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One of the successes of string theory has been

an explanation of the Bekenstein-Hawking en-

tropy of a class of supersymmetric black holes

in terms of microscopic quantum states.

SBH( ~Q) = ln dmicro( ~Q)

Strominger, Vafa

dmicro( ~Q): degeneracy of microstates carrying

a given set of charges ~Q

SBH( ~Q) = A/4GN

A= Area of event horizon of a black hole of

charge ~Q
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This formula is quite remarkable since it re-

lates a geometric quantity in space-time to a

counting problem.

However the Bekenstein-Hawking formula for

the entropy receives α′ and gs corrections.

Our goal is to search for an exact relation of

the form

dmacro( ~Q) = dmicro( ~Q)

dmacro( ~Q): Some generalization of the Bekenstein-

Hawking formula taking into account α′ and gs

corrections.
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We shall focus on extremal, BPS black holes.

Extremality: essential for the separation be-

tween the horizon degrees of freedom and those

living outside the horizon by an infinite throat

Supersymmetry: (probably) needed for ensur-

ing stability of extremal black holes.

Also we shall work in some fixed duality frame.
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Take a single centered black hole of charge ~Q

Proposal for dmacro( ~Q):∑
~Qhor, ~Qhair

~Qhor+
~Qhair=

~Q

dhor( ~Qhor) dhair( ~Qhair; ~Qhor)

dhor( ~Qhor): contribution from the horizon with

charge ~Qhor

dhair: contribution from the hair of the single-

centered black hole, with the horizon carrying

charge ~Qhor, and the hair carrying charge ~Qhair.
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Hair: smooth normalizable deformations of the

black hole solution with support outside the

horizon and satisfying BPS properties.

dhair( ~Qhair; ~Qhor): the degeneracy of the hair

carrying total charge ~Qhair, obtained by Crnkovic-

Witten type quantization of the hair degrees of

freedom.

Our main focus on this talk will be on dhor( ~Q).
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Our goal: Find a macroscopic prescription for

computing dhor( ~Q)

To leading order in gs but all orders in α′,
dhor( ~Q) is given by the exponential of the Wald

entropy

– can be computed using the entropy function

formalism

We shall begin with a lightening review of the

results of the entropy function formalism.
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Postulate: An extremal black hole has an AdS2

factor / SO(2,1) isometry in the near horizon

geometry.

Regarding all other directions (including angu-

lar coordinates) as compact we can regard the

near horizon geometry of an extremal black

hole as

AdS2 × a compact space (fibered over AdS2)

Note: Magnetic charges are encoded in the

fluxes through the compact space.
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Consider string theory in such a background

containing two dimensional metric gµν and U(1)

gauge fields A
(i)
µ among other fields.

The most general field configuration consis-

tent with SO(2,1) isometry:

ds2 ≡ g
(2)
µν dxµdxν = v

(
−(r2 − 1)dt2 +

dr2

r2 − 1

)
F

(i)
rt = ei, · · · · · · · · ·

L(2)(v,~e, · · ·): The Lagrangian density evalu-

ated in this background.
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For black hole with electric charge ~q, define

E(~q, v, ~e, · · ·) ≡ 2π
(
ei qi − vL(2)

)
One finds that

1. All the near horizon parameters are obtained

by extremizing E with respect to v, ei and the

other near horizon parameters.

2. Swald(~q) = E at this extremum.

Thus in the classical limit

dhor(~q) = eSwald(~q) = eE
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We shall propose an expression for dhor(~q) in

the full quantum theory as a path integral over

the Euclidean continuation of the near horizon

geometry.

→ Quantum entropy function
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ds2 = v

(
−(r2 − 1)dt2 +

dr2

r2 − 1

)
F

(i)
rt = ei

Euclidean continuation:

t = −iθ, r = cosh η, θ ≡ θ + 2π, 0 ≤ η < ∞

This gives

ds2 = v
(
dη2 + sinh2 η dθ2

)
,

F
(i)
θη = iei sinh η

→ A
(i)
θ = −i ei (cosh η−1) = −i ei (r−1) .
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Proposal for the quantum entropy function dhor(~q)

dhor(~q) =
〈
exp[−iqi

∮
dθ A

(i)
θ ]

〉finite

AdS2

〈 〉AdS2
: unnormalized path integral over vari-

ous fields of string theory on euclidean global

AdS2.

∮
: a closed contour at the boundary of AdS2.

‘finite’: Infrared finite part of the amplitude.
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We need to regularize the infinite volume of
AdS2 by putting a cut-off r ≤ r0f(θ) for some
smooth periodic function f(θ).

The superscript ‘finite’ refers to the finite part
of the amplitude defined by expressing it as

eCL × finite part

L: length of the boundary of AdS2.

C: A constant

The definition can be shown to be independent
of the choice of f(θ).

We shall work with f(θ) = 1.
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The role of

exp[−iqi

∮
dθ A

(i)
θ ]

We could absorb this into the boundary terms

in the action.

However we have displayed it explicitly since it

plays a special role.

It is the only term in the boundary action that

involves the gauge field and not its field strength.

Why do we need this term?
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In AdSd the Maxwell’s equation has two solu-

tions in the asymptotic region:

A
(i)
θ ∼ r−d+3: electric field mode

A
(i)
θ ∼ constant: constant mode

Thus for d ≥ 4 the constant mode of the gauge

field is dominant at infinity.

We fix the constant mode by a boundary condi-

tion and integrate over the electric field mode.
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However for d = 2,

Electric field mode: A
(i)
θ ∼ r

Constant mode: A
(i)
θ ∼ constant

Thus the electric field mode is dominant

→ we must work in a sector with fixed asymp-

totic electric field ı.e. fixed charge, and allow

the constant mode to fluctuate.
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However now the extremization of the action

no longer gives the classical equations of mo-

tion.

The variation of the action contains boundary

terms proportional to δA
(i)
θ which are no longer

constrained to vanish by boundary condition.

→ we need to add new boundary term in the

action to cancel the boundary terms propor-

tional to δA
(i)
θ .

The exp[−iqi
∮

dθ A
(i)
θ ] precisely achieves this

task.
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dhor(~q) =
〈
exp[−iqi

∮
dθ A

(i)
θ ]

〉finite

AdS2

We shall try to justify this proposal by showing

that

1. In the classical limit

ln dhor(~q) → Swald(~q)

2. This fits in with the usual rules of AdS/CFT

correspondence.
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〈
exp[−iqi

∮
dθ A

(i)
θ ]

〉
AdS2

In the classical limit this reduces to

e−S exp[−iqi

∮
dθ A

(i)cl
θ ]

A
(i)cl
θ = −i ei (r0−1)

S = Euclidean action = Sbulk + Sboundary
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Sbulk = −
∫ r0

1
dr
√

det g dθL(2) = −(r0−1)2πvL(2)

−iqi

∮
dθ A

(i)cl
θ = −2π ~q · ~e (r0−1)

Sboundary = −2π Kr0 +O(r−1
0 )

K: some constant which depends on the de-

tails of the boundary terms.

The length of the boundary is

L = 2π
√

vr0 +O(r−1
0 ) .
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This gives〈
exp[−iqi

∮
dθ A

(i)
θ ]

〉
AdS2

=
[
eL(vL(2)+K−~e·~q)/

√
v+2π(~e·~q−vL(2))+O(r−1

0 )
]

Extracting the finite part we get

dhor(~q) ' exp
[
2π(~e · ~q − vL(2))

]
= exp [Swald(~q)]

Note: A change in the boundary action changes

K but the finite part is insensitive to such a

change.
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AdS2/CFT1 correspondence

Euclidean AdS2 is the Poincare disk.

→ its boundary is a circle of circumference L.

Thus AdS/CFT correspondence →〈
exp[−iqi

∮
dθ A

(i)
θ ]

〉
AdS2

= ZCFT1
= Tr~q e−LH

Tr~q: trace over states of charge ~q in CFT1

H: Hamiltonian of dual CFT1
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Thus we have, for large L,〈
exp[−iqi

∮
dθ A

(i)
θ ]

〉
AdS2

= Tr~q e−LH

= dCFT (~q)e−E0L .

E0, dCFT (~q): ground state energy, degeneracy

Taking the finite part we get

dhor(~q) = dCFT (~q)

Note: In the more conventional units we take
the length of the boundary to be finite, but
scale energies by L.

Only the ground states of the CFT survive.
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What can we say about CFT1?

It should be identified as the infrared limit of

the quantum mechanics that describes the black

hole solution, after stripping off the hair con-

tribution.

Thus dCFT together with the hair contribution

should give us the microscopic degeneracies.

– agrees with our proposal.
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A consequence

In the computation of dhor we must include

contribution from all saddle points preserving

the asymptotic boundary conditions.

Take a ZZN orbifold that acts on AdS2 by

θ → θ + 2π/N

and an appropriate ZZN transformation in the

compact directions.
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After a change of coordinates we find that the

new configuration satisfies the asymptotic b.c.

ds2 = v

(
(r2 −N−2)dθ2 +

dr2

r2 −N−2

)
,

F
(i)
rθ = −i ei, · · · , θ ≡ θ + 2π .

Its classical contribution to dhor is eSwald/N .

Such contributions are indeed present in the

known microscopic degeneracies of black holes

in N = 4 supersymmetric string theories.
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Summary

We have a concrete proposal for relating the

extremal black hole entropy to the microscopic

degeneracy

dhor(~q) =
〈
exp[−iqi

∮
dθ A

(i)
θ ]

〉finite

AdS2

should agree with the microscopic degenera-

cies after removing the hair contribution.
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1. It reduces to the relation between wald en-

tropy and statistical entropy in the classical

limit.

2. It is in the spirit of AdS/CFT correspon-

dence.
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Degeneracy or Index?

Often in the microscopic theory we compute
the index rather than degeneracy.

– protected against quantum corrections.

e.g. in D = 4 we calculate the helicity trace
index

B2n = (−1)n Tr ~Q

[
(−1)2h (2h)2n

]
4n: Number of broken SUSY generators

Thus on the black hole also we should compute
the index.
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The (2h)2n factor is needed to absorb the fermion
zero modes associated with broken SUSY.

For a black hole solution these zero modes
form part of hair degrees of freedom

Since in D = 4 the black hole horizons always
have h = 0 we get the following formula for
the index on the macroscopic side

∑
n

∑
{ ~Qi}, ~Qhair∑n

i=1
~Qi+

~Qhair=
~Q

{
n∏

i=1

dhor( ~Qi)

}
B2n;hair( ~Qhair; { ~Qi})

– can be computed using quantum entropy
function.
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A consistency check:

Suppose two black holes have identical near
horizon geometry but different asymptotic ge-
ometries.

Suppose further that we know the appropriate
index for both these black holes, and can com-
pute the hair contribution for both the black
holes.

Then by stripping off the hair contribution we
can get the ‘microscopic result’ for dhor( ~Q) for
both the black holes.

They must agree.
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An example:

System 1: BMPV black hole

– A five dimensional rotating black hole in type
IIB on K3× S1.

System 2: A four dimensional black hole in
type IIB on K3 × T2 obtained by placing the
BMPV black hole in Taub-NUT

They have identical near horizon geometries
but different index and different dhair

But dhor computed by stripping off dhair from
the index gives the same result for both.

33


