
Some aspects of open string tachyon

dynamics

1. Classical tachyon dynamics in open string

theory

2. Closed string emission

3. Completeness of open string description

4. Two dimensional string theory

During this talk I shall try to emphasize the

open problems in this field.



Notations and conventions:

We shall set

h̄ = 1, c = 1, α′ = 1

gs: closed string coupling constant

We shall be studying D-branes in bosonic string

theory or unstable D-branes or brane-antibrane

systems in type II string theory.

Each of these systems is characterized by the

existence of tachyonic modes.

Define Ep to be the total energy / unit p-

volume of the system.

Ep = tension for a single unstable Dp brane in

bosonic or type II string theory.

Ep = twice the tension of a BPS D-brane for

Dp – D̄p system in type II string theory.



Shape of tree level tachyon effective potential

Veff(T ) for a D-p-brane in bosonic string the-

ory:
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Shape of Veff(T ) for non-BPS D-p-brane in

type II string theory:
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For Dp-D̄p system we have to revolve this fig-

ure about the vertical axis to get the tachyon

potential as a function of complex T .



1. At T = T0 the total energy density vanishes

identically.

Veff(T0) + Ep = 0

T = T0 configuration describes the vacuum of

string theory without any D-brane.

2. Thus around this minimum there are no

physical open string excitations.

3. Time independent but space-dependent clas-

sical solutions of the equations of motion of T

represent lower dimensional D-branes.

Example: On a non-BPS Dp-brane of type II

string theory, a kink solution interpolating be-

tween ±T0 represents a BPS D-(p− 1)-brane.



The indirect evidence for these results come

from various studies based mainly on confor-

mal field theory techniques, non-commutative

solitons, boundary string field theory, etc.

The direct evidence comes from numerical re-

sults in Witten’s cubic open bosonic string field

theory and Berkovits’ superstring field theory.

However despite many attempts there has

not been any progress in finding analyti-

cal solutions in these string field theories

representing either the tachyon vacuum or

the classical solutions representing lower

dimensional D-branes.



Time dependent solutions:
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What happens if we displace the tachyon field

away from the maximum of the potential and

let it roll down according to its classical equa-

tions of motion?

Consider spatially homogeneous solution for sim-

plicity.

Had T been an ordinary scalar field, there would

be a two parameter family of solutions labelled

by the initial values of T and its time derivative

∂0T .



Even in string theory we can construct a two

parameter family of time dependent solutions

describing the rolling of the tachyon away from

its maximum.

Detailed computation shows that as x0 → ∞,

the rolling tachyon approaches a configuration

of

Energy density E = constant

Pressure p = 0

Dilaton charge density Q = 0



We shall outline the procedure for construct-

ing the solution for D-branes in bosonic string

theory.

Equations of motion of the tachyon near 0:

(∂2
0 +m2)T = O(T2), m2 = −1

Solution:

T (x0) = λ cosh(x0 + a) + O(λ2)

λ, a: constants of integration



T (x0) = λ cosh(x0 + a) + O(λ2)

To order λ this corresponds to deforming the

world-sheet CFT by a boundary term:

λ
∫

dt cosh
(

X0(t) + a
)

t: parameter labelling the boundary of the world-

sheet.

Since T is on-shell, this is guaranteed to be a

marginal deformation to order λ.

In this case it turns out to be a marginal de-

formation to all orders in λ.

→ gives a two parameter family of CFT’s

→ two parameter family of time dependent so-

lutions of classical equations of motion.

The same method works for superstring theory.



General case:

Suppose the theory has n tachyons T1, . . . Tn
with mass2 = −m2

1, . . .−m2
n.

Let V1, . . . Vn be the zero momentum vertex

operators for these tachyons.

Then at the linearized level we have a 2n-

parameter family of solution

Tk = λk cosh(mk x
0 + ak)

for arbitrary constants λk, ak.

This corresponds to deforming the world-sheet

theory with the boundary perturbation:

∑

k

λk

∫

dt Vk(t) cosh
(

mkX
0(t) + ak

)

Since each tachyon is on-shell this is guranteed

to be marginal to linear order in λk.



Beginning with this solution one can solve the

β function = 0 equations iteratively.

Result: in the generic case it is possible to

construct a 2n parameter family of boundary

CFT’s with boundary interaction of the form:

∑

k

λk

∫

dt Vk(t) cosh
(

ωk(~λ)X
0(t) + ak

)

with

ωk(~λ) = mk + O(λ2)

ωk(~λ) can be calculated by systematically solv-

ing the β-function=0 equations.

A variant of this procedure can be used to con-

struct a 2n parameter family of classical solu-

tions in the open string field theory.



Open question: Does this 2n parameter

family of solutions exhaust the time de-

pendent solutions that one can construct

involving the n-tachyons?

Had these tachyons been ordinary scalar fields

with at most two derivative terms in the ac-

tion, the answer would be yes.

However open string field theory has interac-

tion terms with arbitrarily large number of deriva-

tives.

Hence there could be other solutions.

On the other hand if there are really additional

solutions, then we expect that upon quantiza-

tion they will give rise to new states which are

not seen in perturbative quantization of open

string theory.



Note: The problem associated with higher deriva-

tive terms is a generic problem in all string the-

ories and is not specific to open string theory.

Even for closed strings, the effective field the-

ory computed from the β-function vanishing

condition, as well as the full closed string field

theory action, has higher derivative terms.

This apparently leads to additional solutions to

the equations of motion, which, if present, will

give rise to additional quantum states which

are not present in the spectrum of string the-

ory.

We come face to face with this problem when

we try to construct supersymmetric black hole

solutions in the presence of higher derivative

terms.



The effective lagrangian density of closed string

theories often contains higher derivative terms

of the form:
√

−det g RµνρσR
µνρσ

Supersymmetrization → many more terms

We can try to construct BPS black hole so-

lutions taking these additional terms into ac-

count.

Boundary condition on various fields: Smooth-

ness at the horizon.

Evolving the fields in the radial direction one

finds that in the asymptotic region various field-

s start oscillating about the expected asymp-

totic values.



This is possible because these various fields

have additional oscillatory solutions of the lin-

earized equations of motion due to the pres-

ence of higher derivative terms.

Example: Consider a scalar field φ with action

1

2

∫

dp+1xφ ∂µ∂
µ

(

1 +M−2∂µ∂
µ
)

φ

Solutions of the equations of motion:

φ = Aeik.x

with k2 = 0 or k2 = M2.

Similarly, due to the presence of higher deriva-

tive terms, metric and various other fields have

additional oscillatory solutions and these are

responsible for oscillatory behaviour of the met-

ric of the black hole in the asymptotic region.



However these additional oscillatory solutions

must be unphysical, since otherwise by quan-

tizing these oscillatory solutions we shall get

additional states which are not present in the

spectrum of string theory.

Resolution: We must redefine fields to remove

these solutions.

Define ψ =
(

1 +M−2 ∂µ∂µ
)1/2

φ

Then the action is

1

2

∫

d4xψ ∂µ∂µψ

Under this field redefinition the solutions φ =

Aeik.x with k2 = M2 gets mapped to ψ = 0.



Similar field redefinitions need to be carried out

for the metric and other fields.

When the black hole solution is expressed in

terms of these new field variables, the oscilla-

tions must disappear.

How does the solution near the horizon

look in terms of these new variables?



Coming back to open string theory one might

contemplate three possibilities:

1. Cubic open string field theory automatically

uses the right choice of variables and hence the

only continuous parameters labelling a classical

solution correspond to boundary condition on

the physical fields and their first derivatives.

2. Cubic open string field theory contains ad-

ditional parameters labelling its classical solu-

tions, but these parameters are spurious and

disappear from the solution once we make the

‘right’ choice of field variables.

3. Cubic open string field theory contains ad-

ditional parameters labelling its classical so-

lutions, and these parameters cannot be re-

moved by field redefinitions.

Which of these possibilities is correct???



So far we have considered tree level open string

field theory ignoring possible backreaction due

to closed string emission from the brane.

The rolling tachyon solution on the D-brane

acts as a classical source for all the closed

string fields.

→ produces a classical closed string field con-

figuration.

l

a state |Ψc〉 of ghost number two in the two

dimensional CFT



Equation of motion of |Ψc〉

(QB + Q̄B)|Ψc〉 = |B〉

(QB + Q̄B): BRST charge

|B〉: Boundary state describing the rolling tachy-

on solution

Solution in Siegel gauge:

|Ψc〉 = (L0 + L̄0)
−1 (b0 + b̄0) |B〉

Ln, L̄n: total Virasoro generators

bn, b̄n, cn, c̄n: ghost oscillators



Solution:

|Ψc〉 = (L0 + L̄0)
−1 (b0 + b̄0) |B〉

In Minkowski space (L0 + L̄0) has zero eigen-

values.

→ the solution is ambiguous.

Hartle-Hawking prescription: Solve this in Eu-

clidean space and then replace x→ ix0.



We can divide |B〉 into two parts:

|B〉 = |B1〉 + |B2〉

1. |B1〉 and |B2〉 are separately BRST invariant.

2. |B1〉 approaches a finite limit as x0 → ±∞.

|B2〉 contains exponentially growing terms in

these limits.

3. The time dependence of various terms in

|B2〉 is determined from the requirement of BRST

invariance.

Time dependence of |B1〉 is not determined

from BRST invariance.

4. In the limit where the initial D-brane energy

density goes to zero, only |B1〉 contributes to

|Ψc〉.



Results for Dp-brane with all tangential direc-

tions compactified on a torus (either in bosonic

or superstring theory)

Closed string field produced by |B1〉

|Ψ(1)
c 〉 = (L0 + L̄0)

−1 (b0 + b̄0) |B1〉

has the following features:

1. The field configuration is essentially inde-

pendent of the energy of the brane (up to a

shift of the time coordinate x0).

2. The total amount of energy in all the closed

string modes is infinite.

3. The contribution to the energy of a closed

string mode of mass mN comes predominantly

from modes with momentum |~k⊥| ∼ (mN)1/2

along directions transverse to the brane and of

winding |w‖| ∼ (mN)1/2 along directions tan-

gential to the brane.



Since the Dp-brane has a finite energy, the to-

tal energy carried by the closed string fields

cannot really be infinite.

There should be an upper cut-off on the energy

of the emitted closed string ∼ the Dp-brane

mass ∼ 1/gs

Using the upper cut-off the results are modified

as follows:

1. All the energy of the wrapped Dp-brane is

radiated away into closed strings.

2. Most of the emitted energy is carried by

closed strings of mass ∼ 1
gs

.

3. Typical momentum of an emitted closed

string along directions transverse to the brane

is of order (gs)−1/2.

4. Typical winding of an emitted closed string

along directions tangential to the brane is of

order (gs)−1/2.



From this analysis it would seem that the effect

of closed string emission invalidates the tree

level open string analysis.

However comparison of the properties of the

final state closed strings with those inferred

from the tree level open string analysis points

to an alternative interpretation.



1) Tree level open string analysis tells us that

the final system has:

Q/T00 = 0

Q: Dilaton charge density

On the other hand we know that the closed

string world-sheet does not couple to the zero

momentum dilaton.

sworld−sheet =
∫

d2z(Gµν(X)+Bµν(X))∂zX
µ∂z̄X

ν

Thus the final state closed strings carry zero

total dilaton charge.

This shows that the dilaton charge of the final

state closed strings agrees with that computed

in the open string description.



2) Tree level open string analysis tells us that

the final system has:

p/T00 = 0

On the other hand, closed string analysis tells

us that the final closed strings have momen-

tum/mass and winding/mass ∼ √
gs

For such a system

p/T00 ∼ gs → 0 as gs → 0

Thus the pressure of the final state closed

strings match the result computed in the open

string description.

Conclusion: Properties of the final state calcu-

lated from tree level open string analysis agree

with the properties of the final state closed

strings into which the D-brane decays.



Such agreements also hold for more general

cases.

Consider the ‘decay’ of a Dp-brane along x1, . . . xp

plane, with an electric field e along the x1 axis.

The final state is characterized by its energy-

momentum tensor Tµν, source Sµν for anti-

symmetric tensor field Bµν and the dilaton charge

Q.

Non-zero charges in x0 → ∞ limit

T00 = Π e−1 , T11 = −Π e , S01 = Π

Π: a parameter labeling the solution

These tree level open string results again agree

exactly with the properties of the final state

closed strings into which the D-brane decays.



This leads to the following conjecture:

Open string theory provides a description of

the rolling tachyon system which is dual to the

description in terms of closed string emission.

We could give a completely consistent descrip-

tion of the dynamics of the D-brane without

ever having to talk about closed strings.

Note: This conjecture does not require that

quantum open string theory on a given system

of unstable D-branes should be able to describe

an arbitrary closed string state in the full string

theory.

However the open string theory describes all

the quantum states which are produced in the

decay of this D-brane.



In this sense, the open string theory on each

D-brane system is a consistent quantum me-

chanical system that encodes, in a highly non-

local manner, part of the information about

the full string theory.

A given system of D-branes is like a part of the

hologram describing the full string theory.



What about the field produced by |B2〉?

1. In the E → 0 limit the fields produced by

|B2〉 vanish.

→ the only contribution comes from |B1〉 and

our previous results hold.

2. For E > 0, the fields produced by |B2〉 grow

exponentially in the past and future.

→ another possible source of large backreac-

tion of closed string fields on open string dy-

namics.

However if the earlier conjecture is correct then

the open string dynamics should be consistent

without taking into account the backreaction

due to closed strings.



According to this conjecture the growth of the

closed string fields should indicate a breakdown

of the closed string description rather than of

the open string description.

Analogy: For many D-branes the closed string

fields produced by the brane become singular

near the origin.

→ breakdown of the description of the D-brane

in terms of weakly coupled closed string fields.

But the description in terms of weakly coupled

open string theory does not get affected by

this divergence.

Can we find a precise test of the conjecture

that despite the apparently large backreac-

tion due to closed string fields, the open

string field theory describes the complete

dynamics of the D-brane?



Two dimensional string theory

Continuum description: based on the world-

sheet action:

sX0 + sL + sghost

sX0: Time-like scalar field X0 with c = 1

sL: A Liouville field theory of a scalar field ϕ

with a potential e2ϕ and a background charge

Q = 2 so that c = 1 + 6Q2 = 25

For large negative ϕ the potential is small and

ϕ behaves like a free field.

Also for large negative ϕ the dilaton = Qϕ is

large and negative and hence the string cou-

pling is small.

sghost: Usual action for ghost fields b, c, b̄, c̄



Physical closed string spectrum: A single mass-

less scalar field Ψ in (1+1) dimensions labelled

by X0 and ϕ.

For large negative ϕ the vertex operator for Ψ

carrying ϕ momentum P and energy E is:

e(1+iP )ϕ eiEX
0

Besides this there are discrete states carrying

discrete momentum and energy.

These are labelled by SU(2) quantum numbers

(j,m) with −(j − 1) ≤ m ≤ (j − 1) and have

vertex operators (for large -ve ϕ):

e(1+j)ϕ Vj,m

Vj,m: Vertex operator of a higher level primary

state in the c = 1 CFT of a scalar field X0.

Vj,m ∼ e2mX
0 × world-sheet derivatives of X0



This theory admits a D0-brane.

1. Neumann boundary condition on X0 and

ghosts

2. ‘Dirichlet’ boundary condition on ϕ.

Given this, we can now deform the conformal

field theory by boundary interaction:

λ
∫

dt coshX0(t)

to construct a one parameter family of rolling

tachyon solutions.

Boundary state |B〉 of this theory can be con-

structed explicitly.

As before we can divide |B〉 into two parts |B1〉
and |B2〉, each of which are separately BRST

invariant.



We can calculate the closed string fields pro-

duced by |B1〉 and |B2〉 following the same pro-

cedure as before.

Results:

1. |B1〉 produces a classical Ψ field background.

2. This field configuration is independent of

the D0-brane energy E up to a shift in the

time coordinate.

3. The total energy carried by this field con-

figuration is infinite.

4. |B2〉 produces closed string fields associated

with discrete states.

5. Since vertex operators for discrete states

∝ e2mX
0
, these fields grow exponentially in the

far future or the far past.

6. Fields produced by |B2〉 vanish at E = 0.



These results are very similar to the corre-

sponding results in the critical string theory.

Does the backreaction due to closed strings

invalidate the classical open string results?

Fortunately for this two dimensional string the-

ory we have an alternative formulation based

on matrix model.

This allows us to analyse the various questions

we raised earlier not only at the string tree

level, but to all orders in string perturbation

theory.



The matrix model description is equivalent to

a theory of free fermions moving in an inverted

harmonic oscillator potential.

Hamiltonian

h =
1

2
p2 − 1

2
q2 +

1

gs

V(q)

q

1
g

s

The energy levels below zero are filled, and

above zero are empty.

Since to all orders in perturbation theory we

can ignore tunneling between the two sides,

we shall concentrate on the negative q side.



For large negative q the fermion behaves like a

relativistic fermion.

Close to the fermi level, we can bosonize the

second quantized fermion field to a scalar field

χ(q, x0).

A single fermion excited from the fermi level

corresponds to a step function in the scalar

field χ.

χ

q



χ(q, x0) is related to the scalar field Ψ(ϕ, x0)

in the continuum description.
∫

dq e−iPqχ(q, x0)

=
Γ(iP )

Γ(−iP )

∫

dϕ e−iPϕΨ(ϕ, x0)

Using this we can convert the Ψ(ϕ, x0) back-

ground produced by |B1〉 to χ(q, x0).

→ precisely gives a step function describing a

single excited fermion!

Conclusion: A single D0-brane in the two di-

mensional string theory corresponds to a single

fermion excited from the fermi level to an ex-

cited level.



This also explains the origin of the infinite en-

ergy in the Ψ field produced by |B1〉

This is due to the step function form of χ.

A step function costs an infinite energy due to

infinite spatial derivative.

In the fermionic description this infinite energy

is due to the exact localization of the fermion

at a spatial point.

→ causes infinite uncertainty in momentum.

Thus the classical energy of the closed string

field configuration is infinite because it includes

the effect of infinite momentum uncertainty of

the D0-brane that is strictly localized in posi-

tion space.



Note: Our analysis establishing the correspon-

dence between the D0-brane and single fermion

excitations has been done for fermion energy

E close to the Fermi level.

From the continuum viewpoint this require-

ment comes from the fact that the effect of

|B2〉, which has been ignored so far, can be

ignored only in the E → 0 limit.

From the matrix model side this requirement

comes from the fact that the bosonization of

the fermion system in terms of a single scalar

holds only close to the fermi level.

However given the identification of the D0-

brane with a single fermion state for E ' 0,

it is natural to assume that this identification

holds for all energy (i.e. all E)



From this analysis we conclude that the quan-

tum dynamics of a single D0-brane is described

by the inverted harmonic oscillator Hamiltoni-

an

ĥ =
1

2
p̂2 − 1

2
q̂2 +

1

gs

with a sharp cut-off on the energy levels:

E > 0

This cutoff is due to the Pauli exclusion prin-

ciple.

The variables (p, q) are like the open string de-

grees of freedom living on the D0-brane.

Thus there must be a map from this inverted

harmonic oscillator system (IHO) to the open

string field theory (OSFT) describing the dy-

namics of the D0-brane.



At present this map between IHO and OS-

FT is not known.

In the IHO description the various classical so-

lutions are explicitly known.

Thus if we can find this map then using it we

should be able to construct classical solutions

in OSFT.

e.g. in IHO the tachyon vacuum corresponds

to a trajectory at the Fermi level.

Its image will give the tachyon vacuum in OS-

FT.

We also see that in the IHO description a gen-

eral time dependent solution is labelled by pre-

cisely two parameters.

Thus once we understand the map between

IHO and OSFT, we should be able to address

the role of higher derivative terms in OSFT.



The analysis also provides support for the con-

jecture that the dynamics of a D0-brane can

be described completely using open string field

theory without any need to couple it to closed

strings.

The IHO with an energy cut-off is a consistent

quantum mechanical system in its own right.

It describes only the single fermion excitations

in the theory.

Thus it encodes, in a highly non-local manner,

partial information about the full two dimen-

sional string theory.



Given this correspondence between D0-branes

and single fermion excitations, we can now

seek an interpretation of the exponentially grow-

ing terms in |B2〉.

It turns out that a particle moving in an in-

verted harmonic oscillator potential has infinite

number of conserved charges.

e(l−k)x
0
(q − p)l (q+ p)k, l, k: integers

These conserved charges are in one to one cor-

respondence with the coefficients of the expo-

nentially growing terms appearing in |B2〉 in the

continuum theory.

Thus the natural interpretation of the expo-

nentially growing terms in |B2〉 is that they en-

code information about conseved charges of

the D0-brane.



Clearly from the point of view of matrix model

these exponentially growing charges do not in-

validate the ‘open string description’ in which

we describe the system as a single particle

moving in an inverted harmonic oscillator po-

tential.

This is again consistent with the conjecture

that open string field theory gives a complete

description of a D-brane system without any

need to take into account backreaction due to

closed strings.



The matrix model description of two dimen-

sional string theory, while resolving some of

the earlier questions, raises a new puzzle.

What is the continuum description of hole

states?

Proposal 1. Take the boundary state of the

D0-brane, analytically continue the energy pa-

rameter E to negative value, and change the

sign of the boundary state.

The new state carries conserved charges ap-

propriate for a hole.

However the closed string field configuration

produced by this boundary state, instead of

producing an anti-kink configuration as appro-

priate for a hole, produces a kink.

This seems to be inconsistent with the idea

that this boundary state describes a hole state.



Also if this proposal is correct, then a similar

construction can be carried out for the bound-

ary states of ordinary D-branes in critical string

theory.

This will imply existence of new type of D-

branes in critical string theory.

→ seems unlikely.

Proposal 2. In the presence of linear dilaton

background, an ordinary D-brane experiences

a force that pushes it towards the strong cou-

pling region.

We can have rolling D0-brane solutions which

travel from the region of finite ϕ towards large

negative ϕ, reaches a turning point whose po-

sition depends on the energy of the brane, and

turns back towards the finite ϕ region.

We could identify these states as hole states.



A summary of some of the open problems

1. Construct analytically classical solutions in

open string field theory describing tachyon vac-

uum and other solutions.

2. Understand the role of higher derivative

terms in open string field theory.

Do they give rise to more solutions than what

is expected from counting of physical states in

the theory?

3. Find a precise test for the conjecture that

open string field theory is a completely consis-

tent quantum theory describing the dynamics

of a system of D-branes.

4. Find the relation between IHO and OSFT

for two dimensional string theory.

5. Find the correct description of hole states

in continuum description of two dimensional

string theory.


