Wojciech Wiślicki, Sołtan Institute, Warszawa, Poland Presented on behalf of the NA48 Collaboration at CERN, at PASCOS, Mumbai, Jan 2003

DIRECT CP VIOLATION IN NEUTRAL KAON DECAYS

Final result of the NA48 Experiment ¹ at CERN, obtained from data taken in 1997-2001.

Determination of Re(ϵ'/ϵ) from $K_{L,S} \to \pi\pi$ decays.

¹Cambridge, CERN, Dubna, Edinburgh, Ferrara, Firenze, Mainz, Orsay, Perugia, Pisa, Saclay, Siegen, Torino, Warszawa, Wien

DIRECT CP VIOLATION AND THE IDEA OF MEASUREMENT

• Indirect: transitions $\Delta S=2$, e.g. $|\mathsf{K}_{\mathsf{L}}\rangle$ (undefined CP) $\to |2\pi\rangle$ (CP=+1) $|\mathsf{K}_{\mathsf{L}}\rangle \sim \varepsilon |\mathsf{K}_1\rangle + |\mathsf{K}_2\rangle$

$$\varepsilon = \frac{\langle 2\pi (I=0)|K_L\rangle}{\langle 2\pi (I=0)|K_S\rangle} = (2.28 \pm 0.01) \times 10^{-3} e^{i\delta_{\varepsilon}}$$

DIRECT CP VIOLATION AND THE IDEA OF MEASUREMENT, cont.

• Direct: transitions $\Delta S = 1$, e.g. $|K_2\rangle(CP = -1) \rightarrow |2\pi\rangle(CP = +1)$ requires I = 0, 2 interference

$$\frac{\epsilon'}{\epsilon} \sim \frac{\langle 2\pi (I=2)|K_L\rangle}{\langle 2\pi (I=0)|K_L\rangle} - \frac{\langle 2\pi (I=2)|K_S\rangle}{\langle 2\pi (I=0)|K_S\rangle}$$

Hence, the double ratio method

$$\frac{|\langle \pi^0 \pi^0 | K_L \rangle / \langle \pi^0 \pi^0 | K_S \rangle|^2}{|\langle \pi^+ \pi^- | K_L \rangle / \langle \pi^+ \pi^- | K_S \rangle|^2} = 1 - 6 \text{ Re} \left(\frac{\epsilon'}{\epsilon}\right)$$

NA48 KAON BEAMS

NA48 SPECTROMETER

TRIGGERS

Trigger for $K \to \pi^0 \pi^0$

- $E_{TOT} > 50$ GeV,
- center of energy < 25 cm,
- $z_{vertex} < 5 \tau_{K_S}$,
- $N_{peaks x,y} < 6$

TRIGGERS, cont.

Trigger for $K \to \pi^+\pi^-$ (2-step)

- 1st level:
 - opposite quadrant hodoscope signals,
 - chambers N_{hit},
 - $-E_{TOT} > 35 \text{ GeV}$
- 2nd level: fast event-building asynchronous processors array reconstruct tracks; requirements for vertex, tracks and mass quality

EVENT RECONSTRUCTION AND SELECTIONS

Neutral mode:

- $E_{\gamma_{1,2,3,4}}$ + impacts $\rightarrow z_{vertex}$
- $-z_{vertex} \rightarrow m_{\gamma\gamma}s$
- Good combinations of γ s by χ^2_{\min}

EVENT RECONSTRUCTION AND SELECTIONS, cont.

- Charged mode:
 - $-\pi^{+-}$ tracks and momenta
 - K mass and energy

BACKGROUND REJECTION

- Neutral mode: (uniquely $K_L \rightarrow 3\pi^0$)
 - No additional showers in LKr within ± 3 ns around event time
 - $-\,\chi^2 < 3.7\sigma(\,m_{\gamma\gamma})$

BACKGROUND REJECTION, cont.

Charged mode:

- For K_S , $\Lambda \to p\pi^-$ suppressed using close p_+ and p_-
- For $K_L,~K_{e3}$ and $K_{\mu3}$ by E/p< 0.8 or no veto hits, $m_{+-},$ small p_T

ACCEPTANCE CORRECTIONS

Need for corrections for $\tau_{K_L} \neq \tau_{K_S}$ K_L distributions weighted $W(\tau) = \frac{I(\tau \; from \; K_S \; target)}{I(\tau \; from \; K_L \; target)}$

$$W(\tau) = \frac{I(\tau \text{ from } K_S \text{ target})}{I(\tau \text{ from } K_I \text{ target})}$$

I – complete K $ightarrow 2\pi$ intensity.

PROBLEM OF K_S TAGGING

For $\pi^+\pi^-$ mode K_L and K_S distinguishable by vertex x,y, but not for $\pi^0\pi^0$.

Require t_{tagger} and t_{event} to coincide within time window (± 2 ns).

TWO SOURCES OF SYSTEMATIC **UNCERTAINTIES RELATED TO TAGGING**

- K_S tagging inefficiency: small probability not to register time coincidence, same for $\pi^+\pi^-$ and $\pi^0\pi^0$ modes; estimated from $\pi^+\pi^-$ mode using vertex positions.
 - Effect on R is $(1.9 \pm 0.4) \times 10^{-4}$
- Mistagging: accidental coincidence between event and proton times; estimated from $\pi^+\pi^-$ mode from the fraction of K_I (identified from vertex) having proton in ± 2 ns. Slight difference between modes due to intensity conditions. Effect on R is $(4.3 \pm 1.8) \times 10^{-4}$

STATISTICS AND RESULTS

	M-events
$K_L \rightarrow \pi^0 \pi^0$	4.7
$K_S \rightarrow \pi^0 \pi^0$	7.4
$K_L \rightarrow \pi^+\pi^-$	21.6
$K_S \rightarrow \pi^+\pi^-$	31.8

Re
$$\left(\frac{\varepsilon'}{\varepsilon}\right) = (14.7 \pm 1.4 \pm 0.9 \pm 1.5) \times 10^{-4}$$

Re
$$\left(\frac{\varepsilon'}{\varepsilon}\right) = (14.7 \pm 2.2) \times 10^{-4}$$

SYSTEMATICS AND CORRECTIONS

R stability against cut variations

Acceptance and charged background are major systematic culprits.

NA48 vs. WORLD DATA

- NA48 result stable over 5 years of data taking
- Fair consistency between experiments:
 - previous generation: NA31, E731
 - present generation: NA48, KTeV.(KTeV result is not yet final.)

Direct CP violation $\varepsilon' > 0$ is experimentally proved in K^0 decays.

WHAT DOES THIS RESULT MEAN

 Grand average a.d. 2002 (early 03) from² NA31, E731, NA48 and KTeV

Re
$$\left(\frac{\varepsilon'}{\varepsilon}\right) = (16.7 \pm 1.6) \times 10^{-4}$$

- Standard model calculations of Re $\left(\frac{\varepsilon'}{\varepsilon}\right)$; theory not in shape yet.
- Exclusion of superweak interactions (should be $\varepsilon' = 0$); still some claims for marginal likelihood to save it.

²Not accounting for results of much lower accuracy from before 1991

STANDARD MODEL CALCULATIONS OF Re $\left(\frac{\varepsilon'}{\varepsilon}\right)$

In Munich notation (A. Buras et al.)

$$\begin{split} \frac{\epsilon'}{\epsilon} &= \text{Im } \lambda_t \left(P^{(1/2)} - \frac{1}{\omega} P^{(3/2)} \right) \\ \text{where } \lambda_t &= V_{ts}^* V_{td}, \\ P^{(1/2)} &= r \sum_n y_n \langle 2\pi (I=0) | Q_n | K^0 \rangle \\ P^{(3/2)} &= r \sum_n y_n' (\langle 2\pi (I=2) | Q_n | K^0 \rangle) \\ &+ \omega \langle 2\pi (I=0) | Q_n | K^0 \rangle) \end{split}$$

Matrix elementsi (m.e.):

$$\begin{split} \langle 2\pi(I=0)|Q_n|K^0\rangle &= B_n^{(1/2)}\langle I=0|Q_n|K^0\rangle \\ \langle 2\pi(I=2)|Q_n|K^0\rangle &= B_n^{(3/2)}\langle I=2|Q_n|K^0\rangle \\ Im \ \lambda_t &= (1.2\pm0.2)\times 10^{-4} \ \text{from unitarity triangle analysis.} \end{split}$$

Electroweak m.e. under control, but QCD m.e. $B_n^{(1/2)}$, $B_n^{(3/2)}$ are not.

STANDARD MODEL CALCULATIONS OF Re $\left(\frac{\varepsilon'}{\varepsilon}\right)$, cont.

- $P^{(1/2)}$ dominated by $\Delta I = 1/2$ Gpenguin.
- $P^{(3/2)}$ dominated by $\Delta I = 3/2 \ Z^0$ -penguin, prop. to m_t^2 , thus competitive to G.
- Destructive interference between two \rightarrow possible cancellation, sensitive to QCD m.e. and m_t .
- Using CKM parameters

$$\frac{\epsilon'}{\epsilon} = A^2 \lambda^5 \eta \cdot \text{(function of } B_n \text{s and } m_t\text{)}$$

Assuming present CKMs and B_n s with no errors, current $\varepsilon'/\varepsilon)_{exp}$ would favour low $m_t < 150$ GeV.

STANDARD MODEL CALCULATIONS OF Re $\left(\frac{\varepsilon'}{\varepsilon}\right)$, cont.

Since $m_t = 174.3 \pm 5.1$ GeV, η would have to be lower than previously supposed;

A and λ known pretty precisely; η contributes to $V_{cd}^*V_{cs}$ and $V_{td}^*V_{ts}$ terms.

But uncertainties on B_n s obscure the picture.

• Contribution of final state interactions to ε'/ε is not estimated (may not be negligible, relative momenta of π s are not small!)

CONCLUDING REMARKS

- Elusive direct CP violation in K decays is no longer illusion. Experimentally, $\frac{\varepsilon'}{\varepsilon} > 0$ is firm, both from NA48 alone and from world data pooled.
- Calculation of $\frac{\varepsilon'}{\varepsilon}$ is still a challenge for theory, mainly due to long-range QCD contributions. Hence the meaning of the result for physics is not yet fully understood.