Navier-Stokes equation in AdS/CFT

Takeshi Morita

Tata Institute of Fundamental Research

based on collaboration with G. Mandal and S. Wadia

Introduction and Motivation

·BH Thermodynamics

stationary Thermodynamics BH system

Q. What does happen if non-stationary fluctuations are considered?

In the case of the small fluctuations

Thermodynamics ——— Fluid Dynamics

E: Energy S: Entropy T: Temperature e(x): Energy density s(x): Local "Entropy" t(x): Local "Temperature"

?

BH Fluid Dynamics BH Thermodynamics

A. Such a correspondence was confirmed in black branes.

(Sayantani B., Hubeny, Minwalla, Rangamani 2007)

(Sayantani Bhattacharyya, et al. 2007)

·Dynamical black brane in AdS5

(static) black brane $G_{MN}(u^\mu,T)$

$$\tilde{G}_{MN}(u^{\mu}(x),T(x))$$

 $\int T$: temperature

 u^{μ} : constant motion along the brane

Dynamical black brane T(x): local temperature $u^{\mu}(x)$: velocity fields $u^{\mu}(x)$: boundary coordinates

This metric satisfies Einstein Equation only if u^{μ}, T satisfy $\nabla_{\mu} T^{\mu\nu} = 0$.

 $T^{\mu
u}$: energy-momentum tensor for the boundary fluid

Einstein equation ———— Navier-Stokes equation

The boundary fluid dynamics controls the bulk gravity.

Q. Why does such a reduction happen?

What is the meaning of the Navier-Stokes equation?

A. We can understand them by considering Radial ADM formalism.

Plan of talk

- 1. Introduction and Motivation
- 2. Boundary Navier-Stokes equation
- 3. Radial ADM Formalizum
- 4. Conclusion

·black brane in AdS5

 $\int M, N$: bulk(5 dim) indexes μ, ν : boundary(4 dim) indexes

time-like killing $t^{\mu}= (1,0,0,0)$

$$ds^2 = 2dvdr - \frac{r^2}{l^2}f(br)dv^2 + \frac{r^2}{l^2}dx^{i2}$$
: Eddington-Finkelstein coordinate

$$f(br)=1-\frac{1}{(br)^4}$$

$$T = \frac{1}{\pi b}$$
: temperature

·black brane in AdS5

boundary

$$\begin{cases} M, N : \text{bulk(5 dim) indexes} \\ \mu, \nu : \text{boundary(4 dim) indexes} \end{cases}$$

time-like killing
$$t^{\mu}=(1,0,0,0)$$

boost (transverse direction)
$$u^{\mu}, \quad u \cdot u \equiv \eta_{\mu
u} u^{\mu} u^{
u} = -1$$

 u^{μ} : constant boost parameter

$$G_{MN}(T,u^\mu)$$
 $ds^2=-2u_\mu dx^\mu dr-rac{r^2}{l^2}f(br)u_\mu u_
u dx^\mu dx^
u$: Eddington-Finkelstein coordinate $+rac{r^2}{l^2}(u_\mu u_
u+\eta_{\mu
u})dx^\mu dx^
u$

$$f(br) = 1 - \frac{1}{(br)^4}$$

$$\begin{cases} \boldsymbol{u^{\mu}} : \text{constant} \\ T = \frac{1}{\pi b} : \text{temperature} \end{cases}$$

· Boundary Energy momentum tensor (Balasubaramanian and Kraus 1999)

$$S = -\frac{1}{16\pi G_5} \int dx^5 \sqrt{-G} \left(R - \frac{20}{l^2} \right) - \frac{1}{8\pi G_5} \int_B dx^4 \sqrt{-h} K + \frac{1}{8\pi G_5} S_{ct}(h_{\mu\nu})$$

$$L_{ct} = -rac{3}{l}\sqrt{-h}\left(1-rac{l^2}{12}\mathcal{R}
ight)$$
 : counter term

Regularize the energy-momentum tensor

 $h_{\mu
u}$: metric on the boundary

 $K_{\mu
u}$: extrinsic curvature

 $\mathcal{R}_{\mu
u}$: Ricci curvature on the boundary

 $\mathcal{G}_{\mu
u}$: Einstein tensor on the boundary

Then, we can calculate the energy-momentum tensor.

$$T^{\mu\nu} = \frac{2}{\sqrt{-h}} \frac{\delta S}{\delta h_{\mu\nu}}$$

$$= \frac{1}{8\pi G_5} \left(K^{\mu\nu} - Kh^{\mu\nu} - \frac{3}{l} h^{\mu\nu} - \frac{l}{2} \mathcal{G}^{\mu\nu} \right)$$

· Boundary Energy momentum tensor

Conformally invariant perfect fluid stress tensor

Dynamical brane and Boundary Energy momentum tensor

Note: The metric does not satisfy Einstein equations if u^{μ} and b are arbitrary functions.

$$extstyle extstyle
abla^{\mu
u} = 0 extstyle extstyle extstyle extstyle extstyle extstyle \textstyle \textstyle$$

· Dynamical brane and Boundary Energy momentum tensor

Einstein equations for the fluctuations around the black brane

Boundary Navier-Stokes equation with respect to u^{μ} and b .

$$\nabla_{\mu}T^{\mu\nu}=0$$

Plan of talk

- 1. Introduction and Motivation
- 2. Boundary Navier-Stokes equation
- 3. Radial ADM Formalizum
- 4. Conclusion

·Boundary energy-momentum tensor

$$T^{\mu\nu} = rac{2}{\sqrt{-h}} rac{\delta S}{\delta h_{\mu
u}}
onumber \ = rac{1}{8\pi G_5} \left(K^{\mu
u} - K h^{\mu
u} - rac{3}{l} h^{\mu
u} - rac{l}{2} \mathcal{G}^{\mu
u}
ight)$$

·ADM Formalizm

$$ds^{2} = -N^{2}dt^{2} + \gamma_{ij} \left(dx^{i} + N^{i}dt \right) \left(dx^{j} + N^{j}dt \right)$$

$$\pi^{ij} = rac{2}{\sqrt{\gamma}} rac{\delta S}{\delta \gamma_{ij}}
onumber \ = rac{1}{8\pi G_5} \left(K^{ij} - K \gamma^{ij}
ight)$$

$$\gamma^{ij}$$
 $t = constant$

$$igwedge
abla_i \pi^{ij} = 0$$
 : constraint equation

·Boundary energy-momentum tensor

$$T^{\mu\nu} = rac{2}{\sqrt{-h}} rac{\delta S}{\delta h_{\mu
u}}
onumber \ = rac{1}{8\pi G_5} \left(K^{\mu
u} - K h^{\mu
u} - rac{3}{l} h^{\mu
u} - rac{l}{2} \mathcal{G}^{\mu
u}
ight)$$

·Radial ADM Formalism

$$ds^2 = N^2 dr^2 + \gamma_{\mu\nu} (dx^{\mu} + N^{\mu} dr) (dx^{\nu} + N^{\nu} dr)$$

$$\pi^{\mu\nu} = \frac{2}{\sqrt{-\gamma}} \frac{\delta S}{\delta \gamma_{\mu\nu}}$$
$$= \frac{1}{8\pi G_5} (K^{\mu\nu} - K\gamma^{\mu\nu})$$

$$\nabla_{\mu}\pi^{\mu\nu}=0$$
 : "constraint" equation

· ADM Formalism and Radial ADM Formalism

We can regard that Einstein equations describe an evolution along radial direction instead of time direction.

· Correspondence between the two energy-momentum tensors.

$$\pi^{\mu\nu} = \frac{1}{8\pi G_5} (K^{\mu\nu} - K\gamma^{\mu\nu}) \qquad \qquad \nabla_{\mu} \pi^{\mu\nu} = 0 : \text{ "constraint" equation}$$

$$\uparrow r \to \infty \qquad \qquad ? \qquad \uparrow r \to \infty$$

$$T^{\mu\nu} = \frac{1}{8\pi G_5} \left(K^{\mu\nu} - Kh^{\mu\nu} - \frac{3}{l}h^{\mu\nu} - \frac{l}{2}\mathcal{G}^{\mu\nu} \right) \qquad \nabla_{\mu} T^{\mu\nu} = 0 : \text{ Navier-Stokes equation}$$

We need to confirm that the counter terms do not prevent the constraint equations.

Balasubaramanian and Kraus added the counter terms such that the equation of the motions are not changed.

$$\nabla_{\mu}h^{\mu\nu} = \nabla_{\mu}\mathcal{G}^{\mu\nu} = 0$$

We can regard the Navier-Stokes equations as the constraint equations in the radial ADM formalism

Conclusion

We can regard the Navier-Stokes equations as the constraint equations in the radial ADM formalism.

Discussion

- R^2 corrections, non-relativistic limit, \cdots
- Meaning of the regularity condition

boundary gluon plasma

$$\delta S \ge 0, \ \eta > 0$$

boundary

$$\delta S \leq 0, \ \eta < 0$$

fine tuned process?

Relation to the membrane paradigm

The near horizon membrane also has fluid picture.

radial evolution(?)

cf. Iqbal and Liu (2008), Brustein and Gorbonos (2009)