Higgs Bosons in the SM and the MSSM Searches at LEP

P. Igo-Kemenes

Heidelberg / CERN

The LEP Legacy

 SM Higgs boson ... Final results m_H > 114.4 GeV @ 95% c.l. Small "hint" (< 2σ) at m_H≈ 116 GeV
 MSSM Higgs bosons ... Preliminary

 $m_{
m h} > 91.0~{
m GeV}\,, \ m_{
m A} > 91.9~{
m GeV}$ $aneta = v_2/v_1: \ 0.5-2.4$ unlikely New ! ... Scenarios with CP-violation

Higgs mechanism / Higgs bosons

<u>Model</u> to provide mass to gauge bosons and fermions without conflicting with the principle of gauge invariance

Standard model	Minimal SUSY extension
One complex scalar field doublet ϕ	Two field doublets ϕ_1 , ϕ_2
$<\phi>=vpprox 246$ GeV	$v^2=v_1^2+v_2^2$, v_2/v_1 = $ aneta$
4 degrees of freedom	8 degrees of freedom
$ullet$ M_{W^+} , M_{W^-} , M_{Z^0}	$ullet$ M_{W^+} , M_{W^-} , M_{Z^0}
$ullet$ One physical Higgs boson ${f H}^0$	• h^0 , H^0 , A^0 , H^+ , H^- CP conserving
mass not specified	$\mathbf{H^0}_1, \mathbf{H^0}_2, \mathbf{H^0}_3, \mathbf{H^+}, \mathbf{H^-} \dots CP$ violating
$m_{ m H}$ fixes all couplings	Tree level : 2 parameters
to fermions : $\sim m_f$	e.g. ($m_{ m A}$, $ aneta$) or (m_{H^\pm} , $ aneta$)
to vector bosons : $\sim m_V^2$	Loop level : Many soft SUSY breaking parameters
	Unification at $\Lambda_{GUT}\Rightarrowm_0,m_{1/2},\mu,A_t$

Proof ... detection of a Higgs particle !

Higgs boson masses

Standard model

 $m_{
m H}$... Theory suggests ...

- Upper bound ... perturbability up to scale Λ
- Lower bound ... vacuum stability up to Λ Consistency of the SM up to Λ_{GUT} ...

 $\Rightarrow~130\lesssim\!m_{
m H}\!\lesssim190$ GeV

Minimal SUSY (MSSM)

ullet Tree level ... $m_{
m h} {<}~M_Z$, $m_{
m h} {<} m_{
m A}$ $m_{
m H} {>}~M_Z$, $m_{H^\pm} {>}~M_W$

• One loop ... Ellis, Ridolfi, Zwirner, ... (1991) $\sim m_t^4$, $\sim \log (m_{ ilde{t}}/m_t)^2$ Two-loop ... Carena, Wagner, Hollik, Weiglein ... $m_{
m h} \lesssim 130~{
m GeV}$

Higgs searches at LEP

• LEP1 phase ... 1989 - 1994

Searches ... in the decay of the Z boson ... $e^+e^- \rightarrow Z \rightarrow Z^*H$ A+D+L+O ... 17×10^6 Z decays analysed \Rightarrow SM Higgs ... mass > 65 GeV (95% c.l.) \Rightarrow MSSM Higgs h and A (*CP* conserving) ... mass > 45 GeV (95% c.l.) • LEP2 phase ... 1995 - 2000 E_{cm} ... 135, 161, 171, 183, ... 189 - 209 GeV ... $e^+e^- \rightarrow Z^* \rightarrow ZH$ Integrated luminosity ... (A+D+L+O) ... 2.46 fb⁻¹ ... E_{cm} > 189 GeV ... 0.55 fb⁻¹ ... E_{cm} > 206 GeV

Year 2000 (last year of LEP) optimised for the SM Higgs search

- \Rightarrow SM Higgs ... final LEP-combined results
- ⇒ MSSM Higgs ... CP conserving preliminary LEP-combined results CP violating OPAL ... pioneering

Searches for the Standard Model Higgs boson

$$e^+e^- \rightarrow H Z$$

 $\frac{\text{Main sources of background}}{e^+e^- \rightarrow q\bar{q} (\gamma, g), W^+W^-, Z^0Z^0}$ (3-4 orders of magnitude above the signal)

- Kinematics selection (e.g. m_{H}^{rec})
- **b-tag** ... Si- μ Vtx Detectors

ALEPH, DELPHI, L3, OPAL ...

Combine all decay channels and all E_{cm} data sets...

LEP Higgs working group ... A+D+L+O \Rightarrow LEP data combined \Rightarrow Increased (range of) sensitivity

Statistical combination : $A+D+L+O \Rightarrow ADLO$

(LEP Higgs working group)

• INPUTS ... provided by the experiments ... binned in

- \Rightarrow Reconstructed Higgs mass M_{H}^{rec}
- \Rightarrow Global discriminating variable \mathcal{G} ... (LH or ANN) composed of *b*-tag, kinematics, other discriminating properties ...

In each bin i Bkgd. estimate (MC) b_i			
Signal estimate (MC) $ s_i(m_H) $		$s_i(m_H)/b_i$	
for test-mass m_H			
Nbr of candidates N_i			$M_{H}^{rec} \Rightarrow$

 $\begin{array}{c} \hline \textbf{Candidate "weights"} \dots s_i(m_H)/b_i \dots \text{ detailed MC simulation} \\ \hline \sqrt{s} \,, \, \int \mathcal{L} \,, \, \epsilon_{sig} \,, \, \epsilon_{bkgd} \,, \, \text{resolution (tails)} \,, \, \text{syst. errors} \\ \hline \textbf{The origin} \, \dots \, \textbf{channel} \dots \, \textbf{of candidates is irrelevant} \end{array}$

• LIKELIHOOD TEST ... $sig + bkgd \iff bkgd$ <u>Test-statistic</u> ... $Q = \frac{\mathcal{L}_{s+b}}{\mathcal{L}_b}$... to rank the candidates $-2 \ln Q(m_H) = 2s_{tot} - 2 \sum_i N_i \ln[1 + s_i(m_H)/b_i]$ \uparrow *Candidate "weights" ... additive*

... Statistical combination

As a function of test-mass m_H ... Observed likelihood Expectation for b ... and for s + b

... and stat. $\pm 1\sigma$ and $\pm 2\sigma$ bands

The last three months of LEP running

• SURPRISE ! ... end of August ... ALEPH "Excess" ... 3.9σ Three "4-jet" events ($E_{\,cm}\gtrsim 206$ GeV) ... $m_{H}^{rec}pprox 114$ Gev

• LEP shutdown ... postponed ... until Nov 2 ...

to increase statistics at highest energies ($E_{cm}>206~{
m GeV}$)

- ALEPH (no new high-weight candidates): $3.9\sigma
 ightarrow 3.4\sigma$
- L3: Candidate in the "missing energy" channel

ADLO: 2.9σ

- \Rightarrow <u>Request</u>: LEP to continue for another year ... Perspective ... $2.9\sigma \rightarrow (5.3 \pm 0.5)\sigma$... if the signal was real
- Nov 17 ... decision ... not to continue LEP

The shutdow of Nov. 2, 2000 was indeed final !

Since Nov 2000 ...

many changes within the experiments

- Recalibration of detector parameters ... and E_{cm}
- Better Monte Carlo statistics over the whole phase-space
- Improvements in selections ... better sensitivity
- Revision of technicalities (extra- and interpolations)
- Study of resolution functions close to HZ kin. limit
- Revision of backgrounds
- Reassessment of systematic errors

Final results published ... and ... combined

• **Reconstructed Higgs Mass ...** (LEP combined)

Distributions of event "weights"

 $-2 \ln Q \sim \Sigma_i \ln(1 + s_i/b_i)$ "Background"-like or "Signal+background"-like ?

Integral from "right" to "left"

 $m_{
m H}=115~{
m GeV}$

• Test-statistic $-2 \ln Q$... by Experiment

• $-2\ln(Q)$ by Final State ... (LEP combined)

MSSM Higgs searches: Current status

A. CP conserving scenarios ... LHWG Note / 2001-04

Two search channels ... $e^+e^- \rightarrow h^0 Z^0 \quad ... \quad \sigma_{hZ} = \sin^2(\beta - \alpha) \quad \sigma_{SM}$ $e^+e^- \rightarrow h^0 A^0 \quad ... \quad \sigma_{hA} = \cos^2(\beta - \alpha) \quad \bar{\lambda} \quad \sigma_{SM}$ *Complementarity* !

"Benchmark" parameter scans ...

Carena, Heinemeyer, Wagner, Weiglein hep-ph/9912223

$ anoldsymbol{eta}$	=	0.4 - 40	ratio of Higgs v.e.v scanned
$m_{\mathbf{A}^0}$	=	0 – 500 GeV	CP-odd Higgs mass scanned
${m \mu}$	=	-200 GeV	Higgs doublet mixing
$m_{ m SUSY}$	=	1 TeV	SUSY breaking scale
m_2	=	200 GeV	SU(2) gaugino mass matrix parameter
m_{top}	=	174.3 GeV	top quark mass
$ m_{ ilde{ extbf{g}}} $	=	800 GeV	gluino mass

Squark mixing parameter $X_t \equiv A_t - \mu / \tan \beta$

(A_t ... trilinear Higgs-squark coupling)

- "No mixing" scenario ... $X_t = 0$
- " $m_{
 m h}$ -max" scenario ... $X_t = 2 M_{SUSY}$

ADLO ... combined results

MSSM " $m_{ m h}$ -max" Scenario

MSSM "No mixing" Scenario LEP 88-209 GeV Preliminary LEP 88-209 GeV Preliminary $tan\beta$ $tan\beta$ No Mixing No Mixing 10 10 Excluded M_{SUSY}=1 TeV by LEP $M_2 = 200 \text{ GeV}$ $\mu = -200 \text{ GeV}$ m_{gluino}=800 GeV No stop mixing: $X_t=0$ Excluded Theoretically 1 1 by LEP Inaccessible $m_{\rm h^{\circ}}^{100}$ 120 140 $m_{\rm h^{\circ}}^{100}$ (GeV/c²) $\frac{00 \quad 400 \quad 500}{m_{A^{\circ}} (\text{GeV/c}^2)}$ 20 80 100 200 300 0 40 60 0 ↑

OPAL : CERN-EP/2002-058

... Almost entirely excluded

B. CP violating MSSM scenario

Appealing ! Cosmic matter/antimatter asymmetry Can be introduced, e.g., by rad. corr. $\mathcal{O}(1)$ to the (CP-invariant) Higgs potential, mainly 3^d generation squarks Carena, Ellis, Pilaftsis, Wagner ... Phys. Lett. <u>B495</u> (2000) 155, Nucl. Phys. <u>B586</u> (2000) 93

MSSM Higgs spectrum H^0_1 , H^0_2 , H^0_3 , H^+ , H^-

Neutral mass eigenstates are CP even/odd mixtures Off-diagonal elements to the mass matrix ...

 $\mathcal{M}^2_{ij} \sim rac{m^4_{top}}{v^2} imes rac{Im(\mu A_t)}{m^2_{SUSY}}$

Large deviations w.r.t. CP conserving scenarios ... for m_{SUSY} small and $Im(\mu A_t)$ and m_{top} large

Production ... $e^+e^- \rightarrow H^0{}_iZ$ (i = 1, 2, 3) ... (hZ - like) $e^+e^- \rightarrow H^0{}_iH^0{}_j$ ($i \neq j$) ... (hA - like)

Decay ... similar to CP conserving scenario $H^0_1 \rightarrow b\bar{b}$, $\tau^+ \tau^ H^0_2 \rightarrow H^0_1 H^0_1$... (h \rightarrow AA - like)

The signal is spread over more final states than in the CP conserving MSSM; the sharing of rates depends on two CP-violating phases ... of A_t and $m_{\tilde{g}}$

 \Rightarrow Experimentally more challenging

CP violating "benchmark" scenario CPX ...

Maximizing the changes w.r.t. CP conserving MSSM

aneta	=	0.4 – 40	ratio of Higgs v.e.v scanned
$m_{ m H^+}$	=	0 – 1 TeV	charged Higgs mass scanned
μ	=	2 TeV	Higgs doublet mixing <i>large</i>
$m_{ m SUSY}$	=	500 GeV	SUSY breaking scale $= m_{ ilde{q}}$ small
m_2	=	200 GeV	SU(2) gaugino mass matrix parameter
$ A_q $	=	1 TeV	strength of trilinear coupling <i>large</i>
$rg(A_q)$	=	90 ⁰	phase of A_q \Rightarrow max CP-violation
$ m_{ ilde{ extbf{g}}} $	=	1 TeV	gluino mass
$rg(m_{ ilde{ extbf{g}}})$	=	90 ⁰	phase of $m_{ ilde{ extbf{g}}} \Rightarrow$ max CP-violation

OPAL search ... Physics Note PN505 (July 2002) LEP1 and all LEP2 data included "Standard" hZ and hA searches ... adapted CPX scenario \bigoplus Phases varied between 0^0 and 90^0 \bigoplus m_{top} varied within exp. errors

CPX scenario: Single channel rates

• Rate dispersed into many channels

OPAL CPX scan (Preliminary)

Dependence on the Top mass ...

 $OPAL \bigoplus others$ (?) ... combined \Rightarrow Better sensitivity !

