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1. The setup: linear response theory and the need for a lattice

2. Lattice (Euclidean) correlators: Bayesian methods and an example

3. Functional Bayesian analysis: large ω and small ω

4. Parametrised Bayesian analysis: σ and phenomenology; Landau damping and
lattice evidence for it.



Linear Response Theory

The response, A(t), of a system to a force F(t) if non-linear terms are neglected—

A(t) =
∫ ∞

−∞
dt′χ(t− t′)F(t′) hence A(ω) = χ(ω)F(ω).

Causality implies χ(t) = 0 for t < 0. As a result χ(ω) is regular in the upper half
plane and dispersion relations follow. The spectral density is the imaginary part of
χ(ω) as ω approaches the real axis from above. A microscopic computation
explicitly relates χ(ω) to the retarded propagator. From this follow the Kubo
formulæ relating the transport coefficient and the zero energy limit of the spectral
density—

χ ∝ lim
ε→0

∫
d3x′

∫ t

−∞
dt′′eε(t′′−t)

∫ t′′

−∞
dt′〈A(x, t)A(x′, t′)〉.

J. Hilgevoord, Dispersion Relations and Causal Description, North-Holland, 1960
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Electrical conductivity and photon emissivity

The differential photon emissivity is given by—

ω
dΩ
d3p

=
CEM

8π3
nB(ω;T )ρµ

µ(ω,p;T ) where CEM = 4πα
∑

f

e2
f ≈

1
21

.

In terms of the DC electrical conductivity (j = σE)

σ(T ) =
CEM

6
∂

∂ω
ρi

i(ω,0;T )
∣∣∣∣
ω=0

,
8π3ω

CEMT 2

dΩ
d3p

= 6
σ

T
.

Since kµρµν = 0, we have ρ00 = 0 along the line p = 0. Formally,

ρ00(ω,0;T ) = 2πχQωδ(ω),

where χQ is the charge susceptibility.
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Lattice: Gauge theories at any coupling

For long distance physics the coupling g can become large. In QCD at
experimentally accessible heavy-ion collider energies g ≥ 1.
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Effects— pressure cannot be computed quantitatively in perturbation theory,
many quark number susceptibilities depart strongly from perturbative results.
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Euclidean Correlators

In the Euclidean theory one constructs equilibrium correlation functions which are
related to the spectral function by the relation—

G(τ,p;T ) =
∫ ∞

0

ω

2π
K(ω, τ ;T )ρ(ω,p;T ).

In a lattice theory there are Nt points in the τ direction, but there is a continuous
infinity of ω.

Replace integral by sum, the linear relation above becomes a set of linear
equations: more variables than equations. Inverse of K is ill defined. Convert to a
minimisation/Bayesian problem.

(Opposite of least-squares fit: more equations than unknowns)
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Regularisation

Maximize the Bayesian probability—

P (ρ|G) ∝ P (G|ρ)P (ρ) = exp[−F (ρ)],

F (ρ) = (G−Kρ)TΣ−1(G−Kρ) + βU(ρ)
β is a regularisation parameter, and U(ρ) is a function which we are free to
choose. This encodes our prior knowledge of the system.
A. N. Tikhonov and V. Y. Arsenin, Solutions of Ill-posed Problems, Wiley, New York (1977)

1. Maximum Entropy Method: U =
∑

ρ log(ρ/ρ0)− ρ. Y. Nakahara, M. Asakawa and

T. Hatsuda, Phys. Rev., D 60 (1999) 091503

2. Linear: U = ρTLTLρ, L = 1, D, D2, etc.. S. Gupta, hep-lat/0301006

3. Include known information into the Bayesian probability. G. P. Lepage et al., Nucl.

Phys., B (Proc. Suppl.) 106 (2002) 12.

NEFT/S. Gupta: TIFR, Dec 2003 to plan, LRT, lattice, functional Bayes, parametrised Bayes: σ, damping, summary. 5

http://arXiV.org/pdf/hep-lat/9905034
http://arXiV.org/pdf/hep-lat/9905034
http://arXiV.org/pdf/hep-lat/0301006
http://arXiV.org/pdf/hep-lat/0110175
http://arXiV.org/pdf/hep-lat/0110175


An example (1/3)

Determine the parameters of the line a + bx passing through (1,1)

Method 1: General linear regulator U = ρTLTLρ

F (a, b) = (1− a− b)2 + β(l11a2 + l22b
2 + 2l12ab)

U is positive definite. The minimum occurs at

M

(
a
b

)
=

(
1
1

)
, where M =

(
1 1
1 1

)
+ β

(
l11 l12
l12 l22

)

Most probable β = 0 :
(

a
b

)
=

l11 6=0︷ ︸︸ ︷
1

1 + x

(
x
1

)
or

l22 6=0︷ ︸︸ ︷
1

1 + x

(
1
x

)
(l12 = 0).

For all L the best fit passes through the data
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Example (2/3)

Method 2: MEM

F (a, b) = (1−a−b)2+β

(
a log

a

A
+ b log

b

B
− a− b

)
The minimum is at

a

A
=

b

B
= x where 1− Sx =

β

2
log x,

where S = A+B. Solutions exist only for S > 0.
If S < 1 then x > 1 and vice versa. Also
F = 1− S2x2 − βSx.
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The best fit does not pass through the data except when A + B = 1
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Example (3/3)

Method 3: Partial knowledge

Prior: the line passes through the origin. We can choose the Bayesian probability
distribution to be a Gaussian of width σ around the origin—

F = (1− a− b)2 +
a2

2σ
giving

(
a
b

)
=

(
0
1

)
.

If only information on b is needed then a can be integrated out of the Bayesian
probability to give the marginal distribution

P (b)db ∝ db exp
[
−(1− b)2

]
.

In this case marginalisation gives b=1 which is the same result as minimisation.
This is true if the distribution is unimodal.
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Lattice gauge theory with functional Bayesian methods

The lattice problem is to use—

G(τ,p;T ) =
∫ ∞

0

ω

2π
K(ω, τ ;T )ρ(ω,p;T ),

and the data on G to extract ρ.

One has only limited data from the lattice. This can be treated in different ways
to extract different kinds of physics. One method of analysis will not give us all
the information needed. We must tune the method to the problem.
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Large ω using MEM
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F. Karsch et al, Phys.Lett.B530:147,2002

Full agreement with Born for ω/T ≥ 4.

Default model: ideal gas behaviour. Output: ρ(ω) grows as ω2 at large ω.
Extracted value vanishes as ω → 0. Need to examine low ω region by another
method in more detail.
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Small ω using linear regulator

Since the problem is linear, work with

∆G(ω,p;T ) = Gfull(ω,p;T )−Gideal(ω,p;T ).

This gets rid of the ω2 divergence at infinity, at the cost of the positivity of ∆ρ.
Use a linear regulator. This shows a bump at small ω.
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S. Gupta, hep-lat/0301006
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Lattice gauge theory with parametrised Bayesian methods

Use a sequence of parametrisations for the
spectral density

∆ρ

T 2
=

z
∑N

n=0 γnz2n

1 +
∑M

m=1 δmz2m
.

Use with Fourier space correlators—

∆G(ωn,p;T ) =
∮

dω

2iπ

∆ρ(ω,p;T )
ω − ωn

where ωn = 2iπnT .

2π T

2π T N
t
= 2π/a

Two types of poles: S2 is
relaxation time and S4 is
Landau damping.

Use χ2 parameter fitting if N + M + 1 ≤ Nt, Bayesian otherwise.

F. Karsch and H. W. Wyld, Phys. Rev., D 35 (1987) 2518; S. Sakai et al., hep-lat/9810031
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Electrical conductivity: continuum limit

Electrical conductivity depends only on the parameter γ. Obtain this by
marginalising over the remaining parameters. S. Gupta, hep-lat/0301006

σ
T ≈ 7CEM for 1.5 ≤ T/Tc ≤ 3
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Dynamical scales and phenomenology

1. A photon emitted in the plasma is reabsorbed if its path length is

` =
1
σ
≈ 1

7CEMT
≈ 3 fm.

Typical fireball dimensions at RHIC are a few fm, so the fireball is marginally
transparent to photons. This may no longer be so at LHC.

2. Typical hadronic length/time scales in the plasma are

τ ≈ 1
7T

≈ 0.15 fm.

Hydrodynamic description of the final state in the plasma work if its
thermalisation time is less than 1 fm. Hydrodynamics may work at both RHIC
and LHC.
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3. Spontaneous thermal fluctuations of flavour even out by diffusion. The
diffusion constants, D, are related to the electrical conductivity as

σ =
∑

f

e2
fDfχf ,

where χf is the thermal susceptibility for particle number. We find
D ≈ 1

7T ≈ 0.15 fm, and hence the only visible chemical fluctuations are those
at freeze out. Strong implications for strangeness production.
R.V. Gavai and S. Gupta, Phys.Rev.D65:094515,2002

4. Jets traversing the plasma are quenched. This calls for high shear viscosity, η.
No reason, now, not to expect this. Try a computation of η in near future.
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Pinch singularities and transport

There are pinch singularities at small external energy, ω, from ladder diagrams.
These ladder diagrams correspond to multiple scatterings off particles in the
plasma.

����� ����������

k0

2γ
k

kE  + i kγ

ω+ kE  − i kγ

ω

ρ(
ω

)

ω/Τgg  ln(g)2

Transport: G. Aarts and J.M.M. Resco JHEP 0204:053,2002;

Gluon damping rate: E. Braaten and R. Pisarski, Phys.Rev.D42:2156-2160,1990
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Parametric behaviour

∆G(ωn,p;T ) =
∮

dω

2iπ

∆ρ(ω,p;T )
ω − ωn

dominated by poles closest to the origin. If these are poles of ∆ρ then

Relaxation time

i ρ

2π iT

• sign<G(ωn) � |=G(ωn)| (?)

• sign<G(ωn) = sign=G(ωn) (?)

• <G(ωn) < 0.

Landau damping
2π iT

(a)

re
i φ

• sign<G(ωn) � |=G(ωn)| (?)

• sign<G(ωn) 6= sign=G(ωn) (?)

• <G(ωn) > 0.
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Lattice results
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• Relaxation time approach ruled out. Landau damping possible.

• For Nt = 12 fits possible with |n| ≤ 3.

• Smaller lattices give qualitative results but a fit is not possible.

• Landau poles at ρ/2πT ≈ 0.15 and φ ≈ 0.2
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Summary

1. Lattice computations needed for comparison with experiments, but it contains
too little information to parametrize near-equilibrium physics completely. Prior
assumptions necessary.

2. Analysis methods must try to identify or isolate important physical behaviour.
MEM has done well in the large energy region. Linear Bayesian methods do
well in the small energy region.

3. First computation of transport coefficient: the electrical conductivity. Small
time scale for transport seen.

4. Parametrised forms check specific models of interactions. Relaxation time
approximations ruled out. Evidence supports physics of Landau damping.
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