Table§18 lists the effect of

2n dimensional C, P and T transformation on various field appearing in the partition function

(5.33). Since ai is even while Ai and ∂j are odd under CPT, the term with coefficient Cm
picks up a factor of (−1)(m+1). Thus CPT invariance tells us that Cm must be

• even function of A0 for odd m.

• odd function of A0 for even m.

Now the coefficients Cm are fixed upto constants C̃m by the requirement that the partition

function reproduces the correct anomaly. Note that the A0(odd under CPT) dependence

of the coefficients Cm thus determined are consistent with the requirement CPT invariance.

Further, CPT invariance forces C̃m = 0 for even m. The last term in the partition function

(5.33) is odd under parity and thus its coefficient is set to zero by CPT for even n whereas

for odd n it is left unconstrained.

Thus finally we see that CPT invariance allows for a total of

• n
2 constant (C̃m with m odd) for even n.

• n+1
2 constants (C̃m with m even and C̃n) for odd n.

In particular the coefficient C̃0 always vanishes and thus, for a CPT invariant theory, we

never get the gauge-non invariant contribution to th elocal entropy current.

5.8 Discussion

In this section we have shown that the results of [8, 46] based on entropy arguments can be re

derived within a more field-theory friendly partition function technique [47–50]. This has led
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us to a deeper understanding linking the local description of anomalous transport in terms of

a Gibbs current [8, 30] to the global description in terms of partition functions.

An especially satisfying result is that the polynomial structure of anomalous transport

coefficients discovered in [8] is reproduced at the level of partition functions. There it was

shown that the whole set of anomalous transport coefficients are essentially governed by a

single homogeneous polynomial Fωanom[T, µ] of temperature and chemical potentials. The

authors of [30] noticed that in a free theory of chiral fermions this polynomial structure is

directly linked to the corresponding anomaly polynomial of chiral fermions via a replacement

rule

Fωanom[T, µ] = Panom
[
F 7→ µ, p1(R) 7→ −T 2, pk>1(R) 7→ 0

]
(5.82)

This result could be generalised for an arbitrary free theory with chiral fermions and chiral p-

form fields using sphere partition function techniques which link this polynomial to a specific

thermal observable [51, 52].

We have derived in this section a particular contribution to the equilibrium partition

function that is linked to the underlying anomalies of the theory. A direct test of this result

would be to do a direct holographic computation of the same quantity in AdS/CFT to obtain

these contributions. Since the CFT anomalies are linked to the Chern-Simons terms in the

bulk the holographic test would be a computation of a generalised Wald entropy for a black

hole solution of a gravity theory with Chern-Simons terms. The usual Wald entropy gets

modified in the presence of such Chern-Simons terms[53, 54] which are usually a part of

higher derivative corrections to gravity. We hope that reproducing the results of this paper

would give us a test of generalised Wald formalism for such higher derivative corrections.

We have directly linked the description in terms of a Gibbs current[8, 30] satisfying a

kind of adiabticity equation to the global description in terms of partition functions. Further

we have noticed in (5.21) that at least in the case of anomalous transport this Gibbs current

is closely linked to what has been called ‘the non-canonical part of the entropy current ’

in various entropy arguments[10]. It would be interesting to see whether this construction

can be generalised beyond the anomalous transport coefficients to other partition function

computations which appear in [47, 49]. This would give us a more local interpretation of

the various terms appearing in the partition function linking them to a specific Gibbs free

energy transport process. Hence with such a result one could directly identify the coefficients

appearing in the partition function as the transport coefficients of the Gibbs current.

Another interesting observation of [8] apart from the polynomial structure is that the

anomalous transport satisfies an interesting reciprocity type relation (5.15)- the susceptibility

describing the change in the anomalous charge current with a small change in vorticity is

equal to the susceptibility describing the change in the anomalous energy current with a

small change in magnetic field. While we see that the results of this section are consistent

with this observation made in [8], we have not succeeded in deriving this relation directly from

the partition function. It would be interesting to derive such a relation from the partition

function hence clarifying how such a relation arises in a microscopic description.
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Finally as we have emphasised in the introductions one would hope that the results of this

section serve as a starting point for generalising the analysis of anomalies to non-equilibrium

phenomena. Can one write down a Schwinger-Keldysh functional which transforms appropri-

ately - does this provide new constraints on the dissipative transport coefficients ? We leave

such questions to future work.
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5.9 Appendices to chapter 4

5.9.1 Results of (3 + 1)− dimensional and (1 + 1)− dimensional fluid

In this appendix we want to specialise our results to 1 + 1 and 3 + 1 dimensional anoma-

lous fluids.By considering local entropy production of the system, the results for (3 + 1)−
dimensional anomalous fluid were obtained in [3], [4, 16] and for (1 + 1)−dimensional fluid

were obtained in [11]. The same results have also been obtained in [47] and [48] for (3 + 1)−
dimensional and (1+1)−dimensional anomalous fluid respectively, by writing the equilibrium

partition function, the technique that we have followed in this section. Our goal in this section

is to check that the arbitrary dimension results reduce correctly to these special cases.

5.9.2 (3 + 1)− dimensional anomalous fluids

Let us consider fluid living in (3 + 1)−dimension and is charged under a U(1) current. Take

Fωanom[T, µ] = Cd=4
anomµ

3 + Cd=4
0 Tµ2 + Cd=4

1 T 2µ+ Cd=4
2 T 2µ (5.83)

the constants {Cd=4
0 , Cd=4

2 } if non-zero violate CPT since their subscript indices are even.

By the replacement rule of [30] this corresponds to a theory with the anomaly polynomial

Panom = Cd=4
anomF3 − Cd=4

1 p1 (R) ∧ F (5.84)

where p1 (R) is the first-pontryagin 4-form of curvature.

We have

dJ̄Consistent = Cd=4
anomF2

dJ̄Cov = 3Cd=4
anomF2

and their difference is given by

J̄Cov = J̄Consistent + 2Cd=4
anomÂ ∧ F

In components we have

∇µJµConsistent = Cd=4
anom

1

4
εµνρσFµνFρσ,

∇µJµCov = 3Cd=4
anom

1

4
εµνρσFµνFρσ,

JµCov = JµConsistent + 2Cd=4
anom

1

2
εµνρσÂνFρσ

(5.85)

The anomaly-induced transport coefficients (in Landau frame) in this case are given by

Jµ,anomCov = ξd=4
1 εµνρσuν∂ρÂσ + ξd=4

2 εµνρσuν∂ρuσ

ξd=4
1 = 3Cd=4

anomµ

[
qµ

ε+ p
− 2

]
+ 2Cd=4

0 T

[
qµ

ε+ p
− 1

]
+ Cd=4

1 T 2µ−1

[
qµ

ε+ p

]
ξd=4

2 = Cd=4
anomµ

2

[
2
qµ

ε+ p
− 3

]
+ Cd=4

0 Tµ

[
2
qµ

ε+ p
− 2

]
+ Cd=4

1 T 2µ

[
2
qµ

ε+ p
− 1

]
+ Cd=4

2 T 3µ−1

[
2
qµ

ε+ p

]
(5.86)
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and

Jµ,anomS = −µ
T
Jµ,anomCov + χd=4

1 εµνρσuν∂ρÂσ + χd=4
2 εµνρσuν∂ρuσ + ζd=4εµνρσÂν∂ρÂσ

Gµ,anomCov = −Tχd=4
1 εµνρσuν∂ρÂσ − Tχd=4

2 εµνρσuν∂ρuσ − Tζd=4εµνρσÂν∂ρÂσ
−ζd=4 = Cd=4

0

−χd=4
1 = 3Cd=4

anomT
−1µ2 + 2Cd=4

0 µ+ Cd=4
1 T

−χd=4
2 = Cd=4

anomT
−1µ3 + Cd=4

0 µ2 + Cd=4
1 Tµ+ Cd=4

2 T 2

(5.87)

The anomalous part of the consistent partition function is given by

(lnZ)Consistentanom

=

∫
space

A

T0
∧
{[
Cd=4

0 (−1)T0 − 2Cd=4
anomA0

]
(dA) +

[
Cd=4

1 T 2
0 − Cd=4

anomA
2
0

]
(da)

}
+

∫
space

Cd=4
2 (−1)T 2

0 a ∧ (da)

= −C
d=4
anom

T0

∫
d3x
√
g3ε

ijk
[
2A0Ai∂jAk +A2

0Ai∂jak
]

− Cd=4
0

∫
d3x
√
g3ε

ijkAi∂jAk + Cd=4
1 T0

∫
d3x
√
g3ε

ijkAi∂jak

− Cd=4
2 T 2

0

∫
d3x
√
g3ε

ijkai∂jak

(5.88)

The results for the equilibrium partition function and the transport coefficients of the

fluid have been obtained in [47] in great detail. We will now compare the results above

against the results there. We begin by first fixing the relation between the notation here and

the notation employed in [47]. Comparing our partition function in (5.88) against Eqn(1.11)

of [47] we get a perfect match with the following relabeling of constants48

Cd=4
anom =

C

6
, Cd=4

0 = −C0 , Cd=4
1 = C2 , Cd=4

2 = −C1 (5.89)

The first of these relations also follows independently from comparing our eqn(5.85) against

the corresponding equations in [47] for covariant/consistent anomaly and the Bardeen current.

We then proceed to compare the transport coefficients in Eqn(3.12) and Eqn.(3.21) of [47]

against our results in (5.86) and (5.87).

We get a match provided one uses (in addition to (5.89) ) the following relations arising

from comparing definitions here against [47]

ξB = ξd=4
1 , ξω = 2ξd=4

2 , DB = χd=4
1 , Dω = 2χd=4

2 , h = ζd=4 (5.90)

48We warn the reader that the wedge notation in [47] differs from the one we use by numerical factors. So

the comparisons are to be made after converting to explicit components to avoid confusion.
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5.9.3 (1 + 1)− dimensional anomalous fluids

Let us consider fluid living in (1 + 1)−dimension and is charged under a U(1) current. Take

Fωanom[T, µ] = Cd=2
anomµ

2 + Cd=2
0 Tµ+ Cd=2

1 T 2 (5.91)

the constant Cd=2
0 if non-zero violates CPT since its subscript index is even.

By the replacement rule of [30] this corresponds to a theory with the anomaly polynomial

Panom = Cd=2
anomF2 − Cd=2

1 p1 (R) (5.92)

where p1 (R) is the first-pontryagin 4-form of curvature.

We have

dJ̄Consistent = Cd=2
anomF

dJ̄Cov = 2Cd=2
anomF

and their difference is given by

J̄Cov = J̄Consistent + Cd=2
anomÂ

In components we have

∇µJµConsistent = Cd=2
anom

1

2
εµνFµν ,

∇µJµCov = 2Cd=2
anom

1

2
εµνFµν ,

JµCov = JµConsistent + Cd=2
anomε

µνÂν

(5.93)

The anomaly-induced transport coefficients (in Landau frame) in this case are given by

Jµ,anomCov = ξd=2
1 εµνuν

ξd=2
1 = Cd=2

anomµ

[
qµ

ε+ p
− 2

]
+ Cd=2

0 T

[
qµ

ε+ p
− 1

]
+ Cd=2

1 T 2µ−1

[
qµ

ε+ p

]
(5.94)

and

Jµ,anomS = −µ
T
Jµ,anomCov + χd=2

1 εµνuν + ζd=2εµνÂν

Gµ,anomCov = −Tχd=2
1 εµνuν − Tζd=2εµνÂν

−ζd=2 = Cd=2
0

−χd=2
1 = Cd=2

anomT
−1µ2 + Cd=2

0 µ+ Cd=2
1 T

(5.95)

The anomalous part of the consistent partition function is given by

(lnZ)Consistentanom

=

∫
space

A

T0
∧
[
Cd=2

0 (−1)T0 − Cd=2
anomA0

]
+

∫
space

Cd=2
1 T0a

= −C
d=2
anom

T0

∫
dx
√
g1ε

iA0Ai − Cd=2
0

∫
dx
√
g1ε

iAi + Cd=2
1 T0

∫
dx
√
g1ε

iai

(5.96)
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Now we are all set to compare our results with the results of [48]. The comparison

proceeds here the same way as the comparison in 3 + 1d before. By comparing Eqn(2.4) of

[48] against our (5.96) we get49

Cd=2
anom = C , Cd=2

0 = −C1 , Cd=2
1 = −C2 , (5.97)

and we get a match of transport coefficients using the definitions

ξj = ξd=2
1 , ξs +

µ

T
ξj = χd=2

1 , Dω = 2χd=4
2 , h = ζd=2 (5.98)

5.9.4 Hydrostatics and Anomalous transport

In this appendix we will follow [47, 48] in describing a hydrostatic configuration,i.e., a time-

independent hydrodynamic configuration in a gauge/gravitational background. We will then

proceed to evaluate the anomalous currents derived in previous appendix in this background.

This is followed by a computation of consistent partition function by integrating the consistent

Gibbs current over a spatial slice. For convenience we will phrase our entire discussion in the

language of forms (as in the previous appendix) and refer the reader to the appendix5.9.6 for

our form conventions.

Let us consider the special case where we consider a stationary (time-independent) space-

time with a metric given by

gspacetime = −γ−2(dt+ a)2 + gspace

where in the notation of [47]we can write γ ≡ e−σ. Following the discussion there, consider a

time-independent fluid configuration with local temperature and chemical potential T, µ and

placed in a time-independent gauge-field background

Â = A0dt+A

We first compute

E ≡ Fµνdxµuν = γFi0dxi = γdA0

a ≡ uµ∇µuνdxν = −γ−1dγ = γdγ−1

dT + aT = γd
(
γ−1T

)
dµ+ aµ− E = γd

(
γ−1µ−A0

) (5.99)

If we insist that

dT + aT = 0

dµ+ aµ− E = 0
(5.100)

49Note that authors of [48] set the CPT-violating coefficient Cd=2
0 = −C1 = 0 in most of their analysis. This

fact has to be accounted for during the comparison.
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then it follows that the quantities

T0 ≡ γ−1T and µ0 ≡ γ−1µ−A0

are constant across space. We can invert this to write

T = γT0 and µ = γ (A0 + µ0) ≡ γA0

where we have defined A0 ≡ A0 + µ0.Following [47]we will split the gauge field as

Â = A0dt+A = A0(dt+ a) +A− µ0dt

where A ≡ A−A0 a. We are now working in a general gauge - often it is useful to work in a

specific gauge : one gauge we will work on is obtained from this generic gauge by performing

a gauge transformation to remove the µ0dt piece. We will call this gauge as the ‘zero µ0’

gauge. In this gauge the new gauge field is given in terms of the old gauge field via

Âµ0=0 ≡ Â+ µ0dt

We will quote all our consistent currents in this gauge.

We are now ready to calculate various hydrostatic quantities

E = γdA0 = γdA0

a = −γ−1dγ = γdγ−1

B ≡ F − u ∧ E = d [A0(dt+ a) +A− µ0dt] + (dt+ a) ∧ dA0

= dA+A0da

2ω = du+ u ∧ a = −γ−1da

2ωT = −T0da

2ωµ = −A0da

Â+ µu = A− µ0dt

B + 2ωµ = dA

(5.101)

Now let us compute the various anomalous currents in terms of the hydrostatic fields.

Using (5.101) we get the Gibbs current as

−ḠCovanom

= γ
n∑

m=1

[
Cm(−1)m−1Tm+1

0 − C0(−1)0−1

(
n

m

)
T0A

m
0

+m

(
n+ 1

m+ 1

)
CanomAm+1

0

]
(da)m−1(dA)n−m ∧ (dt+ a)

− γC0T0Âµ0=0 ∧ Fn−1

(5.102)

In the following we will always write the minus signs in the form Cm(−1)m−1 so that once

we impose CPT all the minus signs could be dropped.
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We can now calculate the charge/entropy/energy currents

J̄Covanom =
n∑

m=1

[
−(n+ 1−m)Cm−1(−1)m−2Tm0

+(n+ 1)

(
n

m

)
CanomAm0

]
(da)m−1 ∧ (dA)n−m ∧ (dt+ a)

(5.103)

J̄CovS,anom =

n∑
m=1

[
(m+ 1)Cm(−1)m−1Tm0

−C0(−1)0−1

(
n

m

)
Am0

]
(da)m−1(dA)n−m ∧ (dt+ a)

− C0Âµ0=0 ∧ Fn−1

(5.104)

and

q̄Covanom

= γ

n∑
m=1

[
mCm(−1)m−1Tm+1

0 − (n+ 1−m)Cm−1(−1)m−2Tm0 A0

+

(
n+ 1

m+ 1

)
CanomAm+1

0

]
(da)m−1(dA)n−m ∧ (dt+ a)

(5.105)

We can go to the Landau frame as before

uµ 7→ uµ − qµanom
ε+ p

Jµanom 7→ Jµanom − q
qµanom
ε+ p

JµS,anom 7→ JµS,anom − s
qµanom
ε+ p

qµanom 7→ 0

(5.106)

In the Landau frame we can write the corrections to various quatities as

δū ≡ −γ−1
n∑

m=1

Um(da)m−1 ∧ (dA)n−m ∧ (dt+ a)

δJ̄Covanom ≡ −γ−1
n∑

m=1

(Jm + q Um) (da)m−1 ∧ (dA)n−m ∧ (dt+ a)

δJ̄CovS,anom ≡ −γ−1
n∑

m=1

(Sm + s Um) (da)m−1 ∧ (dA)n−m ∧ (dt+ a)

(5.107)
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where

Um = − γ2

ε+ p

[
mCm(−1)m−1Tm+1

0 − (n+ 1−m)Cm−1(−1)m−2Tm0 A0

+

(
n+ 1

m+ 1

)
CanomAm+1

0

]
Jm + q Um = γ

[
(n+ 1−m)Cm−1(−1)m−2Tm0 − (n+ 1)

(
n

m

)
CanomAm0

]
Sm + s Um = γ

[
−(m+ 1)Cm(−1)m−1Tm0 + C0(−1)0−1

(
n

m

)
Am0

]
(5.108)

which matches with expressions from the partition function.

The corresponding consistent currents can be obtained via the relations

ḠCovanom = ḠConsistentanom − µ n CanomÂ ∧ Fn−1

J̄Covanom = J̄Consistentanom + n CanomÂ ∧ Fn−1

J̄CovS,anom = J̄ConsistentS,anom

q̄Covanom = q̄Consistentanom

(5.109)

In particular we have

− 1

T
ḠConsistentanom

=
1

T0

n∑
m=1

[
Cm(−1)m−1Tm+1

0 − C0(−1)0−1

(
n

m

)
T0A

m
0

−
(

n

m+ 1

)
CanomAm+1

0

]
(da)m−1(dA)n−m ∧ (dt+ a)

− 1

T0
[nCanomA0 + C0T0]A ∧ (dA+A0da)n−1

− (n− 1)

T0
[nCanomA0 + C0T0]A ∧ dA0 ∧ (dt+ a) ∧ (dA+A0da)n−2

(5.110)

5.9.5 Variational formulae in forms

The energy current is defined via the relation

qµdx
µ ≡ −Tµνuµdxν

= −γT00(dt+ a)− γgijT i0dxj
(5.111)

Hence its Hodge dual is (See 5.9.6 for the definition of Hodge dual)

q̄ = γ3T00d∀d−1 + γT i0(dt+ a) ∧ (dΣd−2)i (5.112)
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We take the following relations50 from Eqn(2.16) of [47]

γT00d∀d−1 =
δ

δγ
(T0 ln Z)

T i0d∀d−1 = dxi ∧ T j0 (dΣd−2)j =

[
δ

δai
−A0

δ

δAi

]
(T0 ln Z)

(5.113)

where the independent variables are {γ, a, gij , A0, A, T0, µ0}. Converting into forms

q̄ =

[
γ2 δ

δγ
+ γ(dt+ a) ∧ δ

δa
− γA0(dt+ a) ∧ δ

δA

]
(T0 lnZ)

=

[
γ2 δ

δγ
+ γ(dt+ a) ∧ δ

δa
− µ(dt+ a) ∧ δ

δA

]
(T0 lnZ)

(5.114)

Similarly for the charge current

−γ2J0d∀d−1 =
δ

δA0
(T0 ln Z)

J id∀d−1 = dxi ∧ J j (dΣd−2)j =
δ

δAi
(T0 ln Z)

(5.115)

which implies

J̄ ≡ −γ2J0d∀d−1 − J i(dt+ a) ∧ (dΣd−2)i

=

[
δ

δA0
− (dt+ a) ∧ δ

δA

]
(T0 lnZ)

(5.116)

Putting T0 lnZ = −γ−1Ḡ we can write

J̄ ≡ −∂Ḡ
∂µ

= −γ−1

[
δ

δA0
− (dt+ a) ∧ δ

δA

]
Ḡ

J̄S ≡ −
∂Ḡ
∂T

= −γ−1 1

T0

[
γ
δ

δγ
+ (dt+ a) ∧ δ

δa
−A0

δ

δA0

]
Ḡ

q̄ = Ḡ + T J̄S + µJ̄

(5.117)

5.9.6 Convention for Forms

The inner product between two 1-forms J ≡ J0(dt + a) + gijJ
idxj and J ′ ≡ J ′0(dt + a) +

gij(J
′)idxj is given in terms of the KK-invariant components as

〈J, J ′〉 ≡ −γ2J0J
′
0 + gijJ

i(J ′)j (5.118)

In general, the exterior derivative of a p-form

Ap ≡
1

p!
Aµ1...µpdx

µ1 ∧ . . . ∧ dxµp

50we remind the reader that γ ≡ e−σ and d∀d−1 = dd−1x
√
−det gd
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is given by

(dA)p+1 ≡
1

p!
∂λAµ1...µpdx

λ ∧ dxµ1 ∧ . . . ∧ dxµp

=
1

(p+ 1)!

[
∂µ1Aµ2...µp+1 + cyclic

]
dxµ1 ∧ . . . ∧ dxµp+1

(5.119)

The Levi-Civita tensor εµ1...µd is defined as the completely antisymmetric tensor with

ε012...(d−1) =
1√

−det gd
=

1

γ−1
√

det gd−1

We will also often define the spatial Levi-Civita tensor εi1i2...id−1 such that

ε12...(d−1) =
1√

det gd−1

which is related to its spacetime counterpart via

εi1i2...id−1 = γ−1ε0i1i2...id−1

Let us define the spatial volume (d− 1)-form as

d∀d−1 ≡ γ−1εi1...id−1
dxi1 ⊗ . . .⊗ dxid−1

=
1

(d− 1)!
γ−1εi1...id−1

dxi1 ∧ . . . ∧ dxid−1

= dd−1x γ−1
√

det gd−1

= dd−1x
√
−det gd

(5.120)

where εi1...id−1
is the spatial Levi-Civita symbol. The form d∀d−1 transforms like a vector

with a lower time-index and hence is KK-invariant.

Define the spatial area (d− 2)-form as

(dΣd−2)j ≡ γ
−1εji1...id−2

dxi1 ⊗ . . .⊗ dxid−2

=
1

(d− 2)!
γ−1εji1...id−2

dxi1 ∧ . . . ∧ dxid−2
(5.121)

This transforms like a vector with a lower time-index and a lower spatial index but is anti-

symmetric in these two indices and is hence KK-invariant. The area (d− 2)-form satisfies

dxi ∧ (dΣd−2)j = d∀d−1 δ
i
j

The Hodge-dual of a 1-form J ≡ J0(dt+ a) + gijJ
idxj is defined as

J̄ = −γ2J0d∀d−1 − J i(dt+ a) ∧ (dΣd−2)i (5.122)
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This is defined such that

J ′ ∧ J̄ = 〈J ′, J〉(dt+ a) ∧ d∀d−1 = 〈J ′, J〉dt ∧ d∀d−1 (5.123)

In particular

dJ̄ = (∇µJµ) dt ∧ d∀d−1 (5.124)

One often useful formula is this

J̄ = Â ∧ (dÂ)n−1

is equivalent to

Jµ =
[
εÂ (∂Â)n−1

]µ (5.125)

Let us take another example which will recur throughout this section - say we are given

that the Hodge-dual of a 1-form J ≡ J0(dt+ a) + gijJ
idxj is

−J̄ = A ∧ (da)m−1(dA)n−m +A0(dt+ a) ∧ (da)m−1(dA)n−m

where a = aidx
i and A = Aidx

i are two arbitrary 1-forms with only spatial components.

Then we can invert the Hodge-dual using the following statement

J̄ = −A ∧ (da)m−1(dA)n−m −A0(dt+ a) ∧ (da)m−1(dA)n−m

is equivalent to

J0 = γ−1
[
εA(da)m−1(dA)n−m

]
J i = γA0

[
ε(da)m−1(dA)n−m

]i
(5.126)
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6 Constraints on superfluids from equilibrium partition function

6.1 Introduction

In this section we discuss the application of the equilibrium partition function method to

case of superfluids. The equations of charged hydrodynamics are modified when the charge

symmetry of the system is spontaneously broken by the condensation of a charged operator

in thermal equilibrium. The effective description of such systems has new hydrodynamical

degrees of freedom whose origin lies in the Goldstone mode of the charge condensate. The

resultant hydrodynamical equations are referred to as the equations of superfluid hydrody-

namics, and are the subject of the current section.

More particularly in this section we study ‘s’ wave superfluid hydrodynamics, i.e. the

hydrodynamics of a system whose charge condensate is a complex scalar operator. We study

the constraints on the equations of first order ‘s’ wave superfluid hydrodynamics imposed by

the requirement that these equations admit equilibrium under appropriate situations, and that

the charge currents in equilibrium agree with those from an appropriate partition function.

We do not assume that the superfluids we study necessarily preserve either parity or time

reversal invariance.

As we explain in section 6.2 below, the general analysis presented in this section closely

follows that of [47] (for the case of ordinary, i.e. not ‘super’ fluids) with one important

difference. The Euclidean partition function for a superfluid in an arbitrary background 51 is

determined by an effective field theory that includes a massless mode: the Goldstone boson

of the theory. This effective field theory is local, and may usefully be studied in the derivative

expansion. However the partition function that follows after integrating out the Goldstone

boson is neither local nor simple. As we explain below, the study of the local effective action of

the Goldstone boson (rather than the partition function itself) allows us to usefully constrain

the constitutive relations of superfluid hydrodynamics. In this section we present a careful

derivation of the relations between otherwise independent transport functions that follow

from such a study.

Constraints on the constitutive relations of first order superfluid hydrodynamics have

previously been obtained using the local form of the second law in [2, 4, 7, 55] for the case of

time reversal invariant superfluids. In this section we generalize the derivation of [4] to include

the study of superfluids that do not preserve time reversal invariance. We then compare the

results obtained from the two different methods; i.e. the constraints that follow from the

requirement of existence of equilibrium and those that follow from the local second law. As

in the case of ordinary (i.e. non super) fluids we find perfect agreement between the equality

type constraints obtained from these two apparently distinct methods. Our results supply

further evidence for the conjecture that the equality type constraints from these two methods

agree in a wide range of hydrodynamical contexts and to all orders in the derivative expansion.

51See [31, 49] for a discussion of this partition function at the perfect fluid level.
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A proof of this conjecture would go some way towards proving the local form of the second

law, and would permit the demystification of this law in a hydrodynamical context.

While the work reported in this section is purely hydrodynamical and nowhere uses

AdS/CFT, much of the motivation for this work lies within the fluid gravity map of AdS/CFT.

The status of the second law of thermodynamics for theories of gravity that include higher

derivative corrections to the Einstein Lagrangian remains unclear. In particular it has never

been proved that the Hawking area increase theorem generalizes to a Wald entropy increase

theorem for arbitrary higher derivative corrections to Einstein’s gravity. If the interplay

between the existence of equilibrium in appropriate circumstances and entropy increase can

be proved on general grounds in a hydrodynamical context, then it seems likely that the

lessons learnt can be taken over to the study of entropy increase in higher derivative gravity

(at least for asymptotically AdS space) via the fluid gravity map. This could lead to a proof

of a Wald entropy increase theorem under appropriate conditions on the higher derivative

corrections of the gravitational system.

6.2 Equilibrium effective action for the Goldstone mode

6.2.1 The question addressed

In this subsubsection we study an s wave superfluid propagating on the stationary background

metric

ds2 = Gµνdx
µdxν = −e2σ(~x)

(
dt+ ai(~x)dxi

)2
+ gij(~x)dxidxj (6.1)

and background gauge field

A = A0(~x)dx0 +Ai(~x)dxi (6.2)

Below we will often work in terms of the modified gauge fields

Ai = Ai −A0ai

A0 = A0 + µ0

(6.3)

All background fields above are assumed to vary slowly; we work in an expansion in derivatives

of these fields. We address the following question: what is the most general allowed form of

the partition function

Z = Tre
−H−µ0Q

T0 (6.4)

as a function of the background fields σ, ai, gij , A0 and Ai in a systematic derivative expan-

sion?

6.2.2 The partition function for charged (non super) fluids

The analogous question was studied for the case of an ordinary (non super) charged fluid in

[47]. It was demonstrated that to first order in the derivative expansion the most general

allowed form of the partition function for an ordinary charged fluid on the background (6.1),
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(6.2) is given by

W = lnZ = W 0 +W 1
inv +W 1

anom

W 0 =

∫
√
g
eσ

T0
P
(
T0e
−σ, e−σA0

)
W 1
inv =

C0

2

∫
AdA+

C1

2

∫
ada+

C2

2

∫
Ada

W 1
anom =

C

2

(∫
A0

3
AdA+

A2
0

6
Ada

)
(6.5)

where P (T, µ) is the thermodynamical pressure of the system as a function of its temperature

and chemical potential and C0, C1 C2 and C are all constants. The constant C specifies the

covariant U(1)3 anomaly via the equation

∂µJ̃
µ = −C

8
∗ (F ∧ F ) (6.6)

The constants C0, C1 and C2 do not (yet) have similar interpretations. It was demonstrated

that C0 = C1 = 0 in any system that respects CPT invariance.

Notice that the result (6.5) for the partition function of an ordinary (non super) fluid

is a local function of the background sources gij , ai, σ, A0 and Ai. Locality is a direct

consequence of the fact that the path integral that computes the partition function (6.4)

has a unique hydrodynamical saddle point (as opposed to a moduli space of saddle points).

As a consequence the partition function is generically 52 computed by a path integral over

an action with no massless fields. It follows that the result is local on length scales large

compared to the inverse mass gap in the action (this mass gap is sometimes referred to as a

static screening length of the 4 d thermal system)53.

6.2.3 Euclidean action for the Goldstone mode for superfluids

Unlike an ordinary charged fluid, the equilibrium configuration of a superfluid in the back-

ground (6.1) is not unique. As superfluids break the global U(1) symmetry, every background

admits at least a one parameter set of equilibrium configurations that differ by a constant

shift in the phase of the expectation value of the condensed scalar. It follows that the path

integral that computes (6.4) has a zero mode (the phase of the scalar condensate). Conse-

quently, the partition function (6.4), is not a local function of the background source fields.

Instead this partition function is generated by a local three dimensional field theory of the

dynamical phase field φ.

The dynamics of the Goldstone boson in general, governed by a 3d massless quantum

field theory. In this subsubsection, however, we focus on field theories in an appropriate large

52Non hydrodynamical massless modes occur when the system is tuned to a second order phase transition.

We assume in what follows that our system has not been tuned to such a phase transition. We leave the study

of this interesting special case [56] to future work.
53We thank K. Jensen for discussions on this topic
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N limit (such as theories with matrix degrees of freedom in the t’ Hooft limit). In such a

limit the effective action for the Goldstone boson is multiplied by a suitable positive power

of N (the factor is N2 in the t’Hooft limit mentioned above). As a consequence Goldstone

dynamics is effectively classical in the large N limit. Quantum corrections to this classical

answer, which are suppressed by appropriate powers of N (this power is 1
N2 in the t’Hooft

limit), may have very interesting structure, see e.g. [20–23] for related work. We leave their

study to future work. 54

In principle, the partition function (6.4) for the superfluid may be obtained from the

corresponding local effective action by integrating out the Goldstone boson (i.e. solving its

equation of motion and plugging the solution back into the action). 55 In practice the imple-

mentation of this procedure requires the solution of a nonlinear partial differential equation.

Moreover, even if one could solve this equation the resultant partition function would be

highly nonlocal. A direct analysis of the partition function itself seems neither easy nor par-

ticularly useful. In order to obtain constraints on the equations of superfluid hydrodynamics

below we will work directly with the local effective action for the Goldstone mode rather than

the final result for the partition function.

The requirements of gauge invariance significantly constrain the form of Goldstone effec-

tive action. Let φ denote the phase of the scalar condensate. Under a gauge transformation

Ai → Ai + ∂iα, φ transforms as φ + α. It follows that the effective action can only depend

on the combination

ξi = −∂iφ+Ai

Note that ξµ like Aµ, is a field of zero order in the derivative expansion 56.

The local field theory for the Goldstone boson must also enjoy invariance under Kaluza

Klein gauge transformations (ai → ai − ∂iγ, see subsection 2.2 of [47] for details). For this

reason we work with the Kaluza Klein invariant fields

ζi = ξi − aiA0 = −∂iφ+Ai. (6.7)

We also define

ξ0 = A0

and define

χ = ξ2 = −ξµξµ = ξ2
0e
−2σ − gijζiζj . (6.8)

54We thank K. Jensen for discussions on this topic.
55If the Euclidean 3 dimensional manifold we work on is compact and we demand single valuedness of the

field φ then it is plausible that the solution to the φ equation of motion is (at least generically) unique, see

below.
56This means that the phase field φ is of −1 order in derivatives; this observation does not invalidate the

derivative expansion as gauge invariant physical quantities are functions only of ξµ and not independently of

φ.

– 123 –



6.2.4 The Goldstone action for perfect superfluid hydrodynamics

As we have explained above, the euclidean partition function for our system is generated by

an effective action S for the Goldstone field φ. This Goldstone action may be expanded in a

power series in derivatives.

S = S0 + S1 + S2 . . . (6.9)

At lowest (zero) order in the derivative expansion symmetries constrain the Goldstone boson

effective action to take the form57

S0 =

∫
d3x
√
g

1

T̂
P (T̂ , µ̂, χ).

T̂ = T0e
−σ

µ̂ = A0e
−σ

ûµ = (1, 0, 0, 0)e−σ

(6.10)

where P is an arbitrary function whose thermodynamical significance we will soon discover,

and χ was defined in (6.8). The fields T̂ , µ̂ and ûµ are the values of the hydrodynamical

temperature, chemical potential and velocity fields in equilibrium at zeroth order in the

derivative expansion (see [47]).

In the classical (or large N) limit adopted throughout this section, the partition function

Z of our system is obtained by evaluating the Goldstone action on shell. Let the solution to

the equation of motion be denoted by

ζi(x) = ζeqi (x).

Then the partition function is given by

lnZ = S(ζeqi (x)) (6.11)

At lowest order in the derivative expansion, the action (6.10) depends only on first deriva-

tives of the massless field φ. Varying this action w.r.t. φ

δS0 =

∫
d3x
√
g
eσ

T0

∂P

∂χ
2gijζi∂jδφ

= −
∫
d3x

1

T0
∂j(
√
−Gfζj)δφ (6.12)

yields

∂j(
√
−Gfζj) = ∇(4)

µ (fξµ) = ∇i
(
f

T
ζi
)

= 0. (6.13)

where

f = 2
∂P

∂χ
.

57The action (6.10) was already presented in [49]. The presentation of this subsection differs from [49] only

in the emphasis that φ be regarded as a dynamical field in (6.10), rather than a background like T̂ . For related

discussions on effective action for superfluid, see for example [31? ].
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Note this equation of motion is of second order in derivatives of the field φ. 58 Plugging the

solution to (6.13) back into the (6.12) in principle yields an explicit though complicated and

nonlocal expression for the partition function of the system as a function of source fields.

The stress tensor and charge current that follow from the action (6.10) may be computed

in a straightforward manner using the formulas listed in eqs.(2.16) of [47]; they are given by

J0 = −T0e
σ

√
g

δS0

δA0
= −e2σ

[
e−σ

∂P

∂µ
+
∂P

∂χ

∂χ

∂A0

]
= −qeσ − ξ0f

J i =
T0e
−σ
√
g

δS0

δAi
=
∂P

∂χ

∂χ

∂Ai
= −fξi

T00 = −T0e
σ

√
g

δS0

δσ
= −e2σ

[
P +

∂P

∂T0e−σ
∂T0e

−σ

∂σ
+
∂P

∂µ

∂µ

∂σ
+
∂P

∂χ

∂χ

∂σ

]
= −e2σ

[
P − sT − qµ− fξ2

0e
−2σ
]

= e2σε+ fξ2
0

T i0 =
T0

eσ
√
g

[
δS0

δai
−A0

δS0

δAi

]
=
∂P

∂ai
−A0

∂P

∂Ai
= −A0

∂P

∂χ

∂χ

∂Ai
= fA0ξ

i

T ij =
−2T0

eσ
√
g
gikgjl

δS0

δgkl
= −2gikgjl

[
−1

2
gklP +

∂P

∂χ

∂χ

∂gkl

]
= Pgij + fξiξj

(6.14)

The gauge and diffeomorphism invariance of the action (6.10) ensure the stress tensor and

charge current described above are automatically conserved onshell (i.e. upon imposing the

equation of motion (6.13)).

The complicated looking expressions for the conserved currents (6.14) may actually be

summarized in a remarkably simple form as

Tµν = (ε+ P )ûµûν + Pgµν + fξµξν

Jµ = qûµ − fξµ, (6.15)

where û was defined in (6.10) and all terms on the RHS of (6.15) are evaluated on the zero

order equilibrium solutions T (x) = T̂ and µ(x) = µ̂, defined in (6.10) and the functions ε, s

and q are defined in terms of the pressure p by the equations

ε+ P = sT + qµ

dP = sdT + qdµ+
1

2
fdχ (6.16)

(6.15) and (6.33) are precisely the Landau-Tisza constitutive relations of superfluid hydrody-

namics.

6.3 The Goldstone Action at first order in derivatives

One derivative corrections to the Goldstone action (6.10) may be divided into parity even

and parity odd terms. We consider these in turn.

58The formal similarity of (6.13) to the equation ∇2φ = 0 (where the Laplacian is taken in an appropriately

rescaled metric) suggests that (6.13) has a unique solution on a compact manifold (up to constant shift in φ)

provided that φ is required to be single valued and smooth on this manifold. However we do not have a proof

of this statement.
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6.3.1 Parity even one derivative corrections

The most general parity preserving one derivative correction to (6.10) is given by

S = S0 + Seven1

Seven1 =

∫
d3y
√
g

[
f1

T̂
(ζ.∂)T̂ +

f2

T̂
(ζ.∂)ν̂ − f3∇i

(
f

T̂
ζi
)]

(6.17)

where T̂ was defined in (6.10),

ν̂ =
µ̂

T̂
=
A0

T0

and

fi = fi(T̂ , ν̂, ζ
2) (i = 1 . . . 3)

are arbitrary functions while f was defined in the previous subsection

f(T̂ , ν̂, ζ2) = −2
∂P

∂ζ2

Two remarks are in order

• 1. In (6.17) the unspecified function f3 multiplies the zero order equation of motion of

the phase field φ. As a consequence, under the field redefinition

φ = φ̃+ δφ(T̂ , ν̂, ζ)

⇒ ξµ = ξ̃µ − ∂µ (δφ)
(6.18)

we find

S0[φ] = S0[φ̃]−
∫
d3x
√
g∇j

(
f

T̂
ζj
)
δφ (6.19)

In other words we are free to use the variable φ̃ instead of φ; however the first derivative

correction with this choice of variable, S̃even1 , differs from Seven1 by

S̃even1 = Seven1 −
∫
d3x
√
g∇j

(
f

T̂
ζj
)
δφ (6.20)

In other words the field redefinition (6.18) induces the shifts

f̃1 − f1 = 0, f̃2 − f2 = 0, f̃3 − f3 = δφ (6.21)

(where f̃1, f̃2 and f̃3 are the functions that appear in the expansion of S̃even1 , see (6.17)

) For this reason, the dependence of all physical quantities - like the fluid constitutive

relations - on f3 is rather trivial, and easy to deduce on general grounds, as we will see

below.
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• 2. While the fields σ, µ and χ are even under the action of time reversal, the fields ξi
and ζi are odd under this operation. It follows that each of the three terms in (6.18)

is odd under the action of time reversal. In other words the simultaneous requirement

of parity and time reversal invariance simply sets W1 = 0. It follows that time reversal

invariant superfluids have no non dissipative transport coefficients at first order.

The corrections from (6.10) to the charge current and stress tensor (6.14) in equilibrium

are given by

δJ0 = − T̂ e
2σ

√
g

[
δSeven1

δA0

]
ζ=ζeq

= − T̂ e
2σ

√
g

(
δW even

1

δA0

)
= − eσ
√
g

(
δW even

1

δν̂

)
= −eσ

[
∂

∂ν̂

(
f1

T̂

)
(ζeq.∂)T̂ +

∂

∂ν̂

(
f2

T̂

)
(ζeq.∂)ν̂ +

∂

∂ν̂

(
f

T̂

)
(ζeq.∂)f3 −

f

T̂
(ζeq.∂)

(
f2

f

)]

δJ i =
T̂
√
g

(
δSeven1

δAi

)
ζ=ζeq

=
T̂
√
g

(
δW even

1

δAi

)
= 2(ζeq)i

[
∂f1

∂(ζeq)2
(ζeq.∂)T̂ +

∂f2

∂(ζeq)2
(ζeq.∂)ν̂ +

∂f

∂(ζeq)2
(ζeq.∂)f3

]
+ gij

(
f1∂j T̂ + f2∂j ν̂ + f∂jf3

)
(6.22)

δT00 = − T̂ e
2σ

√
g

[
δSeven1

δσ

]
ζ=ζeq

= − T̂ e
2σ

√
g

(
δW even

1

δσ

)
=
T̂ 2e2σ

√
g

(
δW even

1

δT̂

)
= T̂ 2e2σ

[
∂

∂T̂

(
f1

T̂

)
(ζeq.∂)T̂ +

∂

∂T̂

(
f2

T̂

)
(ζeq.∂)ν̂

+
∂

∂T̂

(
f

T̂

)
(ζeq.∂)f3 −

f

T̂
(ζeq.∂)

(
f1

f

)]
(6.23)

δT i0 =
T̂
√
g

(
δSeven1

δai

)
|ζ=ζeq =

T̂
√
g

(
δW even

1

δai

)
|Ai=Constant = −A0 δJ

i

(6.24)

δT ij = − T̂
√
g
gilgjm

[
δSeven1

δgij

]
ζ=ζeq

= − T̂
√
g
gilgjm

(
δW even

1

δgij

)
= −

[
(ζeq)iδJ j + (ζeq)jδJ i

]
+ gij

[
f1(ζeq.∂)T̂ + f2(ζeq.∂)ν̂ + f(ζeq.∂)f3

]
+2(ζeq)i(ζeq)j

[ ∂f1

∂(ζeq)2
(ζeq.∂)T̂ +

∂f2

∂(ζeq)2
(ζeq.∂)ν̂ +

∂f

∂(ζeq)2
(ζeq.∂)f3

]
(6.25)

In equations (6.22) and (6.23) all the scalar functions f1, f2, f3 and f have been treated as

functions T̂ , ν̂ and (ζeq)2 respectively. In obtaining (6.22) we have used the zeroth order
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equation of motion for φ.

∇i
(
f

T̂
(ζeq)i

)
= 0

to simplify the expressions presented above .

6.3.2 Parity violating terms

The most general parity odd contributions to the action are given by59

Sodd = Sodd1 + Sanom

Sodd1 =

∫
√
gd3x

(
g1ε

ijkζi∂jAk + T0g2ε
ijkζi∂jak

)
+
C1

2

∫
ada

Sanom =
C

2

(∫
A0

3
AdA+

A2
0

6
Ada

) (6.26)

60 where

g1 = g1(T̂ , ν̂, ψ), g2 = g2(T̂ , ν̂, ψ),

C1 is a constant and

ν̂ =
µ̂

T̂
, ψ =

ζ2

T̂ 2
.

(We emphasize that we have slightly changed notation compared to the previous subsec-

tion. The independent variables for all functions in this subsection are T̂ , ν̂ and ψ. The

corresponding variables in the previous subsection were T̂ , ν̂ and ζ2.)

Note that (6.26) is automatically even under time reversal. The corrections induced by

(6.26) to the stress tensor and consistent charge current ([17], see section 2.3 equation 2.16

59Our convention is 1
2

∫
XdY =

∫
d3x
√
g3ε

ijkXi∂jYk.
60The action for parity odd (non super) fluids (6.5) also contains the terms

W =
C0

2

∫
AdA+

C2

2

∫
Ada.

But using the fact that ζi = Ai + ∂iφ and ∫
√
gεijk∂iφ∂jAk = 0,

we can absorb C0 in g1 and C2 in g2.
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of [47]) in equilibrium are given by

T ij = − 2

T̂
(ζeq)i(ζeq)j

(
g1,ψeqS1 + T0g2,ψeqS2

)
T00 = −T0e

σ
(

(−T̂ g1,T̂ + 2ψeqg1,ψeq)S1 + T0(−T̂ g2,σ + 2ψeqg2,ψ)S2

)
J0 = −eσ (g1,νS1 + T0g2,νS2)− eσεijk

[
C

3
Ai∇jAk +

C

3
A0Ai∇jak

]
J i = T̂

(
2g1(S1

(ζeq)i

T̂ 2ψeq
− V i

3

T̂ 2ψeq
) + T0g2(S2

(ζeq)i

T̂ 2ψeq
− V i

4

T̂ 2ψeq
) + T̂ V i

1 g1,T̂ −
1

T0
V i

2 g1,ν − V i
5 g1,ψeq

)
+

2

T̂
ζi(S1g1,ψeq + T0S2g2,ψeq)

+ e−σ
[
2

(
C

3
A0

)
1

T̂ 2ψeq
((ζeq)iS1 − V i

3 ) +

(
C

6
A2

0

)
1

T̂ 2ψeq
((ζeq)iS2 − V i

4 ) +
C

3
εijkAk∇jA0

]
T i0 = T̂

(
(T0g2 − 2A0g1)

T̂ 2ψeq
(S1(ζeq)i − V i

3 )− T0A0g2

T̂ 2ψeq
(S2(ζeq)i − V i

4 ) + T0(T̂ V i
1 (g2,T̂ − ν̂g1,T̂ )

− 1

T0
V i

2 (g2,ν̂ − ν̂g1,ν)− V i
5 (g2,ψeq − ν̂g1,ψeq))−

2A0

T̂
ζi(S1g1,ψeq + T0S2g2,ψeq)

)

− 1

2
CA2

0e
−σ(

1

T̂ 2ψeq
(ζeq)iS1 −

1

T̂ 2ψeq
V i

3 ) + (2C1 −
C

6
A3

0)e−σ(
1

T̂ 2ψeq
(ζeq)iS2 −

1

T̂ 2ψeq
V i

4 )
]
,

(6.27)

where

ψeq =
ζeqi ζ

eq
j g

ij

T̂ 2
(6.28)

S1 = εijkζeqi ∂jζ
eq
k , S2 = εijkζeqi ∂jak

V i
1 = εijkζeqj ∂kσ, V

i
2 = εijkζeqj ∂kA0, V i

3 = εijkζeqj Fkl(ζ
eq)l

V i
4 = εijkζeqj fkl(ζ

eq)l, V i
5 = εijkζeqj ∂kψeq

V i
6 = εijkFjk, V

i
7 = εijkfjk.

(6.29)

The symbols for V i
6 and V i

7 have been introduced for notational convenience only; these

vectors are determined in terms of the other quantities above by

V i
6 =

2

T̂ 2ψeq
((ζeq)iS1 − V i

3 )

V i
7 =

2

T̂ 2ψeq
((ζeq)iS2 − V i

4 ). (6.30)

As we have emphasized, the formulas above determine the consistent current. The covariant

current is obtained from the consistent current by an additional shift (see section 2.4 of [47] for
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a review). We find that the one derivative contribution to the covariant current in equilibrium

is given by

J0 = −eσ (g1,ν̂S1 + T0g2,ν̂S2)

J i = T̂

(
2g1(S1

(ζeq)i

T̂ 2ψeq
− V i

3

T̂ 2ψeq
) + T0g2(S2

(ζeq)i

T̂ 2ψeq
− V i

4

T̂ 2ψeq
) + T̂ V i

1 g1,T̂ −
1

T0
V i

2 g1,ν̂ − V i
5 g1,ψeq

)
+

2

T̂
(ζeq)i(S1g1,ψeq + T0S2g2,ψeq)

+ e−σ
[
C

1

T̂ 2ψeq
((ζeq)iS1 − V i

3 ) +

(
C

2
A2

0

)
1

T̂ 2ψeq
((ζeq)iS2 − V i

4 )

]
(6.31)

6.4 Constraints on parity even corrections to constitutive relations at first order

In this subsection we will determine parity even first order corrections to the superfluid

constitutive relations both from the method of entropy increase as well as from the partition

function of the previous section, and demonstrate their equality.

Let us first consider the almost trivial case of parity even superfluids that also preserve

time reversal invariance. As we have explained in the previous section, in this case W1 = 0. It

follows immediately from this result that all non dissipative superfluid transport coefficients

must vanish. Exactly this conclusion was reached in [4] from the requirement of point wise

positivity of the divergence of the entropy current in an arbitrary fluid flow.

The study of time reversal non invariant superfluids is more involved. In this case the

constraints from the local second law have not previously been analyzed. In this section we

first present this analysis. We then study the constraints obtained from the analysis of the

partition function. As mentioned above, we will find that these two methods yield identical

constraints.

6.4.1 Constraints from the local second law

In this subsubsection (but nowhere else in this section) we consider the non equilibrium

flow of a superfluid on a (generically) non stationary spacetime. We continue to denote the

background metric of our spacetime by Gµν . The background gauge field is denoted by Aµ.

The variables of superfluid hydrodynamics are the temperature field T (xµ), velocity field

uµ(xµ) and the gradient of the phase field ξµ = −∂µφ + Aµ. We often work in terms of the

fluid dynamical field

(ζf )µ = ξµ + µuµ

Note that, in equilibrium and at lowest order in the derivative expansion (ζf )0 = 0 and

(ζf )i = ξi −A0ai = ζi.
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We specify some additional notation that we will use extensively below.

Pµν = uµuν +Gµν , P̃µν = Pµν −
(ζf )µ(ζf )ν

(ζf )2
, V µ =

Eµ

T
− Pµν∂νν

R =
q

ε+ P
, K = ∇µ (fξµ) = s(u.∂)

(q
s

)
, Θ = (∇.u) = −u.∂s

s

aµ = (u.∇)uµ

H1 = T, H2 = ν, H3 = (ζf )2

(6.32)

In words, Pµν projects onto the three dimensional subspace orthogonal to the normal fluid,

while P̃µν projects onto the two dimensional subspace orthogonal to both the normal and su-

perfluid velocities. aµ and Θ are the normal fluid acceleration and expansion respectively. V µ

is the ‘Einstein combination’ of the electric field and derivative of the chemical potential that

vanishes in equilibrium. H1, H2 and H3 are new names for the three scalar hydrodynamical

fields; note that H2 is ν = µ
T rather than the chemical potential itself. Finally K is the term

that is set to zero by the first order equation of motion of the Goldstone phase, while R is a

combination of zero order thermodynamical fields that often appears in the formulas below.

In order to analyze the constraints that follow from the local form of the second law, we

follow the procedure described in section 3 of [4]. Briefly, we first write down the most general

onshell independent first order entropy current allowed by symmetry. We then compute the

divergence of this current (this is mere algebra) and then use the equations of hydrodynamics,

together with the corrected constitutive relations

Tµν = (ε+ p)uµuν + pGµν + fξµξν + πµν

Jµ = quµ − fξµ + jµ, (6.33)

(here πµν and jµ refer to as yet unspecified one and higher derivative corrections to the

constitutive relations) to re express this divergence as the sum of a linear form in onshell

independent two derivative data and a quadratic form in onshell independent one derivative

data. Point wise positivity of the divergence requires the linear form to vanish (this imposes

several constraints on the entropy current). Once these conditions are imposed, the divergence

of the entropy current is purely a quadratic form in one derivative data. We require this

quadratic form to be positive definite. This requirement further constrains the entropy current

as well as the first order contributions to πµν and jµ in a manner we now schematically

describe.

As we will see below, the quadratic form so obtained has the property that it vanishes

when projected onto a subset of one derivative terms. In other words, all independent one

derivative terms can be divided into y type ‘entropically dissipative’ terms and x type en-

tropically nondissipative terms, and the quadratic form takes the schematic form

Aijy
iyj +Bimy

ixm

Note that the structure of this quadratic form is preserved under x redefinitions

xm → xm + Cmiy
i
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but not under analogous redefinitions of yi. In other words there exists a well defined subspace

of dissipative data but no definite subspace of nondissipative data.

Positivity of the quadratic form described above requires that Aij is a positive matrix,

and Bim = 0 for all i and m. The last set of constraints yield relations between otherwise

apparently independent transport coefficients. 61

In order to actually implement this process we need first to choose a basis for onshell

independent data. As explained in [4] (see e.g. Table 3), at first order in the derivative

expansion there exist 7 (4 dissipative and 3 non dissipative) onshell independent scalars

, 7 (2 dissipative and 5 nondissipative) onshell independent vectors and 2 (1 dissipative

and one nondissipative) independent tensors constructed out of thermodynamical fields and

background fields. For the purposes of this section, we will find it useful to choose our onshell

independent basis as follows.

Basis of independent scalars:

V.(ζf )

(ζf )2
, (u.∂Ha), ((ζf ).∂Ha), a = {1, 2, 3}

The four of these scalars are dissipative (they vanish in equilibrium) while the remaining

three are nondissipative (they are non vanishing in equilibrium, and do not cause entropy

production).

Basis of independent vectors:

P̃µαVα, P̃µα(ζf )βσ
β
α, P̃µα (ζf )νf

να, P̃αµ(ζf )νF
να, P̃µα∂αHa, a = {1, 2, 3}

The first two vectors are dissipative (they vanish in equilibrium) and the remaining five vectors

are nondissipative.

Basis of independent tensors

σ̃µν = P̃αµ P̃
β
ν

[
∇αuβ +∇βuα − P̃ λφ(∇λuφ)ηαβ

2

]
,

σ
(ζf )
µν = P̃αµ P̃

β
ν

[
∇α(ζf )β +∇β(ζf )α − P̃ λφ(∇λ(ζf )φ)ηαβ

2

]

The first is dissipative (it vanishes in equilibrium) while the second is nondissipative.

In this subsubsection we wish to constrain the equations of superfluid hydrodynamics

presented in a ‘fluid frame’ (see [5] for an explanation of what this means). Throughout this

61Assuming that the matrix A is positive definite, entropy is always produced whenever any of the yi are

nonzero. It follows that all yi must always vanish in equilibrium. This observation motivates the following

definition, utilized in [47]. Expressions that vanish in (arbitrary stationary) equilibrium are referred to as

dissipative data. It follows from that entropically dissipative data is necessarily dissipative. However the

converse is not necessarily true; it is possible for data to vanish in arbitrary stationary equilibrium but yet be

entropically nondissipative. We will see an example of this phenomenon later in this section.
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section we will further restrict our attention to fluid frames with µdiss = 0 (again see [5] for

definitions). This choice still permits the freedom of field redefinitions of the temperature

and normal velocity fields (as well as field redefinitions of the superfluid phase, as we will

exploit later in this section). Even though we work specifically frames in which µdiss = 0 our

final results may easily be lifted to an arbitrary µdiss 6= 0 frame using the frame invariant

formalism of [4].

The most general form of the entropy current, consistent with the absence of linear two

derivative terms in its divergence was determined in [4] (see equation 3.19 ) and takes the

form

JµS = Jµcan + Jµnew

Jµcan = suµ − νjµ − uνπ
µν

T

Jµnew =
∑
a

ca(∂νHa)Q
µν +∇ν(c Qµν)

where Qµν = f(uµ(ζf )ν − uν(ζf )µ)

(6.34)

The divergence of Jµcan was worked out in [4, 5] (see for example, equation 3.9 [4], and

recall we work with µdiss = 0).

∇µJµcan = −πµν∇µ
(uν
T

)
+ jµVµ + (uµj

µ)(u.∂ν) (6.35)

The RHS of (6.35) is given schematically by

(one derivative correction to constitutive relation)× (entropicallydissiaptive data),

62 We will now rewrite the RHS of (6.35) as a quadratic form in the basis of independent

dissipative one derivative data chosen above. In order to achieve this we need to rewrite all

the y type terms in (6.35) in terms of the independent basis of dissipative scalars, vectors and

tensors listed above. To achieve this we use the equations of motion

(ζf ).∂T

T
+ a.(ζf ) = RT (V.(ζf ))−

(ζf )2K

ε+ P

(ζf )µ(ζf )νσ
µν

(ζf )2
+

Θ

3
= −T (1− µR)

V.(ζf )

(ζf )2
− µK

ε+ P
−

(u.∂)(ζf )2

2(ζf )2

(6.36)

62Note that the one derivative expressions that appear here are always entropically dissipative, as contri-

butions to changes in the proportional to these one derivative expressions yield quadratic terms in entropy

production.
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we find

∇µJµcan =−
(
uµuνπ

µν

T 2

)
(u.∂T ) + (j.u)(u.∂ν) +

(j.(ζf ))(V.(ζf ))

(ζf )2

+
uµ(ζf )νπ

µν

T

[
RT

(
V.(ζf )

(ζf )2

)
− K

ε+ P

]
− 1

2T

(
πµνP̃µν

)
Θ

− 1

T

(
πµνPµν −

3

2
πµνP̃

µν

)(
(ζf )µ(ζf )νσ

µν

(ζf )2
+

Θ

3

)
− 2

(
(ζf )απ

ανP̃νµσ
µβ(ζf )β

T (ζf )2

)
+ (jµ +Ruαπ

αµ) P̃µνV
ν − 1

T
σ̃µν π̃

µν

=−
(
uµuνπ

µν

T 2

)
(u.∂T ) + (j.u)(u.∂ν)−

(
πµνP̃µν

2T

)
Θ

+

(
πµνPµν −

3

2
πµνP̃µν

)(
u.∂(ζf )2

2T (ζf )2

)
+

(
V.(ζf )

(ζf )2

)[
(j.(ζf )) +R(uµ(ζf )νπ

µν) + (1− µR)

(
πµνPµν −

3

2
πµνP̃µν

)]
+

(
K

ε+ P

)[
−
(
−uν(ζf )µπ

µν

T

)
+ ν

(
πµνPµν −

3

2
πµνP̃µν

)]
− 2

(
(ζf )απ

ανP̃νµσ
µβ(ζf )β

T (ζf )2

)
+ (jµ +Ruαπ

αµ) P̃µνV
ν − 1

T
σ̃µν π̃

µν

=

3∑
a=1

Sa(u.∂)Ha + S4

(
V.(ζf )

(ζf )2

)
− 2Vν

2

(
P̃νµσ

µβ(ζf )β
T (ζf )2

)
+ Vµ

1 P̃µνV
ν − 1

T
σ̃µν π̃

µν

(6.37)

where

Sa =

[(
s

ε+ P

)
∂

∂Ha

(q
s

)] [
−
(
−uν(ζf )µπ

µν

T

)
+ ν

(
πµνPµν −

3

2
πµνP̃µν

)]
+

(
1

s

∂s

∂Ha

)(
πµνP̃µν

2T

)
−
(
uµuνπ

µν

T 2

)
δa,1 + (j.u)δa,2

+

(
1

2T (ζf )2

)(
πµνPµν −

3

2
πµνP̃µν

)
δa,3

S4 =

[
(j.(ζf )) +R(uµ(ζf )νπ

µν) + (1− µR)

(
πµνPµν −

3

2
πµνP̃µν

)]
Vν

2 = (ζf )απ
αν

Vµ
1 = (jµ +Ruαπ

αµ)

π̃µν = P̃µαP̃ νβ
[
παβ −

ηαβ
2

(
P̃θφπ

θφ
)]

H1 = T, H2 = ν, H3 = (ζf )2

(6.38)
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The last line of (6.37) is the final result of this manipulation. It expresses the divergence of

the entropy current as a linear sum over the four dissipative onshell scalars and two dissipative

onshell vectors and one dissipative tensor listed earlier in this subsection. These expressions

appear multiplied by frame invariant linear combinations of πµν and jµ.

The frame invariant quantities Sa and Va will be used extensively below. For later use

we will find it useful to regard these quantities as linear functions of πµν and jµ, i.e.

Sa = Sa(π
µν , jµ), Va = Va(π

µν , jµ) (6.39)

The divergence of the ‘new’ part of the entropy current, Jµnew (see (6.34)) is given by

∇µJµnew

=
∑
(a,b)

f

(
∂ca
∂Hb

− ∂cb
∂Ha

)
((ζf ).∂Ha)(u.∂Hb) +

∑
a

(∂νHa)∇µQµν

=
∑
(a,b)

f

(
∂ca
∂Hb

− ∂cb
∂Ha

)
((ζf ).∂Ha)(u.∂Hb) +

∑
a

(∂µHa)P̃
µ
ν (∇αQαν)

−
∑
a

[
(u.∂Ha) (uν∇µQµν) + ((ζf ).∂Ha)

(
(ζf )ν∇µQµν

(ζf )2

)]
(6.40)

where Qµν was defined in (6.34).

Using equations of motion we can express (uν∇µQµν),
(

(ζf )ν∇µQµν
(ζf )2

)
and P̃µν (∇αQαν) in

terms of the onshell independent basis scalars of this subsection ( spanned by (u.∂Ha), ((ζf ).∂Ha),
(
V.(ζf )

(ζf )2

)
)

and vectors (spanned by P̃µαVα, P̃µα(ζf )βσ
β
α, P̃µα∂αHa).

(uν∇µQµν) = s(u.∂)

(
fµ

s

)
+

(
1−

f(ζf )2

ε+ P

)
K + f

(
(ζf ).∂T

T

)
− f(V.(ζf ))(

(ζf )ν∇µQµν

(ζf )2

)
= s(u.∂)

(
f

s

)
+ fT

[
(1− µR)

(
V.(ζf )

(ζf )2

)
+

νK

ε+ P
+
u.∂(ζf )2

T (ζf )2

]
P̃µν (∇αQαν) = −Pµν

∑
a

fca [T (1− µR)V ν + 2(ζf )ασ
να]

(6.41)

From equations (6.37), (6.38), (6.40) and (6.41) we conclude that, no matter what form

the fluid constitutive relations take, the divergence of the entropy current cannot contain

any expressions of the form ((ζf ).∂Ha)
2 or (P̃µν∂µHa∂νHb). In other words the scalars

(ζf ).∂Ha and the vectors (P̃µν∂µHa) are nondissipative. It follows that the positivity of

(∇µJµS ) requires that the divergence contain no term linear in ((ζf ).∂Ha) or (P̃µν∂µHa) (see

e.g. [4] for repeated use of similar arguments.) To ensure this πµν and jµ have to satisfy the
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following conditions.

Sa = −
3∑
b=1

((ζf ).∂Hb)

{
f

(
∂cb
∂Ha

− ∂ca
∂Hb

)
− fca

T
δb,1 +

fcb
(ζf )2

δa,3

+ cb

[
s
∂

∂Ha

(
f

s

)
+

(
sν

ε+ P

)
∂

∂Ha

(q
s

)]}
+ dissipative terms

= −
3∑
b=1

((ζf ).∂Hb)

{[
∂

∂Ha
(fcb)−

f

T

∂

∂Hb
(Tca)

]
+

fcb
(ζf )2

δa,3

+ cb

[
−1

s

∂s

∂Ha
+

(
sν

ε+ P

)
∂

∂Ha

(q
s

)]}
+

3∑
b=1

Mab(u.∂Hb) +Ma4

(
V.(ζf )

(ζf )2

)
(a = {1, 2, 3})

S4 =(j.(ζf )) +R(uµ(ζf )νπ
µν) + (1− µR)

(
πµνPµν −

3

2
πµνP̃µν

)
+ dissipative terms

=−
∑
b

((ζf ).∂Hb)fT (1− µR)cb +
3∑
b=1

M4b(u.∂Hb) +M44

(
V.(ζf )

(ζf )2

)

(6.42)

V1µ = (jν +Ruαπ
αν) P̃µν = T (1− µR)f

∑
b

cb(P̃
ν
µ∂νHb) + dissipative terms

= T (1− µR)f
∑
b

cb(P̃
ν
µ∂νHb) +N11

(
P̃µνV

ν
)
−N12

(
P̃µβ(ζf )ασ

αβ

2T (ζf )2

)

V2µ =(ζf )απ
ανP̃νµ = −T (ζf )2f

∑
b

cb(P̃
ν
µ∂νHb) + dissipative terms

= − T (ζf )2f
∑
b

cb(P̃
ν
µ∂νHb) +N21

(
P̃µνV

ν
)
−N22

(
P̃µβ(ζf )ασ

αβ

2T (ζf )2

)
π̃µν = P̃µαP̃ νβ

[
παβ −

ηαβ
2

(
P̃θφπ

θφ
)]

= dissipative term = −η σ̃µν

(6.43)

where M is a 4 × 4 matrix of dissipative transport coefficients in the scalar sector and N is

a 2× 2 matrix of dissipative transport coefficients in the vector sector.

Equations (6.42),(6.43) are the main result of this subsection. It expresses the equality

type constraints that follow from the local second law. Once (6.42),(6.43) are satisfied the
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final expressions for the divergence of the entropy current takes the following form.

∇µJµs

= −
∑
a,b

ca

µs∂
(
f
s

)
∂Hb

+ s

(
1−

f(ζf )2

ε+ p

)
∂
( q
s

)
∂Hb

+ f (Tδb,2 + νδb,1)

 (u.∂Ha)(u.∂Hb)

− f(V.(ζf ))
∑
a

ca(u.∂Ha)

+
3∑

a,b=1

Mab(u.∂Ha)(u.∂Hb) +
3∑

a=1

(M4a +Ma4) (u.∂Ha)

(
V.(ζf )

(ζf )2

)
+M44

(
V.(ζf )

(ζf )2

)2

+ P̃µν

[
N11 (V µV ν) + (N12 +N21)(V µ(ζf )ασ

αν) +N22((ζf )α(ζf )βσ
αµσβν)

]
+
η

T
σ̃µν σ̃

µν

(6.44)

The positivity of this quadratic form imposes additional inequality type constraints on trans-

port coefficients that we will not further explore here.

6.4.2 Constraints from the partition function

In this subsubsection we now reproduce the conditions (6.42),(6.43) using considerations

independent of those of the previous subsection. The procedure we adopt is very similar to

that described in [47], and we describe it only briefly, highlighting only those elements of the

analysis that are unique to the superfluid.

The starting point of our analysis is the expressions (6.22) and (6.23) which represent the

first order for the corrections to the stress tensor and charge current that follow by varying

the local action for the Goldstone mode w.r.t. the metric and background gauge field. Once

we substitute in the solution for the field ξµ(x), according to its equations of motion, (6.22)

and (6.23) yield first order corrections δTµν and δJµ to the values of the stress tensor and

charge current in thermal equilibrium.

From the hydrodynamical point of view, δTµν and δJµ are the first order contributions

in (6.33) once we substitute

T (x) = T̂ (x) + T1(x), µ(x) = µ̂(x) + µ1(x), uµ(x) = ûµ + uµ1 (x) (6.45)

into those expressions. Here T1(x), µ1(x) and uµ1 (x) a are the first derivative corrections to

the equilibrium configurations of temperature, chemical potential and velocity.

Upon substituting (6.45) into (6.33) we get first derivative contributions of two sorts.

First we have the corrections to constitutive relations evaluated on the zero order equilibrium

configurations Πµν(T̂ , µ̂, ûµ, (ζeq)µ) and jµ(T̂ , µ̂, ûµ, (ζeq)µ) . Second we have contributions

from terms proportional to T1, µ1 and uµ1 when (6.45) is plugged into the perfect fluid consti-

tutive relations. Contributions of the second sort, however, precisely cancel out in the frame
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invariant linear combinations Sa (a = 1 . . . 4) and Va (a = 1 . . . 2). In other words

Sa(δTµν , δJµ) = Sa(πµν , jµ)

Va(δTµν , δJµ) = Va(πµν , jµ)
(6.46)

(πµν and jµ on the RHS of (6.46) are evaluated on the zero order equilibrium configurations).

In the general formulation of hydrodynamics, however, it is precisely the frame invariants

that appear on the RHS of (6.46) that are expanded in the most general symmetry allowed

constitutive relations (see e.g. [4] )

Sa(π
µν , jµ) = αamS

m (a = 1 . . . 4), (m = 1 . . . 7)

Vµ
a(πµν , jµ) = γamV

µ
m (a = 1 . . . 2), (m = 1 . . . 5)

(6.47)

where Sm and V µ
m are the independent one derivative scalars and vectors and the coefficients

αam and γam are arbitrary functions of the scalars T , µ and ξµξµ.

αam and γam are the constitutive coefficients we wish to constrain, and this is achieved

as follows. In the LHS of (6.46) we substitute the expressions (6.22) and (6.23)) for δTµν and

δJµ. This determines the LHS of (6.46) completely in terms of the functions f1, f2 and f3

that appear in the partition function. In the RHS of (6.46) we substitute (6.47), and evaluate

these expressions in equilibrium

T = T̂ , µ = µ̂, ζ = ζeq.

Under the last substitution those of Sm and V m that are dissipative vanish. The non dis-

sipative one derivative scalars and vectors evaluate to geometric expressions. Equating the

coefficients of these expressions we determine αam and γam for those values of m that corre-

spond to non dissipative terms. In other words this procedure completely determines all non

dissipative transport coefficients. 63

In the rest of this subsection we implement the procedure described above to explicitly

determine all nondissipative transport coefficients in terms of the three free functions f1, f2

and f3 that enter the local action for the Goldstone field. We demonstrate that our results

agree exactly with (6.42),(6.43), obtained from the local form of the second law, once we

identify the three unknown functions c1, c2 and c3 in the entropy current of the previous

subsection in terms of the functions in the partition function according to

c1 =
f1

fT
+

1

T

∂f3

∂T
, c2 =

f2

fT
+

1

T

∂f3

∂ν
, c3 =

1

T

∂f3

∂ζ2
(6.48)

63There is an important subtlety here. All of the operations described above may only be performed in

equilibrium, i.e. once we have solved for (ζeq)µ as a function of background fields and substituted this back into

the partition function. We implement our programme without explicitly solving, simply by treating (ζeq)µ(x)

as formally independent of the other background fields, except for those local combinations of (ζeq)µ that

appear in terms of its equation of motion and derivatives there off. The reason for this that the expressions for

ξµ as a function of background fields is highly nonlocal. The only situation in which cancellations are possible

between local expressions in (ζeq)µ and local expressions in the background fields is when we get derivatives

combining with (ζeq)µ in the form of the φ equations of motion.
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We will also demonstrate that the identification (6.48) may be argued for directly by compar-

ing the thermodynamical entropy in equilibrium with the integral of the equilibrium entropy

current over a spatial slice.

It will be useful in the computation below to note that Pµν and P̃µν are given by

Pij = gij , P̃ij = gij −
ζeqi ζ

eq
j

(ζeq)2

We turn now to the explicit computation, starting with the vectors.

V10(δTµν , δJµ) = V20(δTµν , δJµ) = 0

V1i(δTµν , δJµ) = P̃ij

(
δJ j + R̂û0δT j0

)
= P̃ij

(
δJ j −Re−σA0δJ

j
)

= (1− µ̂R̂)P̃ijδJ
j

= P̃ijg
jk(1− µ̂R̂)

(
f1

T̂
∂kT̂ +

f2

T̂
∂kν̂ +

f

T̂
∂kf3

)
V2i(δTµν , δJµ) = P̃ijζk δT

kj = −ζ2P̃ijδJ
j

= − P̃ijgjk
(
f1

T̂
∂kT̂ +

f2

T̂
∂kν̂ +

f

T̂
∂kf3

)
(6.49)

The last line of (6.49) exactly matches (6.42),(6.43)) upon using the identification of the

parameters (6.48).

We turn next to the scalars; let us start with S4.

S4(δTµν , δJµ) = (j.ζ) +R(uµζνπ
µν) + (1− µR)

(
πµνPµν −

3

2
πµνP̃µν

)
= − (1− µ̂R̂)

[
f1(ζeq.∂T̂ ) + f2(ζeq.∂ν̂) + f(ζeq.∂f3)

]
= T̂ (1− µ̂R̂)

∑
b

fcb(ζ
eq.∂Hb)

(6.50)

In the last step we have used (6.48), and have obtained manifest agreement with (6.42),(6.43).

Next we shall calculate the remaining three scalars Sa, a = {1, 2, 3}. The algebraic

manipulations here are a little more involved than in previous cases, and we provide some

details.

Sa(δTµν , δJµ) =

[(
s

ε+ P

)
∂

∂Ha

(q
s

)] [
−
(
−uνζµπµν

T

)
+ ν

(
πµνPµν −

3

2
πµνP̃µν

)]
+

(
1

s

∂s

∂Ha

)(
πµνP̃µν

2T

)
−
(
uµuνπ

µν

T 2

)
δa,1 + (j.u)δa,2

+

(
1

2Tζ2

)(
πµνPµν −

3

2
πµνP̃µν

)
δa,3, (a = {1, 2, 3})

(6.51)
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The first line in (6.51) can be evaluated as[(
s

ε+ P

)
∂

∂Ha

(q
s

)] [
−
(
−uνζµπµν

T

)
+ ν

(
πµνPµν −

3

2
πµνP̃µν

)]
=

[(
s

ε+ P

)
∂

∂Ha

(q
s

)] [
−ν̂f(ζeq.∂f3)− ν̂f2(ζeq.∂ν̂)− ν̂f1(ζeq.∂T̂ )

]
= −

[(
sν̂

ε+ P

)
∂

∂Ha

(q
s

)]∑
b

cb(ζ
eq.∂Hb)

(6.52)

In the last step we have used (6.48).

The second line of (6.51) may be evaluated as follows(
1

s

∂s

∂Ha

)(
πµνP̃µν

2T

)

=

(
1

s

∂s

∂Ha

)[
f1

T̂
(ζeq.∂)T̂ +

f2

T̂
(ζeq.∂)ν̂ +

f

T̂
(ζeq.∂)f3

]
=

(
1

s

∂s

∂Ha

)∑
b

fcb(ζ
eq.∂Hb)

(6.53)

In the last step we have used (6.48).
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Finally we evaluate the last three terms of (6.51) together.

−
(
uµuνπ

µν

T 2

)
δa,1 + (j.u)δa,2 +

(
πµνPµν − 3

2π
µνP̃µν

2Tζ2

)
δa,3

= −
[
∂

∂T̂

(
f1

T̂

)
(ζeq.∂T̂ ) +

∂

∂T̂

(
f2

T̂

)
(ζeq.∂ν) +

∂

∂T̂

(
f

T̂

)
(ζeq.∂f3)− f

T̂
ζeq.∂

(
f1

f

)]
δa,1

−
[
∂

∂ν

(
f1

T̂

)
(ζeq.∂T̂ ) +

∂

∂ν

(
f2

T̂

)
(ζeq.∂ν) +

∂

∂ν

(
f

T̂

)
(ζeq.∂f3)− f

T̂
ζeq.∂

(
f2

f

)]
δa,2

− 1

T̂

[
∂

∂(ζeq)2

(
f1

T̂

)
(ζeq.∂T̂ ) +

∂

∂(ζeq)2

(
f2

T̂

)
(ζeq.∂ν) +

∂

∂(ζeq)2

(
f

T̂

)
(ζeq.∂f3)

]
δa,3

−
[
f1

T̂
(ζeq.∂T̂ ) +

f2

T̂
(ζeq.∂ν) +

f

T̂
(ζeq.∂f3)

]
δa,3

=
∑
b

(ζeq.∂Hb)

[
−
(
∂f3

∂Hb

)
∂

∂Ha

(
f

T̂

)
+
f

T̂

∂

∂Hb

(
f1

f

)
δa,1 +

f

T̂

∂

∂Hb

(
f2

f

)
δa,2

]
− ∂

∂Ha

(
f1

T̂

)
(ζeq.∂T̂ )− ∂

∂Ha

(
f2

T̂

)
(ζeq.∂ν)

−
[
f1

T̂
(ζeq.∂T̂ ) +

f2

T̂
(ζeq.∂ν) +

f

T̂
(ζeq.∂f3)

]
δa,3

= −
∑
b

(ζeq.∂Hb)

[
∂

∂Ha
(fcb)−

f

T̂

∂

∂Hb
(T̂ ca) +

fcb
(ζeq)2

δa,3

]
(6.54)

In the last step we have used (6.48).

Combining (6.52), (6.53) and (6.54) it is straightforward to verify that the expressions

for Sa, a = {1, 2, 3, 4} as derived from partition function in this subsection, match exactly

with (6.42),(6.43). Note that both methods leave dissipative contributions to constitutive

relations completely unconstrained.

6.4.3 Entropy from the partition function

In this subsubsection we will explain how the nondissipative part of the entropy current of the

superfluid may be read off in a rather direct way from the partition function. Our analysis

is largely structural, and applies equally well to normal (non super) fluids. However our

presentation applies only at first order in the derivative expansion.

For any system the entropy ST in equilibrium may be evaluated from the logarithm of

partition function W = lnZ via the thermodynamical relation

ST = W + T0
∂W

∂T0
(6.55)
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We will now rewrite this expression in terms of the goldstone action that generates the

partition function. Let this action take the form

S =

∫
√
gLd3x

and also suppose

Leq = L(ζµ = ζeqµ )

Now we can think of the partition function as

W = S(T̂ , µ̂, T0ai, ζ
eq
µ ) =

∫
√
g Leq(T̂ , µ̂, T0ai, ζ

eq
µ )d3x

Using the simple rescaling of the time coordinate employed in subsection 2.3.1 of [47] one

may show that

T0
∂T̂

∂T0
= T̂

T0
∂ν̂

∂T0
= −ν̂

T0
∂ai
∂T0

= 0

T0
∂ζi
∂T0

= 0

(6.56)

It follows that

∂W

∂T0

=

∫
d3y
√
g

[(
δLeq

δT̂ (y)

)(
∂T̂ (y)

∂T0

)
+

(
δLeq

δν̂(y)

)(
∂ν̂(y)

∂T0

)
+

(
δLeq

δai(y)

)(
ai(y)

T0

)]

=

∫
d3y
√
ge−σ

[
T00

T 2
0

+
ν̂J0

T0
+ ai

(
T i0 +A0δJ

i

T̂ 2

)]
=

∫
d3y
√
geσ

[
1

T 2
0

(
T00e

−2σ + aiT
i
0

)
+

ν̂

T0

(
J0e
−2σ + aiJ

i
)]

=

∫
d3y
√
−G

[
1

T 2
0

(
− T00

G00
+
G0i

G00
T i0

)
+

ν̂

T0

(
− J0

G00
+
G0i

G00
J i
)]

=

∫
d3y

√
−G
T0

[
−T

0
0

T0
− ν̂J0

]
=

∫
d3y

√
−G
T0

[
−
ûµT 0

µ

T̂
− ν̂J0

]

(6.57)

so that

ST = W +
∂W

∂T0
=

∫
d3y

√
−G
T0

[
T̂Leq −

ûµT 0
µ

T̂
− ν̂J0

]
(6.58)

– 142 –



This expression may be expanded to first order in derivatives employing

Leq =
P̂

T̂
+ Leq1

T 0
0 = (T 0

0 )perf + δT 0
0

J0 = J0
perf + δJ0

(6.59)

where, from (6.14)

(T 0
0 )perf = −ε̂− f̂ e−2σA2

0 − f̂A0a
iζeqi

J0
perf = e−σ q̂ − f̂(e−2σA0 + aiζeqi ),

(6.60)

δT 0
0 is defined in (6.23) and δJ0 is defined in (6.22).

Using the Gibbs Duham relation

s =
P + ε− qµ

T

we find that

ST =

∫
d3y
√
gŝ

+

∫
d3y

√
−G
T0

[
T̂Leq1 −

ûµδT 0
µ

T̂
− ν̂δJ0

] (6.61)

(all proportional to f̂ cancel out at zero order in the derivative expansion).

Now let us recall that

δTµν = (πµν )0 + (Tµν )1
perf

where (πµν )0 refers to πµν evaluated on the zero order equilibrium solution and (Tµν )1
perf refers to

the one derivative correction in Tµν from the first order correction to the equilibrium solution.

Similarly

δJµ = (jµ)0 + (Jµperf )1.

It follows that

ST =

∫
d3y
√
−G

[
ŝû0 −

ûµδ(T 0
µ)1
perf

T̂
− ν̂δ(J0)1

perf

]

+

∫
d3y

√
−G
T0

[
T̂Leq1 −

ûµδπ0
µ

T̂
− ν̂δj0

] (6.62)

so that

ST =

∫
d3y
√
−Gsu0

+

∫
d3y

√
−G
T0

[
T̂Leq1 −

ûµδπ0
µ

T̂
− ν̂δj0

] (6.63)

– 143 –



where su0 in (6.63) refers to the entropy evaluated on the first order corrected solution. In

going from (6.62) to (6.63) we have used the fact that the frame invariance (see [4] for a

definition and extensive discussion of frame invariance) of the canonical entropy current

Jµcan = suµ − νjµ − uνπ
µν

T

implies that

suµ − ŝûµ + ν(Jν)1
perf +

uν(Tµν)1
perf

T
= 0.

It follows from (6.63) that

ST =

∫
d3y
√
−G

[
J0
can +

1

T0
T̂Leq1

]
(6.64)

Comparing with

JµS = Jµcan + Jµnew (6.65)

we conclude that ∫
d3y
√
−GJ0

new =

∫
d3y
√
−G T̂

T0
Leq1 (6.66)

In other words the integral of J0
new matches with the first order correction to the Goldstone

action. (6.66) is the principal formal result of this subsection. It expresses a very simple

relationship between the correction to the canonical entropy current of our system and the

first order correction to the partition function.

To what extent does (6.66) determine Jµnew? The most general first order correction to

the entropy current takes the form

Jµnew = Suu
µ + Sζζ

µ + V µ
s (6.67)

where Su and Sζ are first order scalars while V µ
s is a first order vector. Notice that, to first

order, Xµ = Sζζ
µ + V µ

s is orthogonal to û. It follows immediately from this observation that

X0 = −aiXi

Plugging this relation into (6.66) we conclude that the contribution from Xµ to the total

entropy is not Kaluza Klein gauge invariant and so must vanish (see [47] for a discussion on

related issues). It follows that Sζ and V µ
s vanish in equilibrium. Upto dissipative corrections,

therefore, it follows that

Jµnew = Suu
µ (6.68)

Now comparing with (6.66) it follows that∫
d3y
√
g (Su − Leq1 ) = 0
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so that

Su = Leq1 + total derivatives (6.69)

Let us now turn to the case at hand. Leq1 was listed in (6.17). It is easily verified that

there exist no total derivative scalars at one derivative order. Consequently we conclude that

Su =
f1

T̂
(ζ.∂)T̂ +

f2

ν̂
(ζ.∂)ν̂ − f3∇i

(
f

T̂
ζi
)

+ dissipative

It is not difficult to verify that this expression, together with (6.68), agree exactly with (6.34)

in equilibrium once we employ the identification of parameters (6.48).

In summary, the positive divergence entropy current - which we determined earlier in

this section - is also uniquely determined by comparison with the partition function for parity

even superfluids at first order in the derivative expansion.

6.4.4 Consistency with field redefinitions

We will now verify that the dependence of the constitutive relations and entropy current of the

superfluid on f3 is consistent with the transformation (6.21) of f3 under the field redefinition

(6.18).

Recall that the stress tensor and currents of our system take the form

Tµν = (ε+ P )uµuν + PGµν + fξµξν + πµν

Jµ = quµ − fξµ + jµ

Jµs = Jµcan + Jµnew = suµ − uνπ
µν

T
− νjµ + Jµnew.

(6.70)

Substituting the field redefinition (6.18) into this equation and setting

δφ(xi) = h(xi)

(recall h is a function only of space) we recover a new form of the stress tensor and currents

Tµν = (ε̃+ P̃ )uµuν + P̃Gµν + f̃ ξ̃µξ̃ν + π̃µν

Jµ = q̃uµ − f̃ ξ̃µ + j̃µ

Jµs = J̃µcan + J̃µnew = s̃uµ − uν π̃
µν

T
− νj̃µ + J̃µnew

(6.71)

with

π̃µν = πµν −
[
∂(ε+ P )

∂χ
uµuν +

∂P

∂χ
Gµν +

∂f

∂χ
ξµξν

]
(−2ξ.∇(4)h)

− f(ξµGνα∇(4)
α h+ ξνGµα∇(4)

α h)

j̃µ = jµ −
[
∂q

∂χ
uµ − ∂f

∂χ
ξµ
]

(−2ξ.∇(4)h) + fGµα∇(4)
α h

J̃µnew = Jµnew − (−2ξ.∇(4)h)

(
∂s

∂χ

)
uµ − uν(πµν − π̃µν)

T
− ν(jµ − j̃µ)

= Jµnew +
f

T
(uµξν − uνξµ)∇(4)

ν h = Jµnew +
Qµν

T
∇(4)
ν h

(6.72)
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All Greek indices in (6.72) and (6.71) run from 1 . . . 4 and are raised and lowered with the full

four dimensional metric Gµν . χ derivatives in (6.72) are taken at fixed T and ν. In deriving

last equality in (6.72) we have used the first law of thermodynamics.

dε = Tds+ νdq − f

2
dχ

We will now independently verify that our final answers for Jµnew and the constitutive

relations have this symmetry. To start with recall that, from (6.21) and (6.48),

c̃a − ca =
1

T

∂h

∂Ha
(6.73)

It follows immediately from (6.73) that the expression for Jµnew

Jµnew =
∑
a

ca(∂νHa)Q
µν

(see (6.34)) transforms as predicted by the last of (6.72).

We now turn to the verification that our results for transport coefficients, (6.42),(6.43),

transform as predicted by (6.72). The algebra involved in a direct verification is formidable,

so we will content ourselves with an indirect check. We first recall that we have already

verified (see (6.46)) that

Sa(δTµν , δJµ) = Sa(πµν , jµ)

Va(δTµν , δJµ) = Va(πµν , jµ)
(6.74)

in fact this equation formed the basis of one of our two methods of determining constitutive

relations. It follows that if we can show that δTµν and δJµ obey (6.72), then the same will be

true of (6.42),(6.43). (Recall δTµν was the first order shift in the stress tensor arising from

first order corrections to the Goldstone action; δJµ was similarly defined.) We will now check

that this is indeed the case. In order to do this we first simplify the (6.72) specializing to the

case of stationary equilibrium

(j0 − j̃0) = −2eσ

[
∂

∂ζ2
f

(q + µf)

]
(ζeq.∂)h

= eσ
[
∂

∂ν

(
f

T

)]
(ζeq.∂)h

(ji − j̃i) = −f∇ih− 2(ζeq.∂h)
∂f

∂ζ2
f

(ζeq)i

(6.75)
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and

(π00 − π̃00) = −2e2σ

[
∂(ε+ µ2f)

∂ζ2
f

]
(ζeq.∂)h

= 2e2σ

[
∂

∂ζ2
f

(
T
∂P

∂T
− P

)]
(ζeq.∂)h

= 2e2σ

(
−T

2

∂f

∂T
+
f

2

)
(ζeq.∂)h

= −T 2e2σ

[
∂

∂T

(
f

T

)]
(ζeq.∂)h

(πi0 − π̃i0) = −A0(ji − j̃i)

(πij − π̃ij) = 2(ζeq.∂h)

[
−f

2
gij +

(
∂f

∂ζ2
f

)
(ζeq)i(ζeq)j

]
+ f

[
(ζeq)i∇jh+ (ζeq)j∇ih

]

(6.76)

Where each of the scalar thermodynamic functions are evaluated on the zeroth order equilib-

rium solution

T = T̂ , ν = ν̂, (ζf )i = ζeqi

In obtaining (6.75) and (6.76)

dP =

(
ε+ P + µ2f

T

)
dT + T (q + νf)dν − f

2
dζ2
f

In those equations all spatial indices are raised and lowered by use of the spatial metric gij
(all the free indices will run from 1 to 3).

We now turn to the explicit expressions for δTµν and δJµ listed in (6.22). Substituting

f̃3 = f3 + h

(see (6.21)) in those expressions we obtain immediate agreement with (6.75) and (6.76). This

completes our verification.

6.5 Constraints on parity violating constitutive relations at first order

In this subsection we use the partition function to derive constraints on parity violating

contributions to constitutive relations by comparison with the local goldstone action (6.26).

As in the previous subsection, we find perfect agreement with the constraints obtained from

the local form of the second law. It turns out in this case that the second law analysis has

already been performed, in full detail, in [4]. We begin this section by reviewing the results

of [4], before turning to a re derivation of those results by comparison with (6.26).
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6.5.1 Review of constraints from the second law

Basis of Frame Invariants As we have seen above, the constitutive relations are an ex-

pansion of frame invariant combinations of πµν and jµ in terms of independent one derivative

scalars, vectors and tensors. Before even specifying the constitutive relations, we must first

specify a basis of frame invariant expressions that we will expand in this manner. In the previ-

ous section we choose to work with the frame invariant scalars Sa and frame invariant vectors

Va. A different choice for frame invariants was made in [4]; in order to ease comparison with

the results of that paper, we will adapt that choice in this section. In this subsubsection we

describe the basis of frame invariants used in [4].

Let

s1 = πµνP̃µν ζ2
fs2 = ζf ·π ·ζf (6.77)

s3 = u·π ·u s4 = u·π ·ζf
s5 = u·j s6 = ζf ·j
s7 = −µdiss
vν1 = uµπ

µαP̃ να vν2 = (ζf )µπ
µαP̃ να

vν3 = P̃ ναj
α

t = P̃ α
µ P̃ β

ν παβ −
1

2
P̃µνP̃αβπαβ ,

Throughout this section s7 = −µdiss = 0 ( µdiss was defined in [5]). However we will retain s7

in all our formulas, in order to permit easy adaptation of our final results to frames in which

µdiss 6= 0.

Pµν = Gµν + uµuν P̃µν = Pµν −
(ζf )µ(ζf )ν

(ζf )2
. (6.78)

Following [4] we define the row vectors

s =
(
s1 s2 s3 s4 s5 s6 s7

)
v =

(
v1 v2 v3

)
.

(6.79)

We also define the matrices

As =



Rs
2qTψf

B3
3T −

A3
2Tψf

B2
3T −

A2
2Tψf

B1
3T −

A1
2Tψf

− Rs
qψfT

B3
3T + A3

Tψf
B2
3T + A2

Tψf
B1
3T + A1

Tψf

0 1
T 2 0 0

− R
T 2ψf

K3
T

K2
T

K1
T

0 0 −1 0

− 1
T 2ψf

0 0 0

0 (ρ+P )K3

T
(ρ+P )K2

T
(ρ+P )K1

T


, Av =

−R 0

0 2
T 3ψf

−1 0

 (6.80)

where

R =
q

ρ+ P
V µ =

Eµ

T
− Pµν∂νν
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and the Ai’s Bi’s, Ci’s and Ki’s defined as follows.

ν =
µ

T
, ψf =

ζ2
f

T 2
, K =

∇θ[fξθ]
ε+ P

, R =
q

ε+ P

B1 = − ∂

∂ψf
[log(s)], B2 = − ∂

∂ν
[log(s)], B3 = − ∂

∂T
[log(s)]

K1 =
s

ε+ P

∂

∂ψf

[q
s

]
, K2 =

s

ε+ P

∂

∂ν

[q
s

]
, K3 =

s

ε+ P

∂

∂T

[q
s

]
A1 = −1

2
− νψf (1− µR)

[
∂

∂ψf

(q
s

)]
+
ψf
3s

∂s

∂ψf

A2 = −νψf (1− µR)

[
∂

∂ν

(q
s

)]
+
ψf
3s

∂s

∂ν

A3 = −νψf (1− µR)

[
∂

∂T

(q
s

)]
+
ψf
3s

(
∂s

∂T
− 3s

T

)
Vµ =

Eµ
T
− P σµ∇σ

[µ
T

]
Ωµ =

1

2
εµνλσuν∇λ(ζf )σ, ωµ =

1

2
εµνλσuν∇λuσ, Bµ =

1

2
εµνλσuνFλσ .

(6.81)

In terms of (6.77)-(6.80), the frame invariant scalar, vector and tensor combinations of

πµν , jµ and µdiss are given by the row vectors

sAs, vµA
v, tµν . (6.82)

By scalars, vectors and tensors we mean expressions which transform as spin 0, ±1 and ±2

representations of the SO(2) symmetry that is left invariant by the two vectors uµ and ξµ at

each point in spacetime.

Constitutive Relations We have 4 frame invariant scalars, 2 frame invariant vectors and

one frame invariant tensor. The most general symmetry allowed parity odd first derivative

constitutive relations take the form

tµν = −η̃T̃ µν1

vµi A
v
ij = −

2∑
i=1

Ṽiκ̃ij −

(
7∑
i=3

Ṽiκ̃ij

)

siA
s
ij = −

 2∑
i=1

4∑
j=1

S̃iβ̃ij


(6.83)

with T , T̃ , V, Ṽ, S and S̃ a basis of onshell independent SO(2) invariant tensors, vectors and

scalars given in table

6.5.2 Constraints on constitutive relations from the local second law

Notice that both pseudo tensors that appear in (6.83) are nondissipative. Further, the five

pseudo vectors Vi i = 3 . . . 7, are nondissipative. It may therefore come as no surprise to
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vector definition dual parity odd vector(
εµναβuνξαVβ

)
evaluated in equilibrium

Vµ1
(
Eµ

T −∇
µ
( µ
T

))
0

Vµ2 P̃µβ
(
ζαf σαβ

)
0

Vµ3 P̃µσ∇σT −T̂ V i
1

Vµ4 P̃µσ∇σ
( µ
T

)
1
T0
V i

2

Vµ5 P̃µσ∇σ
(
ζ2
f

T 2

)
εijkV i

5

Vµ6
Vc µ2 −P̃µαζνf ∂αuν

ζ2
f

1
2(ζeq)2 e

σV i
4

Vµ7 −PµνFναζαf
ζ2
f

− 1
(ζeq)2 (ξ0V

i
4 + V i

3 )

Table 19. Independent fluid vector data. Here V im for m=1,2,3,4,5 are independent vectors in

equilibrium defined in (6.28)

pseudo scalars definition In equilibrium

S̃1 ω.ξ -1
2e
σS2

S̃2 B.ξ S1 + ξ0S2

pseudo tensors definition In equilibrium

T̃ µν1 ∗σuµν 0

T̃ µν2 ∗σξµν won’t need

Table 20. Independent fluid scalar and tensor data. Here Sm for m=1,2 are independent vectors

in equilibrium defined in (6.28). σu and σξ are the shear tensors for normal and superfluid velocity

respectively and ∗σµν = εµραβuρξασ ν
β + (µ↔ ν)

the reader that [4] was able to use the principle of local entropy increase to determine κ̃im
(i = 3 . . . 7 and m = 1 . . . 2), together with β̃ij (i = 1 . . . 2 and j = 1 . . . 4) in terms of two free

functions that appeared in the parameterization of the entropy current. These two functions

were called σ8 and σ10 in [4]. The results of [4] were presented in terms of σ8 and σ10 and

four additional auxiliary fields which were determined in terms of σ8 and σ10 by the relations
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64

σ3 = −T ∂

∂T
(σ10 − νσ8)

σ4 = σ8 + Cν + 2h̃− ∂

∂ν
(σ10 − νσ8)

σ5 = − ∂

∂ψf
(σ10 − νσ8)

σ9 = 2ν(σ10 − νσ8)− 2

3
Cν3 − 2h̃ν2 + s9

(6.84)

In terms of all these fields, it was demonstrated in [4] that point wise positivity of the

the divergence of the entropy current determines

η̃ = 0, κ̃m2 = 0 (6.85)

and

κ̃31 = −RTσ3 − T∂Tσ8

κ̃41 = −RT 2σ4 − T∂νσ8

κ̃51 = −RT 2σ5 − T∂ψσ8

κ̃61 = −2RT 3σ9 + 2T 2σ10

κ̃71 = −RT 2σ10 + 2Tσ8 + CTν + 2h̃T

(6.86)

− β̃ij =

(
2RTσ9

ψf
− 2σ10

ψf
−2σ3 − 2T 2K3σ9 −2Tσ4 − 2T 2K2σ9 −2Tσ5 − 2K1T

2σ9

−Cν+2h̃
Tψf

− 2σ8

Tψf
+ Rσ10

ψf
∂Tσ8 −K3Tσ10 ∂νσ8 −K2Tσ10 ∂ψf

σ8 −K1Tσ10

)
.

(6.87)

6.5.3 Constraints on constitutive relations from the Goldstone action

As in the previous subsubsection, we use the Goldstone action to constrain transport coeffi-

cients as follows. All constraints follow from the analogue of (6.46)

tµν(δTµν , δJµ) = tµν(πµν , jµ)

vµi A
v
ij(δTµν , δJµ) = vµi A

v
ij(πµν , jµ)

siA
s
ij(δTµν , δJµ) = siA

s
ij(πµν , jµ)

(6.88)

The LHS in this equation may be determined in terms of the functions g1 and g2 in the

Goldstone action using (6.28). The RHS of the same equation is simplified using (6.83) under

64All terms in (6.84) proportional to the constant h̃ were omitted in [4]. The reason for this is that [4]

assumed that the entropy current was gauge invariant. As explained in [47] this does not seem to be physically

necessary as long as the divergence of the entropy current is gauge invariant. This allows the addition of the

new term proportional to h̃ in (6.97), which allows for a slight modification of the results of [4], captured by

the shifts described below. As we will see later, the requirement of CPT invariance forces h̃ to vanish.
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the substitution T → T̂ , µ → µ̂, ζf → ζeq. Under the last substitution, the parity odd first

derivative vectors and scalars evaluate to geometric expressions. Substituting these relations

into the RHS of (6.88) and equation coefficients of independent vectors and tensors yields an

expression for all non dissipative transport coefficients in terms of the functions g1 and g2.

Using Eq.(6.27) one obtains

vi1 = uµπ
µαP̃ iα

= T̂ 3(−ν̂∂T̂ g1 + ∂T̂ g2)V i
1 +

T̂ 2

T0
(ν̂∂ν̂g1 − ∂ν̂g2)V i

2 −
T̂ 2

(ζeq)2
(g2 − 2g1ν̂)V i

3

+ T0ν̂
T̂ 2

(ζeq)2
V i

4 + T̂ 2(ν̂∂ψeqg1 − ∂ψeqg2)V i
5

vi2 = (ζf )µπ
µαP̃ iα = 0

vi3 = P̃ ναj
α

= T̂ (T̂ ∂T̂ g1 V
i

1 −
1

T0
∂ν̂g1 V

i
2 −

1

(ζeq)2
(2g1 V

i
3 + g2T0V

i
4 + (ζeq)2∂ψeqg1 V

i
5 ))

s1 = πµνP̃µν = 0

s2 =
1

(ζf )2
ζf ·π ·ζf = − 2

T̂
(ζeq)2

(
∂ψeqg1 S1 + T0∂ψeqg2 S2

)
s3 = u·π ·u = T̂ (T̂ ∂T̂ g1 − 2ψeq∂ψeqg1)S1 + T̂ T0(T̂ ∂T̂ g2 − 2ψeq∂ψeqg2)S2

s4 = u·π ·ζf =
(
T̂ 2(g2 − 2g1)− 2(ζeq)2ν̂∂ψeqg1

)
S1 − S2T0ν̂(g2T̂

2 + 2(ζeq)2∂ψeqg2)

+ 2C1e
−σS2T

3
0 − C

1

6
A2

0e
−σ (A0S2 + 3S1)

s5 = u·j = −(∂ν̂g1S1 + T0∂ν̂g2S2)

s6 = ζf ·j = 2T̂
(
g1 +

(ζeq)2

T̂ 2
∂ψeqg1

)
S1 + T̂ T0

(
g2 +

(ζeq)2

T̂ 2
∂ψeqg2

)
S2 +

1

2
CA0e

−σ (A0S2 + 2S1)

s7 = −µdiss = 0

(6.89)
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Now using Eq.(6.83) one can find out the transport coefficients κ̃ij in terms of partition

function coefficients g1, g2 as follows

η̃ = 0, κ̃i2 = 0 for i ∈ (3 to 7)

κ31 = −
T̂
(

(−ν̂qT̂ + ε+ P )∂T̂ g1 + qT̂ ∂T̂ g2

)
P + ε

κ41 = −
T̂
(

(−ν̂qT̂ + ε+ P )∂ν̂g1 + qT̂ ∂ν̂g2

)
P + ε

κ51 = −
T̂
(

(−ν̂qT̂ + ε+ P )∂ψeqg1 + qT̂ ∂ψeqg2

)
P + ε

κ61 =
2T̂ 2

ε+ P

(
−g2(−2ν̂qT̂ + ε+ P ) + 2g1ν̂(−ν̂qT̂ + ε+ P )

)
+
Cν̂2T̂ 2(3p− 2ν̂qT̂ + 3ε)

3(P + ε)
− 4C1qT̂

3

P + ε

κ71 =
T̂

ε+ P

(
g2qT̂ + 2g1(−ν̂qT̂ + ε+ P )

)
+
Cν̂T̂ (2p− ν̂qT̂ + 2ε)

2(P + ε)
.

(6.90)

Similarly, the transport coefficients βij in terms of partition function coefficients g1, g2 as

follows

− β11 =
4RT̂ ν̂(−g2 + g1ν̂)

ψeq
− 2(−g2 + 2g1ν̂)

ψeq
+ C

ν̂2T̂ 2(−3P + 2ν̂qT̂ − 3ε)

3(ζeq)2(P + ε)
+ C1

4qT̂ 3

(ζeq)2(P + ε)

−β12 = − 2g1

T̂ψeq
+
R(−g2 + 2g1ν̂)

ψeq
− C ν̂T̂ (2P − ν̂qT̂ + 2ε)

2(ζeq)2(P + ε)

−β21 = −2T̂ (−ν̂∂T̂ g1 + ∂T̂ g2)− 4ν̂T 2K3(−g2 + g1ν̂)− 2

3
CK3T̂

2ν̂3 − 4C1K3T̂
2

−β22 = ∂T̂ g1 −K3T̂ (−g2 + 2g1ν)− 1

2
CK3T̂ ν̂

2

−β31 = −2T̂ (−ν̂∂ν̂g1 + ∂ν̂g2)− 4ν̂T̂ 2K2(−g2 + g1ν̂)− 2

3
CK2T̂

2ν̂3 − 4C1K2T̂
2

−β32 = ∂ν̂g1 −K2T̂ (−g2 + 2g1ν̂)− 1

2
CK2T̂ ν̂

2

−β41 = −2T (−ν̂∂ψeqg1 + ∂ψeqg2)− 4K1ν̂T̂
2(−g2 + g1ν̂)− 2

3
CK1T̂

2ν̂3 − 4C1K1T̂
2,

−β42 = ∂ψeqg1 −K1T̂ (−g2 + 2g1ν̂)− 1

2
CK1T̂ ν̂

2.

(6.91)

In equations (6.89), (6.90) and (6.91) the functions g1, g2 and all the other thermodynamics

functions (like ε, P , q etc) as arbitrary functions of T̂ , ν̂ and ψeq.

If we make the substitution

g1 = σ8 + h̃, g2 = −σ10 + 2ν̂σ8 +
1

2
Cν̂2 + 2h̃ν̂. (6.92)
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and introduce the auxiliary fields σ3, σ4, σ5 and σ9 which are written in terms of σ8 and

σ10 in (6.84) then our results for nondissipative transport coefficients agree precisely65 with

(6.85), (6.86), (6.87).

6.5.4 Entropy

As in the parity even case, we may determine the parity odd contribution to the entropy

current by a simple direct comparison with the the partition function. The relevant equation

here is

W odd
1 +Wanom = =

∫
d3y
√
−G

[
ν̂(δJ0

consistent − δJ0
covariant) + J0

S new

]
=

∫
d3y
√
−G

[
ν̂δJ0

shift + J0
S new

]
(6.93)

The term in (6.93) proportional to δJ0
shift has its origin in the fact that (6.58) is correct

when J0 is taken to be the consistent U(1) current. On the other hand the canonical entropy

current of hydrodynamics is defined in terms of the covariant U(1) current. As explained in

[47] these two currents differ by the shift

jµshift =
C

6
εµνρσAνFρσ. (6.94)

The contribution of this shift to the RHS of (6.93) evaluates to∫
d3y
√
−Gν̂δJ0

shift

=
C

6

∫
d3y
√
−Ge−σν̂εijkAiFjk

=
C

3

∫
d3y
√
gν̂εijk

(
Ai∂jAk +A0Ai∂jak −Aiaj∂kA0 +A0ai∂jAk +A2

0ai∂jak

)
=
C

3

∫
d3y
√
gν̂εijk

(
Ai∂jAk +

1

2
A0Ai∂jak +

3

2
A0ai∂jAk +A2

0ai∂jak

)
=
C

3

∫
d3y
√
gν̂εijk

(
Ai∂jAk +

1

2
A0Ai∂jak +

3

2T̂ 2ψeq
A0(a.(ζeq)S1 − a.V3)

+
A2

0

T̂ 2ψeq
(a.(ζeq)S2 − a.V4)

)
(6.95)

65 We also need to make identification s9 = 2C1, as will be clear below.
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Taking this contribution to the LHS of eq.(6.93) we find∫
d3y
√
−GJ0

S new

= W odd
1 +Wanom −

∫
d3y
√
−GδJ0

shift

=

∫
d3y
√
g

(
g1S1 + T0g2S2 +

1

T̂ 2ψeq
(C1T

2
0 −

C

3
ν̂A2

0)(a.(ζeq)S2 − a.V4)

− 1

2T̂ 2ψeq
Cν̂A0(a.(ζeq)S1 − a.V3)

)
(6.96)

In rest of the subsubsection we will use (6.96) to constrain the new part of the entropy

current. The most general form of the first order entropy current is given by

JµS new
= εµνρσ∂ν (σ1Tuρζσ) + σ3Ṽc µ3 + Tσ4Ṽc µ4 + Tσ5Ṽc µ5

+
σ8

2
εµνρσξνFρσ + T 2σ9ω

µ + Tσ10B
µ

+ α1Ṽc µ1 + α2Ṽc µ2 + ζµf [α3(ω ·ζ) + α4(B ·ζ)] + h̃εµνλσAν∂λAσ
where h̃ is a constant (6.97)

Since the first term proportional to σ1 is a total derivative, it is not determined. The term

proportional to α1 and α2 is also undetermined as Ṽc µ1 and Ṽc µ2 both are zero at equilibrium.

We now evaluate (6.97) in equilibrium. Using Table 1 and Table 2 and

Ṽc I0 = 0, Ṽc 0 ,I = −aiṼc i ,I where I ∈ (1 to 7)

ω0 =
eσ

2(ζeq)2

(
(a.(ζeq))S2 − (a.V4)

)
,

B0 = − 1

(ζeq)2

(
(a.(ζeq))S1 − (a.V3)

)
− A0

(ζeq)2

(
(a.(ζeq))S2 − (a.V4)

)
1

2
εµνρσξνFρσ = eσ(S1 +A0S2) +

A0e
σ

(ζeq)2

(
(a.(ζeq))S1 − (a.V3)

)
+
A2

0e
σ

(ζeq)2

(
(a.(ζeq))S2 − (a.V4)

)
+ eσ(a.V2)

ε0νλσAν∂λAσ = e−σεijk
[
Ai∂jAk + 2T0ν̂ai∂jAk + T 2

0 ν̂
2ai∂jak + ∂i (T0ν̂ajAk)

]
(6.98)
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where Vi and Si are listed in Eq.6.28. Now using the fact that (ζeq)i = Ai + ∂iφ∫ √
−Gε0νλσAν∂λAσ

=

∫
εijk

[
Ai∂jAk + 2T0ν̂ai∂jAk + T 2

0 ν̂
2ai∂jak

]
=

∫
√
gεijk

[
(ζeq)i∂j(ζ

eq)k + 2T0ν̂ai∂j(ζ
eq)k + T 2

0 ν̂
2ai∂jak

]
=

∫
√
g
(
S1 +

1

(ζeq)2
2T0ν̂((a.(ζeq))S1 − a.V3) +

1

(ζeq)2
T 2

0 ν̂
2((a.(ζeq))S2 − a.V4)

)
(6.99)

we obtain∫
d3x
√
−GJ0

S new =

∫
d3x
√
g
(
eσT̂ σ3(a.V1) + (σ8 − σ4)(a.V2)− T̂ eσσ5(a.V5)

+ σ8(S1 +A0S2) + h̃S1 − (a.(ζeq))
(
− 1

2
α3e

σS2 + α4(S1 +A0S2)
)

+
1

(ζeq)2
(−T̂ eσσ10 + σ8A0 + 2h̃T0ν̂)

(
(a.(ζeq))S1 − (a.V3)

)
+

1

(ζeq)2
(
e2σ

2
T̂ 2σ9 − T̂ eσσ10A0 + σ8A

2
0 + h̃T 2

0 ν̂
2)
(
(a.(ζeq))S2 − (a.V4)

))
(6.100)

It is convenient to introduce the following redefinitions

σ3 = −T̂ ∂T̂X, σ8 − σ4 = ∂ν̂X + Y, σ5 = −∂ψeqX + Z. (6.101)

Now using

∂kX = ∂T̂X ∂kT̂ + ∂ν̂X ∂kν̂ + ∂ψeqX ∂kψeq, (6.102)

the first line of the Eq.6.100 can be rewritten as∫
d3x
√
g
(
eσT̂ σ3(a.V1) + (σ8 − σ4)(a.V2)− T̂ eσσ5(a.V5)

)
=

∫
d3x
√
g
(
T0ε

ijkai(ζ
eq)j∂kX + Y (a.V2)− T̂ eσZ(a.V5)

)
=

∫
d3x
√
g
(
− T0Xε

ijk(ζeq)i∂jak + T0Xε
ijkai∂j(ζ

eq)k + Y (a.V2)− T̂ eσZ(a.V5)
)

=

∫
d3x
√
g
(
− T0XS2 + T0X

1

(ζeq)2

(
(a.(ζeq))S1 − (a.V3)

)
+ Y (a.V2)− T̂ eσZ(a.V5)

)
.

(6.103)
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So we obtain∫
d3x
√
−GJ0

S new =

∫
d3x
√
g
(
− T0XS2 + σ8(S1 +A0S2) + h̃S1

+ (T0X − T̂ eσσ10 + σ8A0 + 2h̃T0ν)
1

(ζeq)2

(
(a.(ζeq))S1 − (a.V3)

)
+

1

(ζeq)2
(
e2σ

2
T̂ 2σ9 − T̂ eσσ10A0 + σ8A

2
0 + h̃T 2

0 ν̂
2)
(
(a.(ζeq))S2 − (a.V4)

)
− (a.(ζeq))

(
− 1

2
α3e

σS2 + α4(S1 +A0S2)
)

+ Y (a.V2)− T̂ eσZ(a.V5)
)
.

(6.104)

Now using (6.96) we obtain

Y = Z = 0, α3 = α4 = 0

X = σ10 − ν̂σ8 −
1

2
Cν̂2 − 2h̃ν̂,

σ3 = −T̂ ∂T̂ (σ10 − ν̂σ8), σ4 = σ8 − ∂ν̂(σ10 − ν̂σ8) + Cν̂ + 2h̃, σ5 = −∂ψeq(σ10 − ν̂σ8)

σ9 = 2ν̂(σ10 − ν̂σ8) + 2(C1 −
C

3
ν̂3)− 2h̃ν̂2

g1 = σ8 + h̃, g2 = −σ10 + 2ν̂σ8 +
1

2
Cν̂2 + 2h̃ν̂.

(6.105)

66 It may be verified that (6.105) is consistent with (6.84). In other words the entropy current

determined by comparison with partition function agrees exactly with the non dissipative part

of the entropy current determined from the requirement of positivity of divergence. 67

6.6 CPT Invariance

In this subsection we explore the constraints imposed on the partition function (6.17) and

(6.26) by the requirement of 4 dimensional CPT invariance. In Table 3 we list the action of

CPT on various fields appearing in the partition function.

• Parity even case: Using this table one easily see that, demanding CPT invariance of

the action (6.17), the functions f1, f2, f3 are even under CPT. Instead had we demanded

only time reversal invariance, then the we would conclude that f1 = f2 = f3 = 0.

• Parity odd case: Now demanding CPT invariance of the action (6.26), we conclude

that g1 is odd function of A0 and hence it can not contain any constant. This in

particular implies h̃ = 0, since g1 = σ8 + h̃. So the gauge non invariant piece in entropy

current in (6.97) vanishes once we demand CPT invariance. The function g2 appearing

in (6.26) is even function in A0. It is also easy to see that the requirement of CPT

invariance of the partition function forces C1 = 0.

66The expression 2C1 was referred to as s9 in [4].
67Note however that the entropy positivity method, in addition, determines two dissipative terms in the

entropy current, and so, in that sense, carries more information about the entropy current.
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Field C P T CPT

σ + + + +

ai + − − +

gij + + + +

A0 − + + −
Ai − − − −
ζi − − − −

Table 21. Action of CPT

6.7 Discussion

In this section we have studied the equality type constraints between transport coefficients

for relativistic superfluids at first order in the derivative expansion. Our central result is that

the constraints obtained from a local form of the second law of thermodynamics agree exactly

with those obtained from a study of the equilibrium partition function.

As the constraints obtained from both methods are numerous and rather involved in

structure, the perfect agreement found in this section strengthens our earlier conjecture [47]

that the constraints obtained from the partition function agree with those obtained from

the local version of the second law of thermodynamics under all circumstances. It would be

interesting to find either a proof for or a counterexample against this conjecture.

In the special case that the superfluid is nondissipative, [31] has presented a framework

for describing superfluid dynamics from an action formalism. It would be interesting to

understand the connection of the formalism of [31] to that described in this paper.

As we have explained above, a central object in our analysis was a local Euclidean action

for the superconducting Goldstone field. In the neighborhood of a second order phase transi-

tion familiar Landau-Ginzburg action for the order parameter is the natural analogue of the

Goldstone boson action utilized in this paper. It seems likely that the methods of the current

paper generalize to the study of hydrodynamics in the neighborhood of second order phase

transitions (see [56] for a review). It would be interesting to perform this generalization.

Finally, in this section we have discussed only the equality type constraints on nondissi-

pative transport coefficients that follow from the local second law. We have neither discussed

Onsager type equality constraints on dissipative coefficients nor the inequalities on dissipative

coefficients. It is possible that these constraints follow the imposition of reasonable conditions

(like stability) to time fluctuations about equilibrium. We leave the study of time dependence

for future work.
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7 Conclusion

In the work reported in this thesis we have developed a more field theoretic approach based

on the existence of a partition function for equilibrium systems in hydrodynamic regime

to constrain the non-dissipative transport coefficients. This approach apart from capturing

independent non-dissipative transport coefficients beautifully captures the effect of anomalies

in global symmetries as certain Chern-Simons terms in the equilibrium partition function. In

a wide variety of examples we have shown that the constraints thus obtained match precisely

with those obtained using a local second law of thermodynamics. This lead us to conjecture

that the equality holds at all derivative orders for all fluid systems.

We hope that the work done in this thesis would lead to further studies of anomalous

transport ranging from non abelian internal symmetries to weyl and diffeomorphism anomalies

and provide a platform for better understanding of inequality relations leading to a fuller

understanding of 2nd law of thermodynamics (at least in hydrodynamical context) and Wald

entropy via fluid-gravity map.
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