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@ No shear in 141 dimensions.
Conformal fluid is a perfect fluid i.e.
T = (e + P)utu” + PnM”.

e Only viscous transport coefficient is bulk viscosity.

o Gauge invariant fluctuations found for the Dp brane for
p > 2 can’t be extended to p = 1.
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e D1 brane supergravity solution

e Thermodynamics for the D1 brane
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o Hydrodynamics in 141 dimensions.
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@ Stress Tensor correlators

e Boundary action
e Expression for Green’s function
o ¢/s using the Kubo’s formula

o Other Examples
e F1 solution

e Transverse space as Sasaki-Einstein Manifolds

e Summary



e For the SU(N) gauge theory with 16 supercharges in
1+ 1D on the D1-branes in range VAN ' << T << V),

2073 N2T7?
S .o

e For T << VAN !and T >> V),
the D1-brane gauge theory — a CFT.
So, bulk viscosity vanishes.



Non extremal D1 brane solution in Einstein frame is

dr?

ds?y = HA(r)(—f(r)dt? +da?) + Hi(r) ( )

+ r2dQ%> ,

e = H(r)%,
FRE - — 6L%yg,,

where



o The temperature in terms of the non-extremal parameter
ro 1S

Y
- onL3’

o The entropy density is
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e This supergravity solution is valid in the temperature range

VAN™S << T << VA

@ Here, the t’Hooft coupling

2 2 g
A=gyyN 9y = Fsa,

e Out side this range, curvature in supergravity grows large.

e For T >> \/X, Perturbative description of YM.

e For T << VAN —%7 can dualize to fundamental string
solution.



Now for T' << v/AN~2/3_ the holographic dual of the Yang-Mills
theory is given by the non-extremal fundamental string solution.

d 2
ds2y = H3(r)(—f(r)dt2 + da?) + Hi(r) (WTT) 4 r2dQ$) :
PR ICo - H(r)_%,
ENS = 6L5wg..

Here, wg, denotes the volume form on the 7-sphere.
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o F1 solution can be trusted in the following temperature

range
2
VAN << T << V/AN3.

e To conclude, for T >> /X and T << VAN !,
the YM theory — free conformal field theory.
So, bulk viscosity vanish.

e Supergravity description available in region

VAN < T < V.

o Fairly large domain for large N.
o Bulk viscosity non trivial in this regime.
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@ We define the retarded Green’s function of the stress tensor
as

Guvap(a —y) = =i0(z° — y" [T (@), Tap(®)))-

e Its Fourier transform is denoted as G, a5(k).
o It is symmetric by definition under

o interchange of indices (p, V).

o interchange of indices («, f3).

Gvap(k) = Gap (k).

due to CPT invariance.



R S S —
Conservation of Stress energy tensor — Ward identity
E'Gap(k) = 0.

This suggests a useful tensor which forms a basis to write down

the correlator is ok
P/“, = Nuw — %

Note that £#P,, = 0. Can split it as
Guvap(k) = PuyPapGp(k®) + HyuapGs(k?),

where i
Hywap = §(Puapl/ﬂ + Puﬂpva) — PuFPagp.
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1
H;w,aﬁ = §(P'uap,/ﬁ + Pugpl,a) — ijpag.

e Note that n*VH,, .3 = 0.
o The two tensors above are orthogonal

Py PapH™, 5 = 0.

e By substituting the value of k, = (—w, q),
we find that all components of H,, . vanish.

@ So, the two point function of the stress tensor in a 1 + 1
dimensional theory is entirely dependent on just one
function Gp(k?).
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@ Thus the two point function can be written as
Guu,aﬁ(w7 Q) = P,ul/Pa,BGB(w7 Q)'
e Writing it explicitly, we obtain
Gu = ——Gp, Gupw = %G
tttt — m B tt,tr — mT)E B>
w?q 2,2
Gtt,za: = mGBa Gtw,tw = G%F)ZGBU
(w?=¢?)

q
Girwr =~ Gp, Grome = %G
tr,xx — (w2 — q2)2 B TT,xx — [(,2_g2)2 T B-

@ Thus all components of the thermal Green’s function of the
stress tensor are determined by a single function Gp.



The stress tensor of a fluid in 1 4 1 dimensions is given by

TH = (e + P)utu” + Pn*" — {(ut'u” + n“”)aAu)‘,
where u* is the 2-velocity with
uput = —1

and £ is the bulk viscosity.
Now consider small fluctuations from the rest frame of the fluid.

TOO — e+ (5T00, TO:c — (STO(E,
T = P 4 6T,
u? =1, u® = Ju”.



R S S —
Putting them into the conservation equation V#T},, = 0
and after some manipulations, one gets

S92 .2 9 S 2 0z
— — 6T = 0.
( w” +1q US+6+qu>

where
2_ 0P
S Oe

v

is the speed of sound.
We thus get dispersion relation for 67%% upto leading order as

€ 2
=+ ———q".
w vsq z2(€+P)q

Linear response theory says Gp has a pole at this w.
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First consistently truncate the 10D NH geometry to 3D by
reducing on the S7. Ansatz is

ds%o = 6_14B(r)d8§ + eQB(T)deQ%
ds3 = —cp(r)2dt* + cx(r)?dz® + cp(r)?dr?.

We take B(r) = —5;6(r) and keep the RR flux on the 7-sphere
constant. The effective action

_ 1 3 B
5= 1on | Pov=a | R 50,00 - (o).

4
Here, 6= 136, and P =239



The D1-brane in 10-dimensions reduces to

dsi = —cp(r)?dt? + cx(r)?dz* + cp(r)*dr?,
r
- ()
¢ 3log (7
with the components of the metric given by
r\8 r\8 1 /r\2
d=(z) f = (%) d=7(z)
. ’l"G
with f=1-— 3.
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o We take small perturbations in the above background.

Juv = Guv + 5g,uu and ¢ — ¢+ 9.
o We make a Fourier transformation

Ogur = € "W (r), 6 = e T o(r).

o We further parametrize the metric perturbations as

2 2 2
htt - O1"]:-[15157 htz = CXHtZ7 hzz = CXsz-

o We fix the gauge by choosing
697“75 = 6grz = 691“7“ =0.
@ We have 4 dynamical equations and 3 constraints.
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Diffeomorphism invariant sound mode

One is left with the residual gauge freedom under the
infinitesimal diffeomorphisms

at — at + ¢ with p € {t,z,r}.

@ The metric changes as

O0Guw — 09w — V& — Vi€,

o We next form a diffeomorphism invariant quantity out of
the perturbations.

Unique in our case.

Differs from such quantity constructed for Dp systems for
p =2
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We find the following combination gauge invariant.

Zp = Z0+A¢QD

2
where Z; = qQCTTHtt+2qutz+w2sz
Cx
2 (¢
A, = ¢, (q L op — W’ In’ Cx>

Using linear perturbations of Einstein equations and the
dilaton equation of motion, we get

A/
Zlh+ {m’ (CTCX) - 2—‘9] Zp+GZp = 0.
CR Acp

with g:—[CQ (q2%—w)+2—‘ﬁln(x)].

cx cr



2
3 T,
We define a variable u = f%,

so that u — 1 is the horizon.
and u — 0 is the boundary.

We are interested in a solution which is ingoing at the horizon
Taking appropriate limits, we find the ingoing solution behaves
as

1 Cigw
Zp = A_(p(l — U) 3% .
where
L3 3

TR T 4T
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We next consider a solution of the type

1 i
Zy = A_¢(1 — u3)_§°‘wZ(u).

We also consider the hydrodynamic limit
w<<T and qg<<T

and we ignore terms of order ¢?/T2, w?/T?, wq/T? and higher,
but keep terms of order w/T', q/T .
In this limit,

{2+ (1 — 2iaw)u’}
u(l —u3)

18u*(4) — 3)

2 —
%0z (1= u®) (- 1r— )

02 —

57 =0.



~ SUPERGRAVITY PICTURE 1+D HYDRODYNAMICS ~ SOUND CHANNEL T,y CORRELATOR ~OTHER EXAMPLES CONCLUSION
Its well behaved solution at the horizon is

Z_6A—2a—Ax3—an—u%3+%m@
B 12(3 — 2iaw) (4 — 4\ + u3)

Next impose Dirichlet condition, Z = 0 at the boundary,
—diaw® + 6w? + diawg® — 3¢° = 0.

We assume w ~ ¢, and solve this equation perturbatively.

1 1
w=t—q—i-q¢>+..
N
with
L3 3



Dispersion relation from general hydrodynamics considerations

i1 OP
w="uv £, vg =5

5 1 13 e 1
v, = — = —_— =

52 e+P 3 4xT
’U?Z%—Iz — e=2P.

The medium seems to behave as a conformal fluid in 2+1D.



e+ P AnT’
1
e+ P=Ts — § = —.
S 47
2415 N272 2673 N2T?2
S oA 0 ST oA

For Dp-branes with p > 2 (Mas and Tarrio hep-th/0703093),

€ _&n_ 123-p)

s ns 4w p(9—p)’

The general expression continues to hold also for p = 1.



We first need to expand the action along with the

Gibbons-Hawking boundary term to second order in the metric
and dilaton fluctuations.

S = Spuk +Scu,

_ 1 3 — _ é Mo
Spulk = 167rG3/d T/ —g [R 25u¢3 o P(fﬁ)]
1 2
Scg = 871'G3/d 2V —hK|r o
where
B:E 'P:—%64¢/3.

9 L?



After algebraic manipulations, we obtain

1 dwd. . .
) = q , - o
5= 16 / @2 @ a7 2P k) Zp(r, —k) + Scr.,

where 5
__ P ax
A(w,Qar) - 2Aa cR .

Metric fluctuation - stress energy tensor coupling is
1
Scoupling = 5 /d4x[Hf9tTtt + HSZTZZ + 2H,?thz].

We evaluate two point fn(s) using the AdS/CFT correspondence

(exp (iScoupling) > = €xp [ZS(2) (ng)] .



Consider

65
SHY,(F)SHp (k)

Gup = —i([Ty, Ty]) = —4

Note 7% = ¢*HY) + 2wqHy, + w?*H?, + Aggoo.

Near u—0, Zp = C(1+..)+Du*(1+..),
6
zg[1+...+g%(1+...)].

553 1 7 618 D
= Guu=—4 = S- = = R 2—;)—-
SHY (K)o HY(—k) 167Gs (w* — ¢°)* L7 C
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Stress-Energy correlator

Recall Guvap(w,q) = PuwPasGp(w, q).

@ We can read out the holographic value of Gp from the
expression of Gy 4+ as

1 6r$D

Gplw.q) = T 167Gs L7 C

@ The poles in the Green’s function are therefore same as the
zeros of the factor C.

e The Dirichlet boundary condition for the mode Zp = 0 at
the horizon is equivalent to setting C' = 0.

e Poles in Gp —dispersion relation of the sound mode.

e Evalation of remaining two point functions reproduces the
same expression for Gp(w, q).



We next extract Bulk viscosity from the Green’s function. This
is done using the Kubo’s formula. In 1 + 1D, Kubo’s formula
for bulk viscosity is given by

. 1 > iwt T
£ = lim — ; dt/dze <[Tzz( )7Tzz(0)]>'

w—0 W

1
wlg%) o Gzz,zz (w, q 0)

Recall

g (w,q) Gp—— T8
W2—q2)2 P 4 B T 16rGs LT

D
Giors = =~
22,22 C



(—diaw? + diawg?® + 6w? — 3¢%)

¢ = 9(2iaw — 3) ’
D - w[9iwg? + 8ialw(w? — ¢%)? — 12a(2¢* — 3¢*w? + w?)]
B 54(3i + 20w) (g% — w?) ‘
1 rS D
Crzza(,0) =~ [F 5] o
1 6r§iow WS
ool O = "fgra T 3 = T2
£ 1

Using Kubo’s formula, we get P



R SRR ARSI R S S —
In the temperature range VAN ! << T << VAN —§,

we have fundamental string solution.
Consistent truncation leads to a similar effective action

_ ! 3 /= _8 ng 4 24 46
S—167TG3/dac\/ g[R 98,@3 ¢+L2e 3 ]

The 10D string solution reduces to
ds* = —ecp(r)?dt* + cx(r)?dz? + cg(r)*dr?,
r
¢ = 3log (f) .

Only change is ¢ — —¢.



The equation of sound mode

Al
7+ [ln’ (CTCX) - 2—‘0] Zp+GZp = 0.
CR Ay

depends on dilaton only by the ratio
A_fp _ [AgIn’(cx)]) ¢
A<p AH h’l,(CX) (;5' ’

which remains unchanged. So the result % = ﬁ remains valid in

temperature range

VAN~ << T << V/AN73.
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We start from the 10 dimensional solution

dr?

ds® = H3(r) (= f(r)dt* + da?) + Hi (r) (f(r)

+ 7‘2d5’§(7) ,

e = H(r),
F7 = 6L6wX7.
where H(r) = (£)°,  f(r)=1-(2)".
Leads to the same 3D effective action as in D1 case, but with
- L™Vol(X7)
Gs Gio

So, the viscosity to entropy ratio remains same.



e For the SU(N) gauge theory with 16 supercharges in
1+ 1D on the D1-branes in range VAN ' << T << V),

2073 N2T7?
S .o

e For T << VAN !and T >> V),
the D1-brane gauge theory — a CFT.
So, bulk viscosity vanishes.
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