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Motivation and Framework

Phenomenology depends on how SUSY breaking effects are communicated to

MSSM fields

? Modulus (Gravity)-mediation+ assumptions mSUGRA Model =⇒
Universality (usually bino-like neutralino or gravitino LSP)

? Gauge-mediation GMSB Models =⇒ mi ∝ g2
i (light gravitino LSP)

? Anomaly-mediation AMSB Models =⇒ mi ∝ βi wino-like neutralino LSP

Modulus + Anomaly Mediation

Mixed Modulus-Anomaly Mediated Supersymmetry Breaking (MM-AMSB)

WHY MM-AMSB?

X. Tata, “TIFR Seminar, Dec. 2006” 2



MM-AMSB structure of MSSM soft SUSY breaking terms arises if the moduli of

type IIB superstring are stabilized because space curls up with fluxes (non-zero

field strengths) along the extra dimensions.

Kachru, Kallosh, Trivedi and Linde’s Toy Scenario

? Stable ground state in controlled approximation (fluxes + gaugino

condensation on D7 brane)

? de Sitter universe (anti D3 brane)

? Small SUSY breaking due to D3 brane.

Three Step Construction

1. Compactification with fluxes stabilizes shape moduli and dilation fields and

makes them heavy, but preserves SUSY

2. Size modulus T stabilized by a non-perturbative mechanism; mT � m3/2, AdS

space.

3. Introduce anti-D3 brane; makes vacuum energy positive; breaks SUSY.

mSUSY = FT /T � m3/2
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No concrete realization of KKLT idea with an explicit C-Y space and choice of

fluxes that leads to a ground state with all the required properties (e.g. SM, dS

spacetime)!

MSSM SUSY breaking modulus-mediated contributions, mSUSY � m3/2, so may

be comparable or smaller than loop AMSB ones.

In original KKLT construction, m3/2 ' mSUSY ln( MP

m3/2
).

Nevertheless the KKLT construction motivated model builders to consider what

the structure of the soft SUSY breaking contributions to the MSSM might look

like if such a construction becomes possible. The discovery of a realistic string

vacuum would, for better or worse, of course fix everything!
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PHENOMENOLOGICAL APPROACH.

Choi, Falkowski, Nilles, Olechowski, Pokorski; Choi, Jeong, Okumura;

Falkowski, Lebedev, Mambrini; Kitano, Nomura.

Generalize the non-perturbative superpotential and also the “lifting potential”

that gave positive vacuum energy:

FT

T
= coeff × m3/2

ln MP

m3/2

∼ coeff × m3/2

4π2
.

The ratio between anomaly and modulus mediated SUSY breaking contributions

then depends on this generalization.

Parametrize this ratio by α. Since it is a ratio of products of VEVs, α can take

either sign.

Warning: There are two conventions for α in the literature!

αOur = αFLM =
16π2

ln(MP /m3/2)

1

αChoi
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Parameter Space

MSSM sparticle mass scale ∼ m3/2

16π2 ≡ Ms

Ratio of modulus-mediated and anomaly-mediated contributions set by a

phenomenological parameter α

Modulus-mediated contributions depend on location of fields in extra dimensions.

These contributions depend on “modular weights” of the fields, determined by

where these fields are located.

Matter modular weights ni= 0 (1) for matter on D7 (D3) branes.

Gauge kinetic function indices la= 1 (0) on D7 (D3) branes.

Model completely specified by

m3/2, α, tan β, sign(µ), ni, la

Radiative EWSB determines µ2 as usual.
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Soft SUSY Breaking Terms

The soft terms renormalized at Q ∼ MGUT are given by,

Ma = Ms

(
`aα + bag2

a

)
,

Aijk = Ms (−aijkα + γi + γj + γk) ,

m2
i = M2

s

(
ciα

2 + 4αξi − γ̇i

)
,

with

ci = 1 − ni,

aijk = 3 − ni − nj − nk,

ξi =
∑

j,k

aijk

y2
ijk

4
−

∑

a

lag2
aCa

2 (fi), and γ̇i = 8π2 ∂γi

∂ log µ

Note that if ni = 0, A2
ijk ∼ 9m2

i for the modulus-mediated contribution. Large

A-parameters!
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α = 0 gives us the AMSB Model with wino-like neutralino LSP.

For large |α|, AMSB terms subdominant. With universal la (ni) we will have

common gaugino (scalar) masses.

Generation-independent modular weights for MSSM multiplets ensures FCNC OK.

Models potentially have smaller fine tuning: even for heavy stop, m2
Hu

can be

modest at weak scale. (Lebedev,Nilles, Ratz; Choi et al; Kitano, Nomura).

In general, we lose the scale independence of the AMSB model.

For la = 1, the cases

nmatter = 1
2
, nHiggs = 1 (and nmatter = 1, nHiggs = 0) is special, as we will see.

For the most part, we will always fix la = 1 and examine two cases.

? ni = 0; Zero Modular Weight (ZMW).

? nmatter = 1/2, nHiggs = 1, Non-Zero Modular Weight (NZMW).

X. Tata, “TIFR Seminar, Dec. 2006” 8



True Unification and Mirage Unification

ZMW:α=6, m3/2= 11.5 TeV, tanβ=10, µ >0, mt=175 GeV
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Low mirage unification scale

If M1weak = ±M2weak, potential for agreement with relic density via Mixed

Wino DM (MWDM) / Bino-Wino Coannihilation (BWCA).
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ZMW Model

ZMW:α=6, m3/2= 11.5 TeV, tanβ=10, µ >0, mt=175 GeV
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ZMW:α=6, m3/2= 11.5 TeV, tanβ=10, µ >0, mt=175 GeV
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Mirage unification for scalar masses also, but spoiled by Yukawa couplings

(NZMW model is an exception). Note low value of mt̃R
. Anticipate light t̃1.
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ZMW Model Mass Spectrum

ZMW : m3/2=11.5 TeV, mt=175 GeV
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For low positive α, mt̃1
∼ m eZ1

, and for large tanβ mτ̃1 ∼ m eZ1
also. Stop and

stau co-annihilation mechanisms operative. For negative α in first frame, we have

BWCA. No MWDM possible as for the required α, t̃1 = LSP.
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Gravitino mass vs. α, tanβ=10, µ>0, ZMW
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Stop coannihilation region.

Mixed higgsino region at low positive alpha.

BWCA for α < 0. No MWDM region.

In the neighbourhood of Point 2, mt̃1
< mt, mh

<∼ 120 GeV

⇒ Electroweak baryogenesis? (Carena, Quiros, Wagner; Balázs, Carena, Wagner)
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Stop and stau coannihilation regions.

BWCA region disappears.

LHC Covers most of the WMAP allowed planes except for large m3/2 near

α ∼ 5 − 6.
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? Point 1: Heavy spectrum; stop coannihilation important for relic density; LHC

signals will be events with 2-4 hard jets plus Emiss
T with enrichment of b-jets.

? Point 2: Light spectrum; mt̃1
= 161 GeV accessible at Tevatron, though

mass gap is only 30 GeV; W̃1 → t̃1b! 100 pb sparticle cross section at LHC;

several mass edges; sparticle mass measurements?

? Point 3: Medium spectrum; Enhanced Z̃2 decays to taus;

B(W̃1 → t̃1b) ∼47%.

? Point 4: Similar squark and gluino spectrum as Point 3, except that t̃1 is not

lighter than W̃1; relic density via BWCA, so mfW1
' m eZ2

∼ m eZ1
. The small

mass gap may make decay products of W̃1, Z̃2 harder to see at a hadron

collider.
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NZMW Model: nmatter = 1/2, nHiggs = 1

Now, the modulus-mediated contribution to A(GUT) ∼ Ms, so stop is not as

light as in ZMW case.

NZMW : m3/2=11.5 TeV, mt=175 GeV
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Stau NLSP =⇒ Stau co-annihilation; Higgs funnel annihilation

Also, BWCA for α < 0, tanβ ∼ 10.
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Stau coannihilation, Higgs funnel and BWCA regions clearly seen.

Also, mixed bino-wino-higgsino region (via low |M3|). [Lower |M3| ⇒ Reduced

|µ|.]
Bulk region at low m3/2.

LHC reach qualitatively similar to ZMW case.
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Direct and Indirect DM detection

Many experiments for direct and indirect WIMP detection.

Direct Detection

Stage 2 (CDMS2): SI σ(Z̃1p) > 3 × 10−8 pb

Stage 3 (SuperCDMS, XENON): 10−9 pb

Stage 3’ (WARP 1400) Warm Argon Project 10−10 pb

Indirect Detection

IceCube: 40 events/km2/yr with Eµ > 50 GeV,

GLAST: 10−10 events/cm2/s with Eγ > 1 GeV,

Pamela: 2 × 10−9 events/GeV/cm2/s/sr for positrons,

Pamela: 3 × 10−9 events/GeV/cm2/s/sr for antiprotons,

GAPS: 3 × 10−13 events/GeV/cm2/s/sr for antideuterons, 0.1 < TD < 0.25 GeV.
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Use Isatools for evaluating direct detection rates; DarkSUSY for indirect detection

rates.

Eight Case studies (4 ZMW, / 4 NZMW)

Direct detection (Stage 2): No observable signals anticipated.

Direct detection (Stage 3): Observable signals if LSP has significant higgsino

components or is close to Higgs funnel (2, 5, 7)

IceCube: No observable signals anticipated

GLAST: Observable signals in many cases (2-8)

e+, p̄: Observable signals near Higgs funnel(6, 7)

GAPS: Observable signal near Higgs funnel region/bulk region (2, 6, 7)

γ and antiparticle signals sensitive to halo profile. Our projections are on the

optimistic side.

Generally, no DM signals in stau, stop co-annihilation regions or BWCA region

anticipated as LSP is a bino.
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General exploration of direct detection signal

Requiring consistency with WMAP frequently yields a bigger direct detection

cross section if annihilation rate is enhanced by adjusting the higgsino, and

sometimes also wino, component of the LSP. hep-ph/0611387
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DETERMINATION OF MODULAR WEIGHTS AT COLLIDERS

Expect mirage unification of gaugino mass parameters if la ≡ l are universal.

α=6, m3/2=12 TeV, tanβ=10, µ >0, mt=175 GeV
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If we can determine the gaugino mass parameters at the weak scale, and

extrapolate these to high scale using 1-loop RGEs, these should unify at

µmirage = MGUTe−
8π2

(lα)⇒ (lα) determined.

The unified value of the gaugino mass, Ma(µmirage) = Ms × (lα), then gives us

Ms.
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If the extrapolated values of mẽL , mẽR , mν̃ , or first generation squark parameters

converge at µmirage, then we would have a striking confirmation of this picture!

α=6, m3/2=12 TeV, tanβ=10, µ >0, mt=175 GeV
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CAN WE SEPARATE ci AND l VALUES?

As long as the Yukawa couplings are negligible, the answer is NO! Boundary

conditions depend only on, Ms, (lα) and ci/l
2.

We would this need determination of third generation parameters, as well as

ability to extrapolate these to high scales.

I think that this is much more difficult. But we have not made a detailed study.
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Remember that µmirage = MGUTe−
8π2

(lα)

Can we test mirage unification and determine modular weights for α < 0, where

µmirage > MGUT?
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Conclusions

? MM-AMSB new, consistent, theoretically-motivated and phenomenologically

viable framework. Fewer parameters than mSUGRA if the (discrete) modular

weights are fixed.

? Novel mass patterns possible; Unconventional M1 : M2 : M3; t̃1 very light,

especially for ZMW model (possibly even accessible at the Tevatron).

? Top-down framework that can give M1(weak) ∼ −M2(weak) that was

phenomenologically identified as a possibility for obtaining the right CDM

relic density; also potentially gives reduced |µ| via relative reduction of M3.

Correct relic density possible via a variety of mechanisms including, bulk

annihilation, Higgs funnel, stop or stau coannihilation, low |µ| via reduced

M3 and BWCA. MWDM and low |µ| via non-universal Higgs mass

parameters was not possible for cases that we investigated. Collider and DM

searches will serve to discriminate between these various possibilities.
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? Heavy gravitino =⇒ Good for cosmology.

? Very large part of parameter space consistent with measured CDM relic

density will be probed at LHC; over part of this space, precision

measurements will be possible at a 1 TeV e+e− LC. Importantly, LC

experiments will explore charginos and neutralinos in the BWCA region; these

may be difficult to explore at the LHC on account of the small mass gap.

LC1000 reach may exceed LHC reach, depending on what LHC ultimately

probes if nmatter = 1, nHiggs = 0 (Preliminary).

? Mirage unification of soft SUSY breaking parameters (readily testable for

gaugino masses and first generation scalars if sparticles are accessible).

? Possibility of direct determination of modular weights at the LHC and ILC,

assuming sleptons and charginos are accessible at ILC.
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