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Motivation

No shear in 1+1 dimensions.
Conformal fluid is a perfect fluid i.e.
Tµν = (ε+ P )uµuν + Pηµν .
Only viscous transport coefficient is bulk viscosity.
Gauge invariant fluctuations found for the Dp brane for
p ≥ 2 can’t be extended to p = 1.
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Regimes of validity for our analysis.

Hydrodynamics in 1+1 dimensions.
Lorentz structure of correlators
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Summary

For the SU(N) gauge theory with 16 supercharges in
1 + 1D on the D1-branes in range

√
λN−1 << T <<

√
λ,

ξ =
26π

7
2

33

N2T 2

√
λ
.

ξ

s
=

1
4π
.

For T <<
√
λN−1 and T >>

√
λ,

the D1-brane gauge theory → a CFT.
So, bulk viscosity vanishes.
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D1 brane supergravity solution

Non extremal D1 brane solution in Einstein frame is

ds210 = H−
3
4 (r)(−f(r)dt2 + dx2

1) +H
1
4 (r)

(
dr2

f(r)
+ r2dΩ2

7

)
,

eφ(r) = H(r)
1
2 ,

FRR7 = 6L6ωS7 ,

where

f(r) = 1−
(r0
r

)6
H =

(
L

r

)6

L6 = 26π3g2
YMNα

′4
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D1 brane thermodynamics

The temperature in terms of the non-extremal parameter
r0 is

T =
3r20

2πL3
,

The entropy density is

s =
1

4G3

(r0
L

)4
=

2π4

4!G10
r40L

3.
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Regime of validity

This supergravity solution is valid in the temperature range
√
λN−

2
3 << T <<

√
λ.

Here, the t’Hooft coupling

λ = g2
YMN g2

YM =
gs

2πα′

.
Out side this range, curvature in supergravity grows large.
For T >>

√
λ, Perturbative description of YM.

For T <<
√
λN−

2
3 , can dualize to fundamental string

solution.
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F1 brane solution

Now for T <<
√
λN−2/3, the holographic dual of the Yang-Mills

theory is given by the non-extremal fundamental string solution.

ds210 = H−
3
4 (r)(−f(r)dt2 + dx2

1) +H
1
4 (r)

(
dr2

f(r)
+ r2dΩ2

7

)
,

eφ(r) = H(r)−
1
2 ,

FNS7 = 6L6ωS7 .

Here, ωS7 denotes the volume form on the 7-sphere.
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Regime of validity

F1 solution can be trusted in the following temperature
range √

λN−1 << T <<
√
λN−

2
3 .

To conclude, for T >>
√
λ and T <<

√
λN−1,

the YM theory → free conformal field theory.
So, bulk viscosity vanish.
Supergravity description available in region

√
λN−1 � T �

√
λ.

Fairly large domain for large N .
Bulk viscosity non trivial in this regime.
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Two point correlator: structure

We define the retarded Green’s function of the stress tensor
as

Gµν,αβ(x− y) = −iθ(x0 − y0)〈[Tµν(x), Tαβ(y)]〉.

Its Fourier transform is denoted as Gµν,αβ(k).
It is symmetric by definition under

interchange of indices (µ, ν).
interchange of indices (α, β).

Gµν,αβ(k) = Gαβ,µν(k).

due to CPT invariance.
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Two point correlator: structure

Conservation of Stress energy tensor → Ward identity

kµGµν,αβ(k) = 0.

This suggests a useful tensor which forms a basis to write down
the correlator is

Pµν = ηµν −
kµkν
k2

.

Note that kµPµν = 0. Can split it as

Gµν,αβ(k) = PµνPαβGB(k2) +Hµν,αβGS(k2),

where
Hµν,αβ =

1
2

(PµαPνβ + PµβPνα)− PµνPαβ.
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Two point correlator: structure

Hµν,αβ =
1
2

(PµαPνβ + PµβPνα)− PµνPαβ.

Note that ηµνHµν,αβ = 0.
The two tensors above are orthogonal

PµνPαβH
µν
,α′β′ = 0.

By substituting the value of kµ = (−ω, q),
we find that all components of Hµν,αβ vanish.
So, the two point function of the stress tensor in a 1 + 1
dimensional theory is entirely dependent on just one
function GB(k2).
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Two point correlator: structure

Thus the two point function can be written as

Gµν,αβ(ω, q) = PµνPαβGB(ω, q).

Writing it explicitly, we obtain

Gtt,tt =
q4

(ω2 − q2)2
GB, Gtt,tx = q3ω

(ω2−q2)2
GB,

Gtt,xx =
ω2q2

(ω2 − q2)2
GB, Gtx,tx = ω2q2

(ω2−q2)2
GB,

Gtx,xx =
ω3q

(ω2 − q2)2
GB, Gxx,xx = ω4

(ω2−q2)2
GB.

Thus all components of the thermal Green’s function of the
stress tensor are determined by a single function GB.
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Poles in the correlators

The stress tensor of a fluid in 1 + 1 dimensions is given by

Tµν = (ε+ P )uµuν + Pηµν − ξ(uµuν + ηµν)∂λuλ,

where uµ is the 2-velocity with

uµu
µ = −1

and ξ is the bulk viscosity.
Now consider small fluctuations from the rest frame of the fluid.

T 00 = ε+ δT 00, T 0x = δT 0x,
T xx = P + δT xx,

u0 = 1, ux = δux.
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Poles in the correlators

Putting them into the conservation equation ∇µTµν = 0
and after some manipulations, one gets(

−iω2 + iq2v2
s +

ξ

ε+ P
ωq2
)
δT 0x = 0.

where
v2
s =

∂P

∂ε

is the speed of sound.
We thus get dispersion relation for δT 0x upto leading order as

ω = ±vsq − i
ξ

2(ε+ P )
q2.

Linear response theory says GB has a pole at this ω.
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Effective 3-D system

First consistently truncate the 10D NH geometry to 3D by
reducing on the S7. Ansatz is

ds210 = e−14B(r)ds23 + e2B(r)L2dΩ2
7,

ds23 = −cT (r)2dt2 + cX(r)2dz2 + cR(r)2dr2.

We take B(r) = − 1
24φ(r) and keep the RR flux on the 7-sphere

constant. The effective action

S =
1

16πG3

∫
d3x
√
−g
[
R− β

2
∂µφ∂

µφ− P(φ)
]
.

Here, β = 16
9

, and P = − 24
L2 e

4
3
φ.
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Effective 3-D system

The D1-brane in 10-dimensions reduces to

ds23 = −cT (r)2dt2 + cX(r)2dz2 + cR(r)2dr2,

φ = −3 log
( r
L

)
,

with the components of the metric given by

c2T =
( r
L

)8
f, c2X =

( r
L

)8
, c2R =

1
f

( r
L

)2
,

with f = 1− r60
r6

.
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Linear perturbations and gauge fixing

We take small perturbations in the above background.

gµν → gµν + δgµν and φ→ φ+ δφ.

We make a Fourier transformation

δgµν = e−i(ωt−qz)hµν(r), δφ = e−i(ωt−qz)ϕ(r).

We further parametrize the metric perturbations as

htt = c2THtt, htz = c2XHtz, hzz = c2XHzz.

We fix the gauge by choosing
δgrt = δgrz = δgrr = 0.

We have 4 dynamical equations and 3 constraints.
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Diffeomorphism invariant sound mode

One is left with the residual gauge freedom under the
infinitesimal diffeomorphisms

xµ → xµ + ξµ with µ ∈ {t, z, r}.

The metric changes as

δgµν → δgµν −∇µξν −∇νξµ.

We next form a diffeomorphism invariant quantity out of
the perturbations.
Unique in our case.
Differs from such quantity constructed for Dp systems for
p ≥ 2.
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Diffeomorphism invariant sound mode

We find the following combination gauge invariant.

ZP = Z0 +Aϕϕ

where Z0 = q2
c2T
c2X
Htt + 2qωHtz + ω2Hzz

Aϕ =
2
φ′

(
q2
c2T
c2X

ln′ cT − ω2 ln′ cX

)
.

Using linear perturbations of Einstein equations and the
dilaton equation of motion, we get

Z ′′P +
[
ln′
(
cT cX
cR

)
− 2

A′ϕ
Aϕ

]
Z ′P + GZP = 0.

with G = −
[
c2R
c2T

(
q2

c2T
c2X
− ω2

)
+ 2A

′
ϕ

Aϕ
ln′
(
cX
cT

)]
.
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Dispersion relation for the sound mode

We define a variable u = r20
r2

,

so that u→ 1 is the horizon.
and u→ 0 is the boundary.

We are interested in a solution which is ingoing at the horizon
Taking appropriate limits, we find the ingoing solution behaves
as

Zp =
1
Aϕ

(1− u)−
i
3
αω.

where

α =
L3

2r20
=

3
4πT

.
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Dispersion relation for the sound mode

We next consider a solution of the type

Zp =
1
Aϕ

(1− u3)−
i
3
αωZ(u).

We also consider the hydrodynamic limit

ω << T and q << T

and we ignore terms of order q2/T 2, ω2/T 2, ωq/T 2 and higher,
but keep terms of order ω/T , q/T .
In this limit,

∂2
uZ −

{2 + (1− 2iαω)u3}
u(1− u3)

∂uZ −
18u4(4λ− 3)

(1− u3)(4− 4λ− u3)2
Z = 0.
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Dispersion relation for the sound mode

Its well behaved solution at the horizon is

Z =
6λ− 2(1− λ)(3− 4iαω)− u3(3 + 2iαω)

12(3− 2iαω)(4− 4λ+ u3)
.

Next impose Dirichlet condition, Z = 0 at the boundary,

−4iαω3 + 6ω2 + 4iαωq2 − 3q2 = 0.

We assume ω ∼ q, and solve this equation perturbatively.

ω = ± 1√
2
q − iα

6
q2 + ...

with

α =
L3

2r20
=

3
4πT

.
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Viscosity by entropy ratio

Dispersion relation from general hydrodynamics considerations

ω = vs −
i

2
1

ε+ P
ξq2, v2

s =
∂P

∂ε
.

Dispersion relation from linearized supergravity analysis

ω = ± 1√
2
q − iα

6
q2 + ...

By comparing, we get

v2
s =

1
2

ξ

ε+ P
=
α

3
=

1
4πT

.

v2
s = ∂P

∂ε → ε = 2P.

The medium seems to behave as a conformal fluid in 2+1D.
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Viscosity by entropy ratio

ξ

ε+ P
=

1
4πT

.

ε+ P = Ts → ξ

s
=

1
4π
.

s =
24π

5
2

33

N2T 2

√
λ

→ ξ =
26π

7
2

33

N2T 2

√
λ
.

For Dp-branes with p ≥ 2 (Mas and Tarrio hep-th/0703093),

ξ

s
=
ξ

η

η

s
=

1
4π

2(3− p)2

p(9− p)
.

The general expression continues to hold also for p = 1.
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Stress-Energy correlator

We first need to expand the action along with the
Gibbons-Hawking boundary term to second order in the metric
and dilaton fluctuations.

S = Sbulk + SGH ,

Sbulk =
1

16πG3

∫
d3x
√
−g
[
R− β

2
∂µφ∂

µφ− P(φ)
]

SGH =
1

8πG3

∫
d2x
√
−hK|r→∞.

where
β =

16
9
P = − 24

L2
e4φ/3.
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Stress-Energy correlator

After algebraic manipulations, we obtain

S(2) =
1

16πG3

∫
dωdq

(2π)2
A(ω, q, r)Z ′P (r,~k)ZP (r,−~k) + S

(2)
CT ,

where
A(ω, q, r) = − β

2A2
ϕ

cT cX
cR

.

Metric fluctuation - stress energy tensor coupling is

Scoupling =
1
2

∫
d4x[H0

ttT
tt +H0

zzT
zz + 2H0

tzT
tz].

We evaluate two point fn(s) using the AdS/CFT correspondence

〈exp(iScoupling)〉 = exp[iS(2)(H0
µν)].
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Stress-Energy correlator

Consider

Gtt,tt = −i〈[Ttt, Ttt]〉 = −4
δS(2)

δH0
tt(~k)δH0

tt(−~k)
.

Note Z0
P = q2H0

tt + 2ωqH0
tz + ω2H0

zz +A0
ϕϕ

0.

Near u→ 0, ZP = C(1 + ...) +Du3(1 + ...),
= Z0

P

[
1 + ...+ D

C
r60
r6

(1 + ...)
]
.

⇒ Gtt,tt = −4
δS(2)

δH0
tt(~k)δH0

tt(−~k)
= − 1

16πG3

q4

(ω2 − q2)2
6r60
L7

D

C
.
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Stress-Energy correlator

Recall Gµν,αβ(ω, q) = PµνPαβGB(ω, q).

We can read out the holographic value of GB from the
expression of Gtt,tt as

GB(ω, q) = − 1
16πG3

6r60
L7

D

C
.

The poles in the Green’s function are therefore same as the
zeros of the factor C.
The Dirichlet boundary condition for the mode ZP = 0 at
the horizon is equivalent to setting C = 0.
Poles in GB →dispersion relation of the sound mode.
Evalation of remaining two point functions reproduces the
same expression for GB(ω, q).
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ξ/s using the Kubo’s formula

We next extract Bulk viscosity from the Green’s function. This
is done using the Kubo’s formula. In 1 + 1D, Kubo’s formula
for bulk viscosity is given by

ξ = lim
ω→0

1
ω

∫ ∞
0

dt

∫
dzeiωt〈[Tzz(x), Tzz(0)]〉.

= lim
ω→0

i

ω
Gzz,zz(ω, q = 0).

Recall

Gzz,zz =
ω4

(ω2 − q2)2
GB(ω, q), GB = − 1

16πG3

r60
L7

D

C
.
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ξ/s using the Kubo’s formula

C =
(−4iαω3 + 4iαωq2 + 6ω2 − 3q2)

9(2iαω − 3)
,

D =
ω[9iωq2 + 8iα2ω(ω2 − q2)2 − 12α(2q4 − 3q2ω2 + ω4)]

54(3i+ 2αω)(q2 − ω2)
.

Gzz,zz(ω, 0) = − 1
16πG3

[
r60
L7

D

C

]
q=0

.

Gzz,zz(ω, 0) = − 1
16πG3

6r60
L7

iαω

3
= −iωs

4π
.

Using Kubo’s formula, we get
ξ
s = 1

4π .
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Fundamental string solution

In the temperature range
√
λN−1 << T <<

√
λN−

2
3 ,

we have fundamental string solution.
Consistent truncation leads to a similar effective action

S =
1

16πG3

∫
d3x
√
−g
[
R− 8

9
∂µφ∂

µφ+
24
L2
e−

4
3
φ

]
.

The 10D string solution reduces to

ds2 = −cT (r)2dt2 + cX(r)2dz2 + cR(r)2dr2,

φ = 3 log
( r
L

)
.

Only change is φ→ −φ.
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ξ/s for the F1-brane case

The equation of sound mode

Z ′′P +
[
ln′
(
cT cX
cR

)
− 2

A′ϕ
Aϕ

]
ZP + GZP = 0.

depends on dilaton only by the ratio

A′ϕ
Aϕ

=
[AH ln′(cX)]′

AH ln′(cX)
− φ′′

φ′
,

which remains unchanged. So the result ξ
s = 1

4π remains valid in
temperature range

√
λN−1 << T <<

√
λN−

2
3 .
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Sasaki-Einstein 7 manifolds as transverse spaces

We start from the 10 dimensional solution

ds2 = H−
3
4 (r)

(
−f(r)dt2 + dx2

1

)
+H

1
4 (r)

(
dr2

f(r)
+ r2dS2

X7

)
,

eφ(r) = H(r)
1
2 ,

F7 = 6L6ωX7 .

where H(r) =
(
L
r

)6
, f(r) = 1−

(
r0
r

)6
.

Leads to the same 3D effective action as in D1 case, but with

1
G̃3

=
L7Vol(X7)

G10
.

So, the viscosity to entropy ratio remains same.
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Summary

For the SU(N) gauge theory with 16 supercharges in
1 + 1D on the D1-branes in range

√
λN−1 << T <<

√
λ,

ξ =
26π

7
2

33

N2T 2

√
λ
.

ξ

s
=

1
4π
.

For T <<
√
λN−1 and T >>

√
λ,

the D1-brane gauge theory → a CFT.
So, bulk viscosity vanishes.
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