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Remarks on Scaling in 
gravity and in YM Theory

Two characters in search of an author...

Work in collaboration with C. Gomez, A. Sabio-Vera, 
M. Vazquez-Mozo and A. Tavanfar
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More than forty years have elapsed since the general 
theorems on singularities in GR and BH formation have 
been studied in detail

Most people (including Hawking) believe that the problem is 
basically solved within the AdS/CFT correspondence.  The 
question is how?, what when wrong in Hawking’s original 
argument?

Is string non-locality enough?

Hawking went futher, and argued that thermal production 
of radiations in BH emission implied the fundamental loss 
of coherence in Quantum Mechanics.  We lose 
information and also unitarity

Apart from BH-Thermodynamics, we have learned that 
once QM is brought to bare, rather puzzling problems 
arise

General Considerations
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General philosophy

One of the most important lessons we have learned from the  Maldacena 
conjecture is that the QCD string, is the  fundamental string in some higher 
dimensional geometry.  Accumulated evidence points to the relevance of  
BH’s in the holographic  description

An interesting perturbative regime where stringy aspects of QCD naturally 
appear is the Regge limit of scattering amplitudes s>> -t. The amplitudes are 
dominated by Log s, making a resummation of terms of the form 

mandatory.  The re-summation can be done using the BFKL formalism which 
predicts a Regge behavior for the total cross section.  When the vacuum 
quantum numbers are exchanged in the t-channel, the dominant trajectory is 
that of the hard pomeron.  The LLA breaks unitarity, which is restored by 
gluon saturation effects, with interesting scaling properties.  Is there a 
holographic description of this behavior?

(αs N log(s/Q2))n
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Basic aim

Scaling phenomena

Holography

Yang-MillsGravity

We believe that the Maldacena conjecture should be 
extended beyond supersymmetry

So far most scenarios explored have been static, i.e. 
thermal HP...

We want to find dynamical phenomena that could be 
related and also observable.  We also considered 
criticality in the formation of trapped surfaces

Weakly coupled gauge theories  vs  strong curvature 
gravity



Lu
is

 A
lv

ar
ez

-G
au

m
e 

K
an

ha
 1

4 
02

 2
00

9

5

p=p

DSS

p>p

p<p

Black hole

space−time
Minkowski 

*
*

*

Choptuik’s (93) showed the existence of
a co-dimension one critical surface.

For generic one parameter families of 
initial data, parameterized by p, there is a 
critical value p* where it crosses the  
critical surface.

There are two possible large time 
evolutions, or fixed points:  

A BH forms with arbitrarily small mass

Or the system bounces and it is radiated 
away to infinity leaving behind flat space

The critical solution has an unstable 
mode, or relevant direction.  

The eigenvalue of the relevant direction 
leads to the  BH critical exponent.

Critical behavior in phase space
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Basic results

ds2 = −α2(t, r)dt2 + a2(t, r)dr2 + r2dΩ2
d−2

rBH ∼ (p − p
∗)γ

Z∗(e
n∆ t, en∆ r) = Z∗(t, r)

The critical solution is  independent of the initial conditions.
On the supercritical side, the size of the small BH satisfies a
universal scaling law.  The critical solution exhibits DSS:

Spherical collapse, no gravitational radiation
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D ∆ γ

4 3.37 ± 2% 0.372 ± 1%

5 3.19 ± 2% 0.408 ± 2%

6 3.01 ± 2% 0.422 ± 2%

7 2.83 ± 2% 0.429 ± 2%

8 2.70 ± 2% 0.436 ± 2%

9 2.61 ± 2% 0.442 ± 2%

10 2.55 ± 3% 0.447 ± 3%

11 2.51 ± 3% 0.44 ± 3%

Zp(τ, ζ) ≈ Z∗(τ, ζ) +
∞∑

k=1

Ck(p)eλkτδkZ(τ, ζ)

γ =
1
λ1

Numerics

Do a stability,  Liapounov analysis
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ds2 = −α(t, r)2dt2 + a(t, r)2dr2 + R(t, r)2dΩ2

d−2

In the relevant scaling limit in YM, 
there is no echo parameter.

We want a similar symmetry in 
gravity.  This is achieved by studying 
the collapse of perfect fluids.

The critical solution will have CSS 
rather than DSS.  A region of the 
space time before the singularity 
forms has homothety, i . e . a 
conformal Killing vector of weight 2.

We choose comoving coordinates 
to describe the spherical collapse of 
the fluid.  The equations are simpler.

Cahill-Taub, Bicknell-Henriksen,  
Coleman-Evans, Hara-Koike-Adachi, 
Harada-Maeda. We follow and 
complete these authors in any d

Tµν = (ρ + p)uµuν + p gµν

p = k ρ, 0 ≤ k ≤ 1

Perfect fluid collapse
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Introducing the Hawking-Misner mass:

Equations of motion

All equations have a simple 
physical interpretation. The 4th 
one is related to the formation 
of a trapped surface R=const
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Criticality in the formation of MTS

Recently, Gubser, Pufu and Yarom 
considered the formation of 
trapped surfaces in the head-on 
collision of gravitational shock 
waves in AdS to estimate the 
entropy of generated in the 
collision of HI’s

We study the formation of MTS as a function of the 
spread of the energy density in transverse space. In 
D=4,5 we find critical behavior of Type I,II, but now in a 
control situation where we can be at weak gravity.



Lu
is

 A
lv

ar
ez

-G
au

m
e 

K
an

ha
 1

4 
02

 2
00

9

11

Some details



Lu
is

 A
lv

ar
ez

-G
au

m
e 

K
an

ha
 1

4 
02

 2
00

9

12

The MTS condition becomes:

Introducing the dilution parameter:

...continued
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AdS Minkowski

Results

There is a critical value in the 
dilution parameter, and the size of 
the trapped surface is finite. Like in 
Type-I phenomena.  Furthermore the 
critical exponents is  1/2

There is a critical value in the 
dilution parameter, and the size of 
the trapped surface is zero. Like in 
Type-II phenomena.  Furthermore 
the critical exponents is  1

There is a critical value in the 
dilution parameter, and the size of 
the trapped surface is zero. Like in 
Type-II phenomena.  Furthermore 
the critical exponents is  1/2

There is a critical value in the 
dilution parameter, and the size of 
the trapped surface is finite. Like in 
Type-I phenomena.  Furthermore the 
critical exponents is  1/2

D=5

D=4

For higher dimensions there is always a solution for any dilution parameter
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BFKL the Regge limit of YM

BFKL is an equation which describes the high-energy limit of weakly coupled YM 

A(s, t) ∼ sα(t) ; s >> 1 σtotal ∼ sα(0)−1

α(0) = 1 + (4 log 2) αs + O[α2
s]

Unitarity violation, Froissart-Martin bound.  We will be looking at weak 
coupling.  Reggeization processes have also been studied at strong coupling by 
Brower, Polchinski, Strassler and Tan
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Dominants graphs in the Regge region
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εG(q2) = −

αsCA

4π2

∫
d
2k

q2

k2(k − q)2

Reggeized gluon
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Like a Bethe-Salpeter equation at leading log

Th i s i s s im i l a r to 
integrating out the fast, 
longitudinal degrees of 
freedom and working 
w i th the e f fec t i ve 
transverse hamiltonian.

T h i s h a m i l t o n i a n 
exhibits scale (SL(2,C)) 
invariance

Some details
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Eigenfunctions and eigenvalues 
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BFKL is valid up to a “saturation scale’’ beyond which 
nonlinear effects  from overlapping wave function of 
gluons and partons cannot be neglected.

BFKL can be modified to introduce nonlinear effects to  
restore unitarity.  These lead to the saturation 
phenomena, easier to explain in terms of pictures.  
This is the BK behavior of the gluon distribution 
function.  We also need to worry about energy 
conservation.

Unitarization, energy conservation

19
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∂Φ (kA, kB ,Y)
∂(ᾱsY)

= −Φ (kA, kB ,Y)2

+
∫ 1

0

dx

1− x

[
Φ

(√
xkA, kB ,Y

)
+

1
x

Φ
(

kA√
x

, kB ,Y
)
− 2Φ (kA, kB ,Y)

]
,

Φ (kA, kB ,Y = 0) =
1
π

∫
dγ

2πi

(
k2

A

k2
B

)γ− 1
2

.

With the initial condition:

One form of BK

The two kernels are related by simple scaling factors that we do 
not include here, and we have introduced the rapidity and a 
different way of writing the integral transform.  To be precise, this 
is the large N limit, or the Hartree-Fock approximation of BK.  
Otherwise we get an infinite hierarchy like the BBGKY hierarchy 
in kinetic theory
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2lnQ
DGLAP

B
FK
L

Y
s eYQQ λ∝= )(22

x
Y 1ln=

Saturation momentum

Color Glass 
Condensate

Extended scaling

Saturation in QCD
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σtot
|γ∗ P

(Y, Q) = σtot
|γ∗ P

(τ) ; τ =
Q2

Q2
s(Y )

= Q2xλs

Geometric scaling

HERA data for σγ∗pwith x < 0.01versus τ
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A pictorial description

1 2 3 4

〈n〉

· · ·

1 2 3 4

〈n〉

· · ·

Dilute to dense transition, with a fractal dim equal to  the BFKL exponent



Lu
is

 A
lv

ar
ez

-G
au

m
e 

K
an

ha
 1

4 
02

 2
00

9

24

A different approach

High energy collisions in the 3rd direction.  The BFKL conformal 
symmetry is the part of the conformal group commuting with 
the boost generator
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Integrate out the longitudinal momenta

Scaling limit at any coupling 

Exotic form of BFKL

xα → λ xα s′ = λ s λ ∼ 1√
s
→ 0

The principal series of SL(2,C) gives the correct eigenvalues in the 
weak coupling limit, but it should also provide the correct 
eigenfunctions in the general case
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Shock wave collisions on the boundary should be 
related by HRG to phenomena similar to the 
collision of gravitational waves in the bulk.  The 
understanding of what unitarises one, should allow 
us to understand what unitarizes the other in detail

RHIC, or LHC may explore the BFKL region where 
interesting BH phenomena should be directly 
related to measurable quantities (dream)

THANK YOU

Farewell
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d log M

d log z
=

(d − 3)k

k + 1

(

1

y
− 1

)

d log S

d log z
=

1

k + 1
(y − 1)

d log η

d log z
=

1

V 2
z − k

[

(1 + k)2

d − 2
η

k−1
k+1 S4−2d

− (d − 2)(y − 1)V 2

z − 2k

]

y(0+) =
d − 3

d − 1

M(z) !

(2D)
k

k+1

(d − 2)

[

k + 1

(d − 1)k + d − 3

]

z
2k

k+1

S(z) !

[

(2D)
1

k+1

k + 1

(

k +
d − 3

d − 1

)

]
1

1−d

z
−

2
(d−1)(k+1)

τ = − log(−t), z = −

r

t

η(τ, z) = 8πr2ρ(t, r),

S(τ, z) =
R(t, r)

r
,

m(t, r) = rd−3M(t, r),

Equations of motion

Conditions at the origin

Scaling variables 

CSS conditions

Only a discrete set of values 
for D are smooth at the 
sonic point (surface), related 
to the number of growing 
perturbations 
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Figure 6: Plot of η and VR versus y for k = 0.01, k = 0.1 and k = 0.2 in five dimensions.
The circular dot indicates on each curve the position of the sonic point. The corresponding
coordinates indicate the position at which the system is attracted as z → ∞.

29

Like critical damping
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Figure 3: Plot of η(z) and y(z) for k = 0.01, k = 0.1 and k = 0.2 in five dimensions. The dot
on the curves indicates the position of the sonic point.

26

Sonic point location
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Choptuik exponents
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