P and CP VIOLATION IN B PHYSICS

Michael Gronau

CERN & Technion

Jan. 7, 2003

Outline

- Motivation
- Radiative decays
 - $B \to X_s \gamma, X_s \to K \pi \pi$
 - photon polarization provides precision test of Standard Model
- Hadronic decays
 - $B^0 \to D^{*-}a_1^+$
 - V-A test $\bar{c}\gamma_{\mu}(1-\gamma_{5})b$
 - $2\beta + \gamma$ from CP asymmetry, no discrete ambiguity
- Conclusion

References

- hep-ph/0107254: M.G, Y. Grossman, D. Pirjol and A. Ryd, PRL 88, 051802 (2002)
- hep-ph/0205065: M.G. and D. Pirjol, PRD 66, 054008 (2002)
- hep-ph/0209230: M.G., D. Pirjol and D. Wyler

Talk will NOT REVIEW methods for measuring

$$\beta \equiv \phi_1, \ \alpha \equiv \phi_2, \ \gamma \equiv \phi_3$$

We are awaiting more precise measurements of

$$B \to \pi\pi, \ B \to K\pi, \ B \to DK$$

Motivation

$b \text{ couplings } \Rightarrow \text{CKM tests}$

- P violation

 → chiral structure
 - $|V_{cb}| \simeq 0.04$ $\bar{c}\gamma_{\mu}(1-\gamma_5)b$?
 - $|V_{ub}| \simeq 0.003 \ \bar{u}\gamma_{\mu}(1-\gamma_5)b$?
 - small $|V_{ib}|$ are sensitive to right-handed b couplings, in particular in loop (penguin) processes
- CP violation

 weak phases
 - precise measurement of $\beta = \operatorname{Arg} V_{td}^* * * *$
 - measurements of $\gamma = \mathrm{Arg} V_{ub}^*, \ \alpha = \pi \beta \gamma$?
 - CKM precision tests if no new phase due to penguin amplitude

Motivation (cont.)

Beyond Standard Model

- Models
 - Left-right symmetry
 - Supersymmetry
- Signatures
 - Right-handed couplings
 - New CP phases

Photon helicity in $b \rightarrow s\gamma$

- $\mathcal{B}(\bar{B} \to X_s \gamma)$ agrees with SM within 10 20%
- In SM photon is left-handed up to m_s/m_b
- In Left-Right symmetric and SUSY models the photon may have a large right-handed component

$$\mathcal{H}_{\text{rad}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \left(C_{7L} \mathcal{O}_{7L} + C_{7R} \mathcal{O}_{7R} \right)$$

$$\mathcal{O}_{7L,R} \propto \bar{s}\sigma_{\mu\nu} \frac{1 \pm \gamma_5}{2} bF^{\mu\nu}$$

Standard Model: $C_{7R}/C_{7L} = m_s/m_b$

Fujikawa & Yamada; Cho & Misiak; Everett et al.

Earlier suggestions for measuring λ_{γ}

- CP asymmetries in $B^0(t) \to X_s^{(CP)} \gamma$ Atwood, M.G., Soni
- angular correlations in $B \to K^*(\to K\pi)\ell^+\ell^-$

Melikhov et al.; Krúger et al.; Kim et al.; Grossman & Pirjol

• Λ - Λ_b correlation in Λ_b (polarized) $\to \Lambda(\to p\pi)\gamma$

Mannel & Recksiegel; Hiller & Kagan

may require very high luminosity B or Z factories

Photon helicity in $B \to K_{\text{resonance}} \gamma$

Resonance states were observed

$$10^5 \mathcal{B}(B \to K_2^*(1430)\gamma) = 1.66^{+0.59}_{-0.53} \pm 0.13$$
 (CLEO)
= $1.50^{+0.58}_{-0.53}^{+0.11}$ (Belle)

 K_2^* are observed in $K_2^* \to K\pi$

• States decaying to $K\pi\pi$ were also observed (Belle)

helicity measurement requires 3-body recoil $K\pi_1\pi_2$

- 1. λ_{γ} is P-odd
- 2. no odd momentum correlation from 2-body
- 3. $\vec{p}_{\gamma} \cdot (\vec{p}_1 \times \vec{p}_2)$ is P-odd; T-odd requires FSI

$$\lambda_{\gamma}$$
 in $K_1(1400) \rightarrow K\pi\pi$

$$K_1^+(1400) \to \left\{ \frac{K^{*+}\pi^0}{K^{*0}\pi^+} \right\} \to K^0\pi^+\pi^0 : K_1^0 \to K^+\pi^-\pi^0$$

$$\mathcal{B}(K_1 \to K^*\pi) = 0.94 \pm 0.06, \quad (D/S = 0.04 \pm 0.01)$$

 $\mathcal{B}(K_1 \to \rho K) = 0.03 \pm 0.03$

$$|A(B \to K_1 \gamma \to K \pi \pi \gamma)|^2 = |c_L|^2 |\mathcal{M}_L|^2 + |c_R|^2 |\mathcal{M}_R|^2$$
$$\lambda_\gamma \equiv \frac{|c_R|^2 - |c_L|^2}{|c_R|^2 + |c_L|^2} = \frac{|C_{7R}|^2 - |C_{7L}|^2}{|C_{7R}|^2 + |C_{7L}|^2}$$

Standard Model: $\lambda_{\gamma} = -1 + \mathcal{O}(m_s^2/m_b^2)$ for B^-, \bar{B}^0

Calculate $\langle \vec{p}_{\gamma} \cdot (\vec{p}_1 \times \vec{p}_2) \rangle_{K_1(1400)}$

$$\mathcal{M} \propto \varepsilon^{\mu} \left[p_{1\mu} \left(1 - \frac{m_K^2 - m_{\pi}^2}{m^2 (K^*)} \right) + 2p_{2\mu} \right] BW(s_{23}) - (p_1 \leftrightarrow p_2) \equiv \varepsilon \cdot J$$

$$\frac{d\Gamma}{ds_{13}ds_{23}d\cos\theta} \propto |\vec{J}|^2 (1+\cos^2\theta) + \lambda_{\gamma} 2\operatorname{Im}\left(\hat{n}\cdot(\vec{J}\times\vec{J}^*)\right)\cos\theta$$

up down asymmetry
$$\mathcal{A} = \frac{\int_0^{\pi/2} d\Gamma - \int_{\pi/2}^{\pi} d\Gamma}{\int_0^{\pi} d\Gamma} = (0.33 \pm 0.05)\lambda_{\gamma}$$

 $\hat{n} = \text{normal to decay plane}$

 $\theta =$ angle between normal to decay plane and γ

$$BW(s) = [s - m(K^*)^2 - im(K^*)\Gamma(K^*)]^{-1}$$

Precision

Theoretical assumptions

- Lorentz invariance
- Isospin symmetry

Hadronic uncertainties

- D wave in $K_1 \to K^*\pi$: $D/S = 0.04 \pm 0.01$
- $\mathcal{B}(K_1 \to \rho K) = 0.03 \pm 0.03$

$$\Rightarrow \mathcal{A} = (0.33 \pm 0.05) \lambda_{\gamma}$$

15% measurement of $\lambda_{\gamma} = -1 + \mathcal{O}(m_s^2/m_b^2)$

better measurement by full energy and angular distribution

Feasibility

- Standard Model Signature: In B^- and \bar{B}^0 decays the photon prefers to move in the hemisphere of $\vec{p}_{\rm slow}^{\ \pi} \times \vec{p}_{\rm fast}^{\ \pi}$
- Assume $\mathcal{B}(B \to K_1(1400)\gamma) = 0.7 \times 10^{-5}$ $\Rightarrow \mathcal{A}(3\sigma)$ can be measured with $10^8~B^0/\bar{B}^0, B^+/B^-$ pairs 15% measurement of λ_γ require 10^9 pairs
- Energy and angle distributions can distinguish $K_1(1400)$ from other resonances

Belle and BABAR: Please, study $B \to K\pi\pi\gamma$

Helicity amplitudes in hadronic decays

$$B \to VV$$
, e.g. $B^0 \to D^{*-}(\to D\pi)\rho^+(\to \pi\pi)$

- ullet Final particle distribution determines V-polarization
- Measure rates Γ_i , $i=0,\parallel,\perp$ and certain interference
- Factorization & HQ prediction ($\Gamma_0/\Gamma=0.884$) agrees well with experiment ($\Gamma_0/\Gamma=0.878\pm0.034\pm0.030$)
- Time-dependence measures $2\beta + \gamma$ with discrete ambiguity

Measurements cannot

- distinguish between Left- and Right-polarization
- determine the sign of $\sin(2\beta + \gamma)$

Advantage of $B \rightarrow VA$

$$B^0 \to D^{*-}(\to D\pi)a_1^+(\to 3\pi)$$

Will show:

- 1. 3-body decay distinguishes between Left and Right polarization and enables measurements of Γ_L and Γ_R
- 2. Tests $\bar{c}\gamma_{\mu}(1-\gamma_5)b$
- 3. Time-dependence measures $2\beta + \gamma$ without discrete ambiguity

Cannot be achieved with 3-body decays of V in $B \rightarrow VV$

Calculate $B^0 \to D^{*-}a_1^+$ in helicity amps

$$A(B^{0} \to D^{*-}\pi^{+}(p_{1})\pi^{+}(p_{2})\pi^{-}(p_{3})) = \sum_{i=0,+,-} H_{i}A_{i}$$

$$A_{i} = A_{i}(a_{1}^{+} \to \rho^{0}\pi^{+}(p_{2})) + A_{i}(a_{1}^{+} \to \rho^{0}\pi^{+}(p_{1}))$$

$$A(a_{1}^{+}(\varepsilon) \to \pi_{1}^{+}\pi_{2}^{+}\pi_{3}^{-}) = \varepsilon \cdot J$$

 $J = \text{symmetric under } p_1 \leftrightarrow p_2 \text{ involves } BW_{\rho}(s_{ij})$

$$\frac{d\Gamma}{d\cos\theta} = (|H_{+}|^{2} - |H_{-}|^{2})\cos\theta \operatorname{Im}[(\vec{J} \times \vec{J}^{*}) \cdot \hat{n}] + (|H_{+}|^{2} + |H_{-}|^{2})\frac{1}{2}(1 + \cos^{2}\theta)|\vec{J}|^{2} + |H_{0}|^{2}\sin^{2}\theta|\vec{J}|^{2}$$

 θ = angle between normal to a_1 decay plane and D^*

θ distribution determines $|H_0|^2$, $|H_{\pm}|^2$

Test for factorization and V-A

• Factorization and HQ symmetry for $B^0 \to D^{*-}a_1^+$:

$$|H_0|^2 = 0.75$$
, $|H_+|^2 = 0.21$, $|H_-|^2 = 0.04$

Left-component of $D^* \ll \text{Right-component}$.

Up-down asymmetry:

$$\mathcal{A} = \frac{\int_0^{\pi/2} d\Gamma - \int_{\pi/2}^{\pi} d\Gamma}{\int_0^{\pi} d\Gamma} = -0.042$$

5000 events are needed, BABAR measured 18,000

• $\bar{c}\gamma_{\mu}(1+\gamma_5)b$ would imply $\mathcal{A}=+0.042$

Time-dependent measurement of $2\beta + \gamma$

- interference of $B^0 \to D^{*-}a_1^+ \ (\bar{b} \to \bar{c}u\bar{d}) \equiv H_i$ and $\bar{B}^0 \to D^{*-}a_1^+ \ (b \to u\bar{c}d) \equiv h_i$
- 2β = phase of $B^0 \bar{B}^0$ mixing; γ = phase of V_{ub}^*

$$A \equiv A(B^0 \to D^{*-}(3\pi)^+) = \sum_{i=0,\parallel,\perp} H_i A_i$$

$$\bar{A} \equiv A(\bar{B}^0 \to D^{*-}(3\pi)^+) = \sum_{i=0,\parallel,\perp} h_i A_i$$

$$H_i = |H_i| \exp(i\Delta_i), \quad h_i = |h_i| \exp(i\delta_i) \exp(-i\gamma)$$

 A_i = calculable functions of θ, ψ (defining D^* decay plane)

warning:
$$|h_i/H_j| \sim |V_{ub}V_{cd}/V_{cb}V_{ud}| \approx 0.02$$

Time and angular dependence

$$\Gamma(B^0(t) \to D^{*-}(3\pi)^+) \propto 2 \text{Im} \left(e^{2i\beta} A \bar{A}^*\right) \sin \Delta m t$$

 $+ (|A|^2 + |\bar{A}|^2) + (|A|^2 - |\bar{A}|^2) \cos \Delta m t$

 $|A|^2, \ |ar{A}|^2, \ \operatorname{Im}\left(e^{2ieta}Aar{A}^*
ight) = ext{sums over bilinears in H_i and h_j}$ multiplying calculable functions of $heta,\psi$

$$\Rightarrow \text{ determines all } \operatorname{Re}(H_i H_j^*), \operatorname{Im}(H_i H_j^*),$$

$$\operatorname{Re}[e^{2i\beta}(H_i h_j^* - H_j h_i^*)], \operatorname{Im}[e^{2i\beta}(H_i h_j^* + H_j h_i^*)]$$

$$H_i = |H_i| \exp(i\Delta_i), \quad h_i = |h_i| \exp(i\delta_i) \exp(-i\gamma)$$

This fixes $2\beta + \gamma$ without any ambiguity and without having to measure $|h_i|^2$

Comparison with $B^0(t) \to D^{*-}\rho^+$

Feasibility

- $\mathcal{B}(B^0 \to D^{*-}a_1^+) = 1.2\%$
- CP asymmetry in $\sin \Delta mt = 2|V_{ub}V_{cd}/V_{cb}V_{ud}| \approx 0.04$
- $ightharpoonup \sim 200$ events are needed for angular dependence (CLEO)
- allow an order of magnitude for efficiencies and background

 \Rightarrow one needs at least $\mathcal{O}(10^8)$ B's

BABAR and Belle have 10⁸ B's

Other applications

 $\sin 2\beta$ was measured in $B^0(t) \to J/\psi K_S, \ J/\psi K^{*0}$ two-fold ambiguity between β and $\pi/2 - \beta$ can be resolved by measuring the sign of $\cos 2\beta$

- $B \to D^{*-}K_1^+(1400) \Rightarrow$ another unambiguous measurement of $2\beta + \gamma$

Conclusion

- chirality tests of V-A at tree level and one-loop
- clean and unambiguous determination of weak phases β and γ
- prospects for deviations from Standard Model

In the Standard Model P and CP violation are introduced by-hand; they may have a common origin

If P violation and the quark mass hierarchy have a common origin \Rightarrow enhanced right-handed b couplings