### Phenomenology of Mixed Modulus-Anomaly Mediated SUSY Breaking Models

Xerxes Tata University of Hawaii

Based on work with Howard Baer, Eun-Kyung Park and Ting Wang JHEP 08, 041 (2006), Phys. Lett. B641, 447 (2006), and work in progress.

#### **Motivation and Framework**

Phenomenology depends on how SUSY breaking effects are communicated to MSSM fields

- ★ Modulus (Gravity)-mediation + assumptions mSUGRA Model  $\implies$ Universality (usually bino-like neutralino or gravitino LSP)
- **★** Gauge-mediation GMSB Models  $\implies m_i \propto g_i^2$  (light gravitino LSP)
- \* Anomaly-mediation AMSB Models  $\implies m_i \propto \beta_i$  wino-like neutralino LSP Modulus + Anomaly Mediation

Mixed Modulus-Anomaly Mediated Supersymmetry Breaking (MM-AMSB) WHY MM-AMSB? MM-AMSB structure of MSSM soft SUSY breaking terms arises if the moduli of type IIB superstring are stabilized because space curls up with fluxes (non-zero field strengths) along the extra dimensions.

Kachru, Kallosh, Trivedi and Linde's Toy Scenario

\* Stable ground state in controlled approximation (fluxes + gaugino condensation on D7 brane)

- $\star$  de Sitter universe (anti D3 brane)
- $\star$  Small SUSY breaking due to  $\overline{D3}$  brane.

Three Step Construction

1. Compactification with fluxes stabilizes shape moduli and dilation fields and makes them heavy, but preserves SUSY

2. Size modulus T stabilized by a non-perturbative mechanism;  $m_T \gg m_{3/2}$ , AdS space.

3. Introduce anti-D3 brane; makes vacuum energy positive; breaks SUSY.

 $m_{\rm SUSY} = F_T / T \ll m_{3/2}$ 

No concrete realization of KKLT idea with an explicit C-Y space and choice of fluxes that leads to a ground state with all the required properties (e.g. SM, dS spacetime)!

MSSM SUSY breaking modulus-mediated contributions,  $m_{SUSY} \ll m_{3/2}$ , so may be comparable or smaller than loop AMSB ones.

In original KKLT construction,  $m_{3/2} \simeq m_{\text{SUSY}} \ln(\frac{M_P}{m_{3/2}})$ .

Nevertheless the KKLT construction motivated model builders to consider what the structure of the soft SUSY breaking contributions to the MSSM might look like if such a construction becomes possible. The discovery of a realistic string vacuum would, for better or worse, of course fix everything!

#### PHENOMENOLOGICAL APPROACH.

Choi, Falkowski, Nilles, Olechowski, Pokorski; Choi, Jeong, Okumura; Falkowski, Lebedev, Mambrini; Kitano, Nomura.

Generalize the non-perturbative superpotential and also the "lifting potential" that gave positive vacuum energy:

$$\frac{F_T}{T} = \operatorname{coeff} \times \frac{m_{3/2}}{\ln \frac{M_P}{m_{3/2}}} \sim \operatorname{coeff} \times \frac{m_{3/2}}{4\pi^2}.$$

The ratio between anomaly and modulus mediated SUSY breaking contributions then depends on this generalization.

Parametrize this ratio by  $\alpha$ . Since it is a ratio of products of VEVs,  $\alpha$  can take either sign.

Warning: There are two conventions for  $\alpha$  in the literature!

$$\alpha_{\rm Our} = \alpha_{\rm FLM} = \frac{16\pi^2}{\ln(M_P/m_{3/2})} \frac{1}{\alpha_{\rm Choi}}$$

## Parameter Space

MSSM sparticle mass scale  $\sim \frac{m_{3/2}}{16\pi^2} \equiv M_s$ 

Ratio of modulus-mediated and anomaly-mediated contributions set by a phenomenological parameter  $\pmb{\alpha}$ 

Modulus-mediated contributions depend on location of fields in extra dimensions. These contributions depend on "modular weights" of the fields, determined by where these fields are located.

Matter modular weights  $n_i = 0$  (1) for matter on D7 (D3) branes. Gauge kinetic function indices  $l_a = 1$  (0) on D7 (D3) branes.

Model completely specified by

$$m_{3/2}, \ lpha, \ aneta, \ sign(\mu), \ n_i, \ l_a$$

Radiative EWSB determines  $\mu^2$  as usual.

#### **Soft SUSY Breaking Terms**

The soft terms renormalized at  $Q \sim M_{\rm GUT}$  are given by,

$$M_a = M_s \left( \ell_a \alpha + b_a g_a^2 \right),$$
  

$$A_{ijk} = M_s \left( -a_{ijk} \alpha + \gamma_i + \gamma_j + \gamma_k \right),$$
  

$$m_i^2 = M_s^2 \left( c_i \alpha^2 + 4\alpha \xi_i - \dot{\gamma}_i \right),$$

with

 $c_i = 1 - n_i,$ 

$$a_{ijk} = 3 - n_i - n_j - n_k,$$
  
$$\xi_i = \sum_{j,k} a_{ijk} \frac{y_{ijk}^2}{4} - \sum_a l_a g_a^2 C_2^a(f_i), \text{ and } \dot{\gamma}_i = 8\pi^2 \frac{\partial \gamma_i}{\partial \log \mu}$$

Note that if  $n_i = 0$ ,  $A_{ijk}^2 \sim 9m_i^2$  for the modulus-mediated contribution. Large A-parameters!

 $\alpha=0$  gives us the AMSB Model with wino-like neutralino LSP.

For large  $|\alpha|$ , AMSB terms subdominant. With universal  $l_a$   $(n_i)$  we will have common gaugino (scalar) masses.

Generation-independent modular weights for MSSM multiplets ensures FCNC OK.

Models potentially have smaller fine tuning: even for heavy stop,  $m_{H_u}^2$  can be modest at weak scale. (Lebedev,Nilles, Ratz; Choi et al; Kitano, Nomura).

In general, we lose the scale independence of the AMSB model.

For  $l_a = 1$ , the cases

n<sub>matter</sub> = <sup>1</sup>/<sub>2</sub>, n<sub>Higgs</sub> = 1 (and n<sub>matter</sub> = 1, n<sub>Higgs</sub> = 0) is special, as we will see. For the most part, we will always fix l<sub>a</sub> = 1 and examine two cases.
★ n<sub>i</sub> = 0; Zero Modular Weight (ZMW).
★ n<sub>matter</sub> = 1/2, n<sub>Higgs</sub> = 1, Non-Zero Modular Weight (NZMW).

#### **True Unification and Mirage Unification**



#### Low mirage unification scale

If  $M_1$ weak =  $\pm M_2$ weak, potential for agreement with relic density via Mixed Wino DM (MWDM) / Bino-Wino Coannihilation (BWCA).

## ZMW Model



Mirage unification for scalar masses also, but spoiled by Yukawa couplings (NZMW model is an exception). Note low value of  $m_{\tilde{t}_R}$ . Anticipate light  $\tilde{t}_1$ .

#### **ZMW Model Mass Spectrum**



For low positive  $\alpha$ ,  $m_{\tilde{t}_1} \sim m_{\tilde{Z}_1}$ , and for large  $\tan \beta \ m_{\tilde{\tau}_1} \sim m_{\tilde{Z}_1}$  also. Stop and stau co-annihilation mechanisms operative. For negative  $\alpha$  in first frame, we have BWCA. No MWDM possible as for the required  $\alpha$ ,  $\tilde{t}_1 = \text{LSP}$ .



 $\begin{array}{l} \text{Mixed higgsino region at low positive alpha.}\\ & \text{WCA for } \alpha < 0. \text{ No MWDM region.}\\ & \text{In the neighbourhood of Point 2, } m_{\tilde{t}_1} < m_t, \ m_h \stackrel{<}{\sim} 120 \text{ GeV}\\ \Rightarrow \text{Electroweak baryogenesis? (Carena, Quiros, Wagner; Balázs, Carena, Wagner)} \end{array}$ 



- **★** Point 1: Heavy spectrum; stop coannihilation important for relic density; LHC signals will be events with 2-4 hard jets plus  $E_T^{\text{miss}}$  with enrichment of *b*-jets.
- ★ Point 2: Light spectrum;  $m_{\tilde{t}_1} = 161$  GeV accessible at Tevatron, though mass gap is only 30 GeV;  $\widetilde{W}_1 \rightarrow \tilde{t}_1 b$ ! 100 pb sparticle cross section at LHC; several mass edges; sparticle mass measurements?
- ★ Point 3: Medium spectrum; Enhanced  $\widetilde{Z}_2$  decays to taus;  $B(\widetilde{W}_1 \rightarrow \tilde{t}_1 b) \sim 47\%$ .
- ★ Point 4: Similar squark and gluino spectrum as Point 3, except that  $\tilde{t}_1$  is not lighter than  $\widetilde{W}_1$ ; relic density via BWCA, so  $m_{\widetilde{W}_1} \simeq m_{\widetilde{Z}_2} \sim m_{\widetilde{Z}_1}$ . The small mass gap may make decay products of  $\widetilde{W}_1$ ,  $\widetilde{Z}_2$  harder to see at a hadron collider.

NZMW Model: 
$$n_{\text{matter}} = 1/2, n_{\text{Higgs}} = 1$$

Now, the modulus-mediated contribution to  $A(GUT) \sim M_s$ , so stop is not as light as in ZMW case.



NZMW : m<sub>3/2</sub>=11.5 TeV, m<sub>t</sub>=175 GeV

Stau NLSP  $\implies$  Stau co-annihilation; Higgs funnel annihilation Also, BWCA for  $\alpha < 0$ ,  $\tan \beta \sim 10$ .



Stau coannihilation, Higgs funnel and BWCA regions clearly seen. Also, mixed bino-wino-higgsino region (via low  $|M_3|$ ). [Lower  $|M_3| \Rightarrow$  Reduced  $|\mu|$ .] Bulk region at low  $m_{3/2}$ . LHC reach qualitatively similar to ZMW case.

#### **Direct and Indirect DM detection**

Many experiments for direct and indirect WIMP detection.

**Direct Detection** 

Stage 2 (CDMS2): SI  $\sigma(\tilde{Z}_1 p) > 3 \times 10^{-8}$  pb Stage 3 (SuperCDMS, XENON):  $10^{-9}$  pb Stage 3' (WARP 1400) Warm Argon Project  $10^{-10}$  pb

Indirect Detection

IceCube: 40 events/km<sup>2</sup>/yr with  $E_{\mu} > 50$  GeV, GLAST:  $10^{-10}$  events/cm<sup>2</sup>/s with  $E_{\gamma} > 1$  GeV, Pamela:  $2 \times 10^{-9}$  events/GeV/cm<sup>2</sup>/s/sr for positrons, Pamela:  $3 \times 10^{-9}$  events/GeV/cm<sup>2</sup>/s/sr for antiprotons, GAPS:  $3 \times 10^{-13}$  events/GeV/cm<sup>2</sup>/s/sr for antideuterons,  $0.1 < T_{\overline{D}} < 0.25$  GeV. Use Isatools for evaluating direct detection rates; DarkSUSY for indirect detection rates.

Eight Case studies (4 ZMW, / 4 NZMW)

Direct detection (Stage 2): No observable signals anticipated. Direct detection (Stage 3): Observable signals if LSP has significant higgsino components or is close to Higgs funnel (2, 5, 7) IceCube: No observable signals anticipated GLAST: Observable signals in many cases (2-8)  $e^+$ ,  $\bar{p}$ : Observable signals near Higgs funnel(6, 7) GAPS: Observable signal near Higgs funnel region/bulk region (2, 6, 7)  $\gamma$  and antiparticle signals sensitive to halo profile. Our projections are on the optimistic side.

Generally, no DM signals in stau, stop co-annihilation regions or BWCA region anticipated as LSP is a bino.

#### General exploration of direct detection signal

Requiring consistency with WMAP frequently yields a bigger direct detection cross section if annihilation rate is enhanced by adjusting the higgsino, and



Required  $\Omega_{\widetilde{Z}_1} h^2 < 0.13$ ,  $m_{\widetilde{W}_1} > 103.5$  GeV,  $m_h > 110$  GeV.

#### DETERMINATION OF MODULAR WEIGHTS AT COLLIDERS

Expect mirage unification of gaugino mass parameters if  $l_a \equiv l$  are universal.



If we can determine the gaugino mass parameters at the weak scale, and extrapolate these to high scale using 1-loop RGEs, these should unify at  $\mu_{\text{mirage}} = M_{\text{GUT}} e^{-\frac{8\pi^2}{(l\alpha)}} \Rightarrow (l\alpha)$  determined.

The unified value of the gaugino mass,  $M_a(\mu_{\rm mirage}) = M_s \times (l\alpha)$ , then gives us  $M_s$ .

# If the extrapolated values of $m_{\tilde{e}_L}$ , $m_{\tilde{e}_R}$ , $m_{\tilde{\nu}}$ , or first generation squark parameters converge at $\mu_{\text{mirage}}$ , then we would have a striking confirmation of this picture!

 $\alpha$ =6, m<sub>3/2</sub>=12 TeV, tan $\beta$ =10,  $\mu$  >0, m<sub>t</sub>=175 GeV



$$\left.\frac{m_i}{M_a}\right|_{\mu_{\rm mirage}} = \frac{\sqrt{c_i}}{l} \Rightarrow$$

Information about matter modular weights (assumed universal for FCNC/GUTS).

#### CAN WE SEPARATE $c_i$ AND l VALUES?

As long as the Yukawa couplings are negligible, the answer is NO! Boundary conditions depend only on,  $M_s$ ,  $(l\alpha)$  and  $c_i/l^2$ .

We would this need determination of third generation parameters, as well as ability to extrapolate these to high scales.

I think that this is much more difficult. But we have not made a detailed study.

Remember that  $\mu_{\text{mirage}} = M_{\text{GUT}} e^{-\frac{8\pi^2}{(l\alpha)}}$ 

Can we test mirage unification and determine modular weights for  $\alpha < 0$ , where  $\mu_{\rm mirage} > M_{\rm GUT}$ ?



Scalar unification in a similar manner.

### Conclusions

- ★ MM-AMSB new, consistent, theoretically-motivated and phenomenologically viable framework. Fewer parameters than mSUGRA if the (discrete) modular weights are fixed.
- ★ Novel mass patterns possible; Unconventional  $M_1 : M_2 : M_3$ ;  $\tilde{t}_1$  very light, especially for ZMW model (possibly even accessible at the Tevatron).
- ★ Top-down framework that can give M<sub>1</sub>(weak) ~ -M<sub>2</sub>(weak) that was phenomenologically identified as a possibility for obtaining the right CDM relic density; also potentially gives reduced |µ| via relative reduction of M<sub>3</sub>. Correct relic density possible via a variety of mechanisms including, bulk annihilation, Higgs funnel, stop or stau coannihilation, low |µ| via reduced M<sub>3</sub> and BWCA. MWDM and low |µ| via non-universal Higgs mass parameters was not possible for cases that we investigated. Collider and DM searches will serve to discriminate between these various possibilities.

- $\star$  Heavy gravitino  $\Longrightarrow$  Good for cosmology.
- ★ Very large part of parameter space consistent with measured CDM relic density will be probed at LHC; over part of this space, precision measurements will be possible at a 1 TeV e<sup>+</sup>e<sup>-</sup> LC. Importantly, LC experiments will explore charginos and neutralinos in the BWCA region; these may be difficult to explore at the LHC on account of the small mass gap. LC1000 reach may exceed LHC reach, depending on what LHC ultimately probes if n<sub>matter</sub> = 1, n<sub>Higgs</sub> = 0 (Preliminary).
- ★ Mirage unification of soft SUSY breaking parameters (readily testable for gaugino masses and first generation scalars if sparticles are accessible).
- ★ Possibility of direct determination of modular weights at the LHC and ILC, assuming sleptons and charginos are accessible at ILC.