String Basics

Sunil Mukhi, Tata Institute of Fundamental Research

Outline

(1) Closed Bosonic Strings
(2) Open Bosonic Strings

3 Closed superstrings

4 Open superstrings
(5) Compactification

Closed Bosonic Strings

- We define a string through its spacetime coordinates $X^{\mu}(\sigma, t)$.

Closed Bosonic Strings

- We define a string through its spacetime coordinates $X^{\mu}(\sigma, t)$.
- To start with, assume it propagates in flat D-dimensional spacetime.

Closed Bosonic Strings

- We define a string through its spacetime coordinates $X^{\mu}(\sigma, t)$.
- To start with, assume it propagates in flat D-dimensional spacetime.
- σ is a coordinate along the string. Its range is $0 \leq \sigma \leq \pi$.

Closed Bosonic Strings

- We define a string through its spacetime coordinates $X^{\mu}(\sigma, t)$.
- To start with, assume it propagates in flat D-dimensional spacetime.
- σ is a coordinate along the string. Its range is $0 \leq \sigma \leq \pi$.
- t is the worldsheet time.

- We start with a worldsheet action generalising $\frac{1}{2} m\left(\dot{X}^{i}\right)^{2}$ for a free nonrelativistic particle:

$$
S=-\frac{T}{2} \int d \sigma d t \partial_{a} X^{\mu} \partial^{a} X_{\mu}
$$

- We start with a worldsheet action generalising $\frac{1}{2} m\left(\dot{X}^{i}\right)^{2}$ for a free nonrelativistic particle:

$$
S=-\frac{T}{2} \int d \sigma d t \partial_{a} X^{\mu} \partial^{a} X_{\mu}
$$

- The solutions of the equations of motion will be vibration modes of a free string along with the center of mass position/momentum mode of the string.
- We start with a worldsheet action generalising $\frac{1}{2} m\left(\dot{X}^{i}\right)^{2}$ for a free nonrelativistic particle:

$$
S=-\frac{T}{2} \int d \sigma d t \partial_{a} X^{\mu} \partial^{a} X_{\mu}
$$

- The solutions of the equations of motion will be vibration modes of a free string along with the center of mass position/momentum mode of the string.
- Strings can be closed or open.
- We start with a worldsheet action generalising $\frac{1}{2} m\left(\dot{X}^{i}\right)^{2}$ for a free nonrelativistic particle:

$$
S=-\frac{T}{2} \int d \sigma d t \partial_{a} X^{\mu} \partial^{a} X_{\mu}
$$

- The solutions of the equations of motion will be vibration modes of a free string along with the center of mass position/momentum mode of the string.
- Strings can be closed or open.
- We first discuss the simpler case of closed strings, defined by:

$$
X^{\mu}(\sigma+\pi, t)=X^{\mu}(\sigma, t)
$$

- In units where $\hbar=c=1$, the constant T has dimensions of

$$
\text { length }{ }^{-2} \sim \text { mass/length }
$$

It is called the string tension.

- In units where $\hbar=c=1$, the constant T has dimensions of

$$
\text { length }{ }^{-2} \sim \text { mass/length }
$$

It is called the string tension.

- We often use a parameter α^{\prime} of dimension length ${ }^{2}$ defined by:

$$
T=\frac{1}{2 \pi \alpha^{\prime}}
$$

- In units where $\hbar=c=1$, the constant T has dimensions of

$$
\text { length }{ }^{-2} \sim \text { mass/length }
$$

It is called the string tension.

- We often use a parameter α^{\prime} of dimension length ${ }^{2}$ defined by:

$$
T=\frac{1}{2 \pi \alpha^{\prime}}
$$

- $\sqrt{\alpha^{\prime}}$ is a length scale called the string length: the typical size of a string.
- The above action leads to the worldsheet equation of motion:

$$
\partial_{a} \partial^{a} X^{\mu}=\left(\partial_{t}^{2}-\partial_{\sigma}^{2}\right) X^{\mu} \sim \partial_{-} \partial_{+} X^{\mu}=0
$$

where the light-cone coordinates are:

$$
\xi^{ \pm}=t \pm \sigma, \quad \partial_{ \pm}=\frac{1}{2}\left(\partial_{t} \pm \partial_{\sigma}\right)
$$

- The above action leads to the worldsheet equation of motion:

$$
\partial_{a} \partial^{a} X^{\mu}=\left(\partial_{t}^{2}-\partial_{\sigma}^{2}\right) X^{\mu} \sim \partial_{-} \partial_{+} X^{\mu}=0
$$

where the light-cone coordinates are:

$$
\xi^{ \pm}=t \pm \sigma, \quad \partial_{ \pm}=\frac{1}{2}\left(\partial_{t} \pm \partial_{\sigma}\right)
$$

- The equations of motion are solved by:

$$
X^{\mu}(\sigma, t)=X_{L}^{\mu}(t-\sigma)+X_{R}^{\mu}(t+\sigma)
$$

where X_{L}, X_{R} are arbitrary functions of one argument, called left movers and right movers respectively.

- For closed strings X^{μ} must be periodic, which leads to the mode expansion:

$$
\begin{aligned}
& X_{L}^{\mu}(t-\sigma)=\frac{1}{2} x^{\mu}+\frac{1}{2} p^{\mu}(t-\sigma)+\frac{i}{2} \sum_{n \neq 0} \frac{1}{n} \alpha_{n}^{\mu} e^{-2 i n(t-\sigma)} \\
& X_{R}^{\mu}(t+\sigma)=\frac{1}{2} x^{\mu}+\frac{1}{2} p^{\mu}(t+\sigma)+\frac{i}{2} \sum_{n \neq 0} \frac{1}{n} \tilde{\alpha}_{n}^{\mu} e^{-2 i n(t+\sigma)}
\end{aligned}
$$

where we have put $\alpha^{\prime}=\frac{1}{2}$ for convenience.

- For closed strings X^{μ} must be periodic, which leads to the mode expansion:

$$
\begin{aligned}
& X_{L}^{\mu}(t-\sigma)=\frac{1}{2} x^{\mu}+\frac{1}{2} p^{\mu}(t-\sigma)+\frac{i}{2} \sum_{n \neq 0} \frac{1}{n} \alpha_{n}^{\mu} e^{-2 i n(t-\sigma)} \\
& X_{R}^{\mu}(t+\sigma)=\frac{1}{2} x^{\mu}+\frac{1}{2} p^{\mu}(t+\sigma)+\frac{i}{2} \sum_{n \neq 0} \frac{1}{n} \tilde{\alpha}_{n}^{\mu} e^{-2 i n(t+\sigma)}
\end{aligned}
$$

where we have put $\alpha^{\prime}=\frac{1}{2}$ for convenience.

- As promised, the modes $\alpha^{\mu}, \tilde{\alpha}^{\mu}$ are the vibrational modes of the string, while x^{μ}, p^{μ} are the position/momentum of the string centre-of-mass.
- For closed strings X^{μ} must be periodic, which leads to the mode expansion:

$$
\begin{aligned}
& X_{L}^{\mu}(t-\sigma)=\frac{1}{2} x^{\mu}+\frac{1}{2} p^{\mu}(t-\sigma)+\frac{i}{2} \sum_{n \neq 0} \frac{1}{n} \alpha_{n}^{\mu} e^{-2 i n(t-\sigma)} \\
& X_{R}^{\mu}(t+\sigma)=\frac{1}{2} x^{\mu}+\frac{1}{2} p^{\mu}(t+\sigma)+\frac{i}{2} \sum_{n \neq 0} \frac{1}{n} \tilde{\alpha}_{n}^{\mu} e^{-2 i n(t+\sigma)}
\end{aligned}
$$

where we have put $\alpha^{\prime}=\frac{1}{2}$ for convenience.

- As promised, the modes $\alpha^{\mu}, \tilde{\alpha}^{\mu}$ are the vibrational modes of the string, while x^{μ}, p^{μ} are the position/momentum of the string centre-of-mass.
- Reality of the coordinates implies that:

$$
\left(\tilde{\alpha}_{n}^{\mu}\right)^{*}=\tilde{\alpha}_{-n}^{\mu}, \quad\left(\alpha_{n}^{\mu}\right)^{*}=\alpha_{-n}^{\mu}
$$

- To quantise the system we impose the natural commutation relations:

$$
\left[\alpha_{m}^{\mu}, \alpha_{n}^{\nu}\right]=m \delta_{m+n, 0} \eta^{\mu \nu}, \quad\left[\tilde{\alpha}_{m}^{\mu}, \tilde{\alpha}_{n}^{\nu}\right]=m \delta_{m+n, 0} \eta^{\mu \nu}
$$

on the oscillators, and

$$
\left[x^{\mu}, p^{\nu}\right]=i \eta^{\mu \nu}
$$

on the zero modes.

- To quantise the system we impose the natural commutation relations:

$$
\left[\alpha_{m}^{\mu}, \alpha_{n}^{\nu}\right]=m \delta_{m+n, 0} \eta^{\mu \nu}, \quad\left[\tilde{\alpha}_{m}^{\mu}, \tilde{\alpha}_{n}^{\nu}\right]=m \delta_{m+n, 0} \eta^{\mu \nu}
$$

on the oscillators, and

$$
\left[x^{\mu}, p^{\nu}\right]=i \eta^{\mu \nu}
$$

on the zero modes.

- Henceforth we focus only on the left-moving oscillators. It is understood that at the end, the states we construct must be combined with right-moving ones.
- The reality condition on the classical oscillators implies that the corresponding operators satisfy:

$$
\left(\alpha_{n}^{\mu}\right)^{\dagger}=\alpha_{-n}^{\mu}
$$

- The reality condition on the classical oscillators implies that the corresponding operators satisfy:

$$
\left(\alpha_{n}^{\mu}\right)^{\dagger}=\alpha_{-n}^{\mu}
$$

- Next one defines a ground state for each oscillator, and treats α_{n}^{μ} as creation operators for $n<0$ and annihilation operators for $n>0$.
- We can now construct the vibrational states of the string.
- We can now construct the vibrational states of the string.
- The normalised ground state $|0\rangle$ of the string is defined by

$$
\begin{aligned}
\alpha_{n}^{\mu}|0\rangle & =0, n>0 \\
\langle 0 \mid 0\rangle & =1
\end{aligned}
$$

- We can now construct the vibrational states of the string.
- The normalised ground state $|0\rangle$ of the string is defined by

$$
\begin{aligned}
\alpha_{n}^{\mu}|0\rangle & =0, n>0 \\
\langle 0 \mid 0\rangle & =1
\end{aligned}
$$

- Excited states of the string are then constructed as, for example,

$$
\alpha_{-n}^{\mu}|0\rangle
$$

and more generally

$$
\alpha_{-m_{1}}^{\mu_{1}} \alpha_{-m_{2}}^{\mu_{2}} \cdots \alpha_{-m_{M}}^{\mu_{M}}|0\rangle
$$

- We see right away that something is wrong.
- We see right away that something is wrong.
- Consider the excited state $\alpha_{-n}^{\mu}|0\rangle$. Its norm is:

$$
\| \alpha_{-n}^{\mu}|0\rangle \|^{2}=\langle 0| \alpha_{n}^{\mu} \alpha_{-n}^{\mu}|0\rangle=n \eta^{\mu \mu}
$$

Thus for $\mu=0$ (the time direction) we have negative-norm states, which are unacceptable in any physical theory.

- We see right away that something is wrong.
- Consider the excited state $\alpha_{-n}^{\mu}|0\rangle$. Its norm is:

$$
\| \alpha_{-n}^{\mu}|0\rangle \|^{2}=\langle 0| \alpha_{n}^{\mu} \alpha_{-n}^{\mu}|0\rangle=n \eta^{\mu \mu}
$$

Thus for $\mu=0$ (the time direction) we have negative-norm states, which are unacceptable in any physical theory.

- This exemplifies a very general problem in relativistic physics. Degrees of freedom with spacetime indices always lead to negative-norm states, unless the theory has gauge constraints.
- Therefore we must modify the action to incorporate a suitable gauge symmetry, namely worldsheet general coordinate invariance:

$$
(t, \sigma) \rightarrow\left(t^{\prime}(t, \sigma), \sigma^{\prime}(t, \sigma)\right)
$$

- Therefore we must modify the action to incorporate a suitable gauge symmetry, namely worldsheet general coordinate invariance:

$$
(t, \sigma) \rightarrow\left(t^{\prime}(t, \sigma), \sigma^{\prime}(t, \sigma)\right)
$$

- After gauge fixing, we recover our original action:

$$
S=-\frac{T}{2} \int d \xi^{+} d \xi^{-} \partial_{+} X^{\mu} \partial_{-} X_{\mu}
$$

but now it is supplemented by the bilinear constraints:

$$
\partial_{+} X^{\mu} \partial_{+} X_{\mu}=0, \quad \partial_{-} X^{\mu} \partial_{-} X_{\mu}=0
$$

- The worldsheet invariance also imposes two additional conditions:
(i) for a closed string, the total number of left and right moving excitations must be equal.
(ii) there is an anomaly proportional to $D-26$.
- The worldsheet invariance also imposes two additional conditions:
(i) for a closed string, the total number of left and right moving excitations must be equal.
(ii) there is an anomaly proportional to $D-26$.
- To cancel the anomaly, we have to work in 26 dimensions.
- The constraints eliminate all negative-norm states.
- The constraints eliminate all negative-norm states.
- This is most conveniently seen in light-cone gauge where they simply remove two of the D components of the vector index, including the time component.
- The constraints eliminate all negative-norm states.
- This is most conveniently seen in light-cone gauge where they simply remove two of the D components of the vector index, including the time component.
- This is very much like the photon field $A_{i}, i=1,2, \ldots, D-2$ in light cone gauge, having only $D-2$ components.
- The constraints eliminate all negative-norm states.
- This is most conveniently seen in light-cone gauge where they simply remove two of the D components of the vector index, including the time component.
- This is very much like the photon field $A_{i}, i=1,2, \ldots, D-2$ in light cone gauge, having only $D-2$ components.
- Therefore in string theory we need only focus on the transverse oscillators $\alpha_{-n}^{i}, \tilde{\alpha}_{-n}^{j}$ with $i, j=1,2, \ldots, D-2$.
- Now the string excitations start to resemble familiar objects.
- Now the string excitations start to resemble familiar objects.
- We interpret the string in any given excitation state as an elementary particle whose quantum numbers can be read off from the state.
- Now the string excitations start to resemble familiar objects.
- We interpret the string in any given excitation state as an elementary particle whose quantum numbers can be read off from the state.
- The mass-squared of the particle is given by the weighted number operator counting the oscillator excitations:

$$
M^{2}=\frac{2}{\alpha^{\prime}}\left(\sum_{m=1}^{\infty} \alpha_{-m}^{i} \alpha_{m}^{i}+\sum_{m=1}^{\infty} \tilde{\alpha}_{-m}^{i} \tilde{\alpha}_{m}^{i}-2\right)
$$

- Now the string excitations start to resemble familiar objects.
- We interpret the string in any given excitation state as an elementary particle whose quantum numbers can be read off from the state.
- The mass-squared of the particle is given by the weighted number operator counting the oscillator excitations:

$$
M^{2}=\frac{2}{\alpha^{\prime}}\left(\sum_{m=1}^{\infty} \alpha_{-m}^{i} \alpha_{m}^{i}+\sum_{m=1}^{\infty} \tilde{\alpha}_{-m}^{i} \tilde{\alpha}_{m}^{i}-2\right)
$$

- The -2 is determined by consistency, and has sinister consequences.
- The ground state $|0\rangle$ has no quantum numbers. So it is a scalar particle at zero transverse momentum.
- The ground state $|0\rangle$ has no quantum numbers. So it is a scalar particle at zero transverse momentum.
- By acting with a zero-mode operator $\exp (i k \cdot X)$ this can be converted to a state with transverse momentum k_{i}.
- The ground state $|0\rangle$ has no quantum numbers. So it is a scalar particle at zero transverse momentum.
- By acting with a zero-mode operator $\exp (i k \cdot X)$ this can be converted to a state with transverse momentum k_{i}.
- Henceforth we always keep the transverse momentum zero. It can be restored at the end.
- The ground state $|0\rangle$ has no quantum numbers. So it is a scalar particle at zero transverse momentum.
- By acting with a zero-mode operator $\exp (i k \cdot X)$ this can be converted to a state with transverse momentum k_{i}.
- Henceforth we always keep the transverse momentum zero. It can be restored at the end.
- This particle has

$$
M^{2}=-\frac{4}{\alpha^{\prime}}
$$

and is therefore a tachyon.

- The ground state $|0\rangle$ has no quantum numbers. So it is a scalar particle at zero transverse momentum.
- By acting with a zero-mode operator $\exp (i k \cdot X)$ this can be converted to a state with transverse momentum k_{i}.
- Henceforth we always keep the transverse momentum zero. It can be restored at the end.
- This particle has

$$
M^{2}=-\frac{4}{\alpha^{\prime}}
$$

and is therefore a tachyon.

- Due to the left-right matching constraint, the first excited state is:

$$
\zeta_{i j} \alpha_{-1}^{i} \tilde{\alpha}_{-1}^{j}|0\rangle
$$

and this state is massless.

- The polarisation tensor $\zeta_{i j}$ decomposes into three irreducible parts: symmetric traceless, antisymmetric, and a trace part which is a singlet.
- The polarisation tensor $\zeta_{i j}$ decomposes into three irreducible parts: symmetric traceless, antisymmetric, and a trace part which is a singlet.
- Each one can be identified with the transverse components of a field:

$$
\begin{aligned}
\zeta_{(i j)}(k)-\frac{1}{D-2} \delta_{i j} \delta^{m n} \zeta_{m n}(k) & \rightarrow G_{i j}(x) \\
\zeta_{[i j]}(k) & \rightarrow B_{i j}(x) \\
\delta^{i j} \zeta_{i j}(k) & \rightarrow \Phi(x)
\end{aligned}
$$

- The polarisation tensor $\zeta_{i j}$ decomposes into three irreducible parts: symmetric traceless, antisymmetric, and a trace part which is a singlet.
- Each one can be identified with the transverse components of a field:

$$
\begin{aligned}
\zeta_{(i j)}(k)-\frac{1}{D-2} \delta_{i j} \delta^{m n} \zeta_{m n}(k) & \rightarrow G_{i j}(x) \\
\zeta_{[i j]}(k) & \rightarrow B_{i j}(x) \\
\delta^{i j} \zeta_{i j}(k) & \rightarrow \Phi(x)
\end{aligned}
$$

- These fields, in turn, are the transverse components of the massless fields $G_{\mu \nu}, B_{\mu \nu}, \Phi$ in ten dimensions.
- But it is a theorem that the only consistent action for a massless symmetric rank-2 tensor field is that of gravity.
- But it is a theorem that the only consistent action for a massless symmetric rank-2 tensor field is that of gravity.
- Therefore closed string theory is a theory of gravity!
- But it is a theorem that the only consistent action for a massless symmetric rank-2 tensor field is that of gravity.
- Therefore closed string theory is a theory of gravity!
- The other two particles are important too. The antisymmetric tensor $B_{\mu \nu}$ is responsible for the stability of the string. And in four dimensions it will be an axion.
- But it is a theorem that the only consistent action for a massless symmetric rank-2 tensor field is that of gravity.
- Therefore closed string theory is a theory of gravity!
- The other two particles are important too. The antisymmetric tensor $B_{\mu \nu}$ is responsible for the stability of the string. And in four dimensions it will be an axion.
- Finally, the scalar Φ is called the dilaton and governs the interaction strength of the string.
- String interactions are introduced by defining "vertex operators" for each excited state and computing their correlation functions on the worldsheet.
- String interactions are introduced by defining "vertex operators" for each excited state and computing their correlation functions on the worldsheet.
- This leads to unique answers for every amplitude.
- String interactions are introduced by defining "vertex operators" for each excited state and computing their correlation functions on the worldsheet.
- This leads to unique answers for every amplitude.
- From the amplitudes one can read off the tree-level low-energy effective action of the massless modes, to find:

$$
S=\int d^{10} x \sqrt{-\|G\|} e^{-2 \Phi}\left(R-\frac{1}{3!} \partial_{[\mu} B_{\nu \lambda]} \partial^{[\mu} B^{\nu \lambda]}-\frac{1}{2} \partial_{\mu} \Phi \partial^{\mu} \Phi\right)
$$

- The existence of the parameter α^{\prime} means this action can and does - have corrections involving higher derivatives of fields along with higher powers of α^{\prime}.
- The existence of the parameter α^{\prime} means this action can and does - have corrections involving higher derivatives of fields along with higher powers of α^{\prime}.
- Also we see that the dilaton vev governs the string coupling:

$$
S \sim e^{-2<\Phi>} \int \cdots \sim \frac{1}{g_{s}^{2}} \int \cdots \Longrightarrow e^{<\phi>}=g_{s}
$$

- The existence of the parameter α^{\prime} means this action can and does - have corrections involving higher derivatives of fields along with higher powers of α^{\prime}.
- Also we see that the dilaton vev governs the string coupling:

$$
S \sim e^{-2<\phi>} \int \cdots \sim \frac{1}{g_{s}^{2}} \int \cdots \Longrightarrow e^{<\phi>}=g_{s}
$$

- From a particle physicist's point of view, string theory can most often be reduced to such a low energy effective action, with higher derivative and higher loop corrections.
- The existence of the parameter α^{\prime} means this action can and does - have corrections involving higher derivatives of fields along with higher powers of α^{\prime}.
- Also we see that the dilaton vev governs the string coupling:

$$
S \sim e^{-2<\phi>} \int \cdots \sim \frac{1}{g_{s}^{2}} \int \cdots \Longrightarrow e^{<\Phi\rangle}=g_{s}
$$

- From a particle physicist's point of view, string theory can most often be reduced to such a low energy effective action, with higher derivative and higher loop corrections.
- Importantly, given a spacetime background the effective action is unique and computable.
- Besides the tachyon and the massless states, the closed string has infinitely many excited states that are all massive and have increasing spin.
- Besides the tachyon and the massless states, the closed string has infinitely many excited states that are all massive and have increasing spin.
- The effective action for massless states should be thought of as the result of integrating them out.

Outline

(1) Closed Bosonic Strings

(2) Open Bosonic Strings

(3) Closed superstrings

4 Open superstrings
(5) Compactification

Open Bosonic Strings

- For open strings, $X^{\mu}(\sigma, t)$ is no longer periodic in σ.

Open Bosonic Strings

- For open strings, $X^{\mu}(\sigma, t)$ is no longer periodic in σ.
- Instead, the string must end at $\sigma=0, \pi$.

Open Bosonic Strings

- For open strings, $X^{\mu}(\sigma, t)$ is no longer periodic in σ.
- Instead, the string must end at $\sigma=0, \pi$.
- At each end, we need to specify boundary conditions for the coordinate X^{μ} or its derivatives.

Open Bosonic Strings

- For open strings, $X^{\mu}(\sigma, t)$ is no longer periodic in σ.
- Instead, the string must end at $\sigma=0, \pi$.
- At each end, we need to specify boundary conditions for the coordinate X^{μ} or its derivatives.
- These are restricted by demanding the absence of boundary terms when varying the worldsheet action.
- We have:

$$
\delta S=T \int_{0}^{\pi} d \sigma \int d t \delta X^{\mu} \partial_{a} \partial^{a} X_{\mu}-T \int d t\left[\delta X^{\mu} \partial_{\sigma} X_{\mu}\right]_{0}^{\pi}
$$

- We have:

$$
\delta S=T \int_{0}^{\pi} d \sigma \int d t \delta X^{\mu} \partial_{a} \partial^{a} X_{\mu}-T \int d t\left[\delta X^{\mu} \partial_{\sigma} X_{\mu}\right]_{0}^{\pi}
$$

- To make the second term vanish, we require:

$$
\delta X^{\mu}(0, t) \partial_{\sigma} X_{\mu}(0, t)=\delta X^{\mu}(\pi, t) \partial_{\sigma} X_{\mu}(\pi, t)=0
$$

- We have:

$$
\delta S=T \int_{0}^{\pi} d \sigma \int d t \delta X^{\mu} \partial_{a} \partial^{a} X_{\mu}-T \int d t\left[\delta X^{\mu} \partial_{\sigma} X_{\mu}\right]_{0}^{\pi}
$$

- To make the second term vanish, we require:

$$
\delta X^{\mu}(0, t) \partial_{\sigma} X_{\mu}(0, t)=\delta X^{\mu}(\pi, t) \partial_{\sigma} X_{\mu}(\pi, t)=0
$$

- Thus, at $\sigma=0$, we can impose one of the following two boundary conditions on each of the spacetime coordinates X^{μ} :

$$
\begin{aligned}
\partial_{\sigma} X^{\mu}(0, t) & =0 & (\text { Neumann }) \\
X^{\mu}(0, t) & =c^{\mu} & (\text { Dirichlet })
\end{aligned}
$$

where c^{μ} is an arbitrary constant.

- The D boundary condition states that the end of the string is stuck on a particular hypersurface, called a D-brane.
- The D boundary condition states that the end of the string is stuck on a particular hypersurface, called a D-brane.
- A D-brane has space dimension p if there are p coordinates with Neumann boundary conditions and $25-p$ coordinates with Dirichlet boundary conditions:

- The D boundary condition states that the end of the string is stuck on a particular hypersurface, called a D-brane.
- A D-brane has space dimension p if there are p coordinates with Neumann boundary conditions and $25-p$ coordinates with Dirichlet boundary conditions:

- One should remember that there is also time, so the worldvolume of a p-brane is a $p+1$-dimensional spacetime.
- At the other end $\sigma=\pi$, we must also independently choose N or D boundary conditions.
- At the other end $\sigma=\pi$, we must also independently choose N or D boundary conditions.
- Thus an open string can be Neumann-Neumann (NN), Dirichlet-Dirichlet (DD) or Neumann-Dirichlet (ND), with respect to each of its spacetime coordinates.
- At the other end $\sigma=\pi$, we must also independently choose N or D boundary conditions.
- Thus an open string can be Neumann-Neumann (NN), Dirichlet-Dirichlet (DD) or Neumann-Dirichlet (ND), with respect to each of its spacetime coordinates.
- In the DD case, the two ends can be stuck at the same location c^{μ} or at two different locations c^{μ}, d^{μ}.
- At the other end $\sigma=\pi$, we must also independently choose N or D boundary conditions.
- Thus an open string can be Neumann-Neumann (NN), Dirichlet-Dirichlet (DD) or Neumann-Dirichlet (ND), with respect to each of its spacetime coordinates.
- In the DD case, the two ends can be stuck at the same location c^{μ} or at two different locations c^{μ}, d^{μ}.
- In one case, the string starts and ends on the same brane, while in the other, it stretches between two different branes.

- With open-string boundary conditions, a wave travelling one way on the string gets reflected back from the end. So there is only one set of vibrational modes rather than two.
- With open-string boundary conditions, a wave travelling one way on the string gets reflected back from the end. So there is only one set of vibrational modes rather than two.
- For NN boundary conditions, we find:

$$
X^{\mu}(\sigma, t)=x^{\mu}+p^{\mu} t+i \sum_{n \neq 0} \frac{1}{n} \alpha_{n}^{\mu} e^{-i n t} \cos n \sigma
$$

- With open-string boundary conditions, a wave travelling one way on the string gets reflected back from the end. So there is only one set of vibrational modes rather than two.
- For NN boundary conditions, we find:

$$
X^{\mu}(\sigma, t)=x^{\mu}+p^{\mu} t+i \sum_{n \neq 0} \frac{1}{n} \alpha_{n}^{\mu} e^{-i n t} \cos n \sigma
$$

- For DD boundary conditions the result is:

$$
X^{\mu}(\sigma, t)=c^{\mu}\left(1-\frac{\sigma}{\pi}\right)+d^{\mu} \frac{\sigma}{\pi}-\sum_{n \neq 0} \frac{1}{n} \alpha_{n}^{\mu} e^{-i n t} \sin n \sigma
$$

- With open-string boundary conditions, a wave travelling one way on the string gets reflected back from the end. So there is only one set of vibrational modes rather than two.
- For NN boundary conditions, we find:

$$
X^{\mu}(\sigma, t)=x^{\mu}+p^{\mu} t+i \sum_{n \neq 0} \frac{1}{n} \alpha_{n}^{\mu} e^{-i n t} \cos n \sigma
$$

- For DD boundary conditions the result is:

$$
X^{\mu}(\sigma, t)=c^{\mu}\left(1-\frac{\sigma}{\pi}\right)+d^{\mu} \frac{\sigma}{\pi}-\sum_{n \neq 0} \frac{1}{n} \alpha_{n}^{\mu} e^{-i n t} \sin n \sigma
$$

- Here c^{μ}, d^{μ} specify the locations of the D-branes on which the ends of the string are fixed. As one would expect, there are no translational zero modes x^{μ}, p^{μ} in this case.
- For DN and ND strings, the mode expansion involves half-integer modes, as one can easily check.
- For DN and ND strings, the mode expansion involves half-integer modes, as one can easily check.
- This case typically arises for strings connecting intersecting branes.

- In all the above cases, quantising the open string leads to the same problem as for the closed string: negative norm states.
- In all the above cases, quantising the open string leads to the same problem as for the closed string: negative norm states.
- The solution is also the same: these unphysical states are eliminated by gauge constraints on the worldsheet.
- In all the above cases, quantising the open string leads to the same problem as for the closed string: negative norm states.
- The solution is also the same: these unphysical states are eliminated by gauge constraints on the worldsheet.
- We are left with the modes transverse to two light-cone directions.
- Consider first the case of NN boundary conditions in all 25 directions. This defines a D25-brane, which coincides with all of spacetime.
- Consider first the case of NN boundary conditions in all 25 directions. This defines a D25-brane, which coincides with all of spacetime.
- Thus the ends of the strings can be anywhere in spacetime.
- Consider first the case of NN boundary conditions in all 25 directions. This defines a D25-brane, which coincides with all of spacetime.
- Thus the ends of the strings can be anywhere in spacetime.
- In light cone gauge the states of such a string are:

$$
\alpha_{-n_{1}}^{i_{1}} \alpha_{-n_{2}}^{i_{2}} \cdots \alpha_{-n_{N}}^{i_{N}}|0\rangle
$$

since there is only one type of oscillator.

- Consider first the case of NN boundary conditions in all 25 directions. This defines a D25-brane, which coincides with all of spacetime.
- Thus the ends of the strings can be anywhere in spacetime.
- In light cone gauge the states of such a string are:

$$
\alpha_{-n_{1}}^{i_{1}} \alpha_{-n_{2}}^{i_{2}} \cdots \alpha_{-n_{N}}^{i_{N}}|0\rangle
$$

since there is only one type of oscillator.

- The masses of these states are given by:

$$
M^{2}=\frac{1}{\alpha^{\prime}}\left(\sum_{m=1}^{\infty} \alpha_{-m}^{i} \alpha_{m}^{i}-1\right)
$$

- Thus we again have a tachyon at the lowest level, the state $|0\rangle$ of $M^{2}=-\frac{1}{\alpha^{\prime}}$. However, this is the open-string tachyon, distinct from the closed string tachyon that we encountered earlier.
- Thus we again have a tachyon at the lowest level, the state $|0\rangle$ of $M^{2}=-\frac{1}{\alpha^{\prime}}$. However, this is the open-string tachyon, distinct from the closed string tachyon that we encountered earlier.
- The first excited state is a vector:

$$
\alpha_{-1}^{i}|0\rangle
$$

and we see that it is massless.

- Thus we again have a tachyon at the lowest level, the state $|0\rangle$ of $M^{2}=-\frac{1}{\alpha^{\prime}}$. However, this is the open-string tachyon, distinct from the closed string tachyon that we encountered earlier.
- The first excited state is a vector:

$$
\alpha_{-1}^{i}|0\rangle
$$

and we see that it is massless.

- A massless vector field in field theory has to be a gauge field, and indeed it is so.
- Thus we again have a tachyon at the lowest level, the state $|0\rangle$ of $M^{2}=-\frac{1}{\alpha^{\prime}}$. However, this is the open-string tachyon, distinct from the closed string tachyon that we encountered earlier.
- The first excited state is a vector:

$$
\alpha_{-1}^{i}|0\rangle
$$

and we see that it is massless.

- A massless vector field in field theory has to be a gauge field, and indeed it is so.
- Thus the massless spectrum of open strings on a D25-brane consists of a gauge field in spacetime.
- Next consider boundary conditions that are NN in p directions and DD in the remaining $25-p$ directions.
- Next consider boundary conditions that are NN in p directions and DD in the remaining $25-p$ directions.
- According to our notation this corresponds to a Dp-brane.
- Next consider boundary conditions that are NN in p directions and DD in the remaining $25-p$ directions.
- According to our notation this corresponds to a Dp-brane.
- The boundary conditions break translation invariance in $25-p$ directions. They also break rotation invariance:

$$
S O(25,1) \rightarrow S O(25-p) \times S O(p, 1)
$$

- Next consider boundary conditions that are NN in p directions and DD in the remaining $25-p$ directions.
- According to our notation this corresponds to a Dp-brane.
- The boundary conditions break translation invariance in $25-p$ directions. They also break rotation invariance:

$$
S O(25,1) \rightarrow S O(25-p) \times S O(p, 1)
$$

- Both these effects would be natural if we were dealing with an excited state of string theory that contained a physical object (like a soliton) stretching over p spatial dimensions.
- Next consider boundary conditions that are NN in p directions and DD in the remaining $25-p$ directions.
- According to our notation this corresponds to a Dp-brane.
- The boundary conditions break translation invariance in $25-p$ directions. They also break rotation invariance:

$$
S O(25,1) \rightarrow S O(25-p) \times S O(p, 1)
$$

- Both these effects would be natural if we were dealing with an excited state of string theory that contained a physical object (like a soliton) stretching over p spatial dimensions.
- In other words, the D-brane can be interpreted as a physical excitation in string theory.
- What is the spectrum of string states in this case?
- What is the spectrum of string states in this case?
- As before we have the tachyon, but now it is confined to the brane, where the open strings end.
- What is the spectrum of string states in this case?
- As before we have the tachyon, but now it is confined to the brane, where the open strings end.
- Next there is a massless state:

$$
\alpha_{-1}^{i}|0\rangle, \quad i=1,2, \ldots, 24
$$

and this too is confined to the brane.

- What is the spectrum of string states in this case?
- As before we have the tachyon, but now it is confined to the brane, where the open strings end.
- Next there is a massless state:

$$
\alpha_{-1}^{i}|0\rangle, \quad i=1,2, \ldots, 24
$$

and this too is confined to the brane.

- Because of this, we cannot think of the above as the transverse components of a 26 -dimensional gauge field.
- What is the spectrum of string states in this case?
- As before we have the tachyon, but now it is confined to the brane, where the open strings end.
- Next there is a massless state:

$$
\alpha_{-1}^{i}|0\rangle, \quad i=1,2, \ldots, 24
$$

and this too is confined to the brane.

- Because of this, we cannot think of the above as the transverse components of a 26 -dimensional gauge field.
- Rather, the components of the state with $i=1,2, \ldots, p-1$ are the transverse components of a p-dimensional gauge field confined to the brane.
- What is the spectrum of string states in this case?
- As before we have the tachyon, but now it is confined to the brane, where the open strings end.
- Next there is a massless state:

$$
\alpha_{-1}^{i}|0\rangle, \quad i=1,2, \ldots, 24
$$

and this too is confined to the brane.

- Because of this, we cannot think of the above as the transverse components of a 26 -dimensional gauge field.
- Rather, the components of the state with $i=1,2, \ldots, p-1$ are the transverse components of a p-dimensional gauge field confined to the brane.
- The remaining components with $i=p, p+1, \ldots 25$ are $25-p$ massless scalar fields confined to the brane.
- The fact that translational invariance is broken in precisely 25 - p directions and we have found the same number of massless scalars can hardly be a coincidence.
- The fact that translational invariance is broken in precisely $25-p$ directions and we have found the same number of massless scalars can hardly be a coincidence.
- These are in fact the Goldstone bosons associated with spontaneously broken translation invariance in the state containing a Dp-brane.
- The fact that translational invariance is broken in precisely 25 - p directions and we have found the same number of massless scalars can hardly be a coincidence.
- These are in fact the Goldstone bosons associated with spontaneously broken translation invariance in the state containing a Dp-brane.
- In fact the VEV of these scalars is nothing but the position of the brane in the transverse space.
- To conclude our study of the bosonic string, let's notice that if we can have one Dp-brane, we can surely have N of them.
- To conclude our study of the bosonic string, let's notice that if we can have one Dp-brane, we can surely have N of them.
- In this case there are N open strings that start and end on the same brane.
- To conclude our study of the bosonic string, let's notice that if we can have one Dp-brane, we can surely have N of them.
- In this case there are N open strings that start and end on the same brane.
- But there are also $N(N-1)$ open strings stretching from one brane to another, as illustrated here for $N=2$:

- First take all N Dp-branes to be coincident.
- First take all N Dp-branes to be coincident.
- Quantising the N^{2} open strings, we find N^{2} massless gauge fields, which can be conveniently encoded into an $N \times N$ Hermitian matrix.
- First take all N Dp-branes to be coincident.
- Quantising the N^{2} open strings, we find N^{2} massless gauge fields, which can be conveniently encoded into an $N \times N$ Hermitian matrix.
- And there are $25-p$ scalars, also encoded in similar matrices.
- First take all N Dp-branes to be coincident.
- Quantising the N^{2} open strings, we find N^{2} massless gauge fields, which can be conveniently encoded into an $N \times N$ Hermitian matrix.
- And there are $25-p$ scalars, also encoded in similar matrices.
- From the study of interactions among these gauge fields, we find that they are non-Abelian gauge fields for the group $U(N)$.
- First take all N Dp-branes to be coincident.
- Quantising the N^{2} open strings, we find N^{2} massless gauge fields, which can be conveniently encoded into an $N \times N$ Hermitian matrix.
- And there are $25-p$ scalars, also encoded in similar matrices.
- From the study of interactions among these gauge fields, we find that they are non-Abelian gauge fields for the group $U(N)$.
- The scalars, being matrices, are in the adjoint representation of this group.
- A $U(1)$ factor can be associated with the overall centre-of-mass of the system of branes, and it decouples from the dynamics.
- A $U(1)$ factor can be associated with the overall centre-of-mass of the system of branes, and it decouples from the dynamics.
- Thus the gauge group is effectively $S U(N)$.
- A $U(1)$ factor can be associated with the overall centre-of-mass of the system of branes, and it decouples from the dynamics.
- Thus the gauge group is effectively $S U(N)$.
- So N coincident Dp-branes automatically realise $U(N)$ gauge fields as their massless states, along with an adjoint scalar for each transverse direction.
- Now let us separate the branes.
- Now let us separate the branes.
- The gauge fields from the "diagonal" strings continue to be massless, but the ones stretching from one brane to another become massive due to their length and tension.
- Now let us separate the branes.
- The gauge fields from the "diagonal" strings continue to be massless, but the ones stretching from one brane to another become massive due to their length and tension.
- This is just the Higgs mechanism:

$$
U(N) \rightarrow U(1)^{N}
$$

which is what we expect if the Higgsing is done by an adjoint scalar - namely, the one corresponding to the transverse direction along which the branes were separated.

- Now let us separate the branes.
- The gauge fields from the "diagonal" strings continue to be massless, but the ones stretching from one brane to another become massive due to their length and tension.
- This is just the Higgs mechanism:

$$
U(N) \rightarrow U(1)^{N}
$$

which is what we expect if the Higgsing is done by an adjoint scalar - namely, the one corresponding to the transverse direction along which the branes were separated.

- To summarise, N parallel D_{p}-branes describe the dynamics of a $p+1$-dimensional $U(N)$ non-Abelian gauge theory on their worldvolume.
- There is a nice way to extend this to other gauge groups.
- There is a nice way to extend this to other gauge groups.
- Let us quotient the string theory by a Z_{2} symmetry that simultaneously acts as a geometrical inversion along $25-p$ directions and also inverts the orientation of the string:

$$
\begin{aligned}
X^{\mu}(t, \sigma) & =X^{\mu}(t,-\sigma), \quad \mu=0,1,2, \cdots, p \\
X^{i}(t, \sigma) & =-X^{i}(t,-\sigma), \quad i=p+1, p+2, \cdots, 25
\end{aligned}
$$

- There is a nice way to extend this to other gauge groups.
- Let us quotient the string theory by a Z_{2} symmetry that simultaneously acts as a geometrical inversion along $25-p$ directions and also inverts the orientation of the string:

$$
\left.\begin{array}{rl}
X^{\mu}(t, \sigma) & =X^{\mu}(t,-\sigma), \quad \quad \quad=0,1,2, \cdots, p \\
X^{i}(t, \sigma) & =-X^{i}(t,-\sigma),
\end{array} \quad i=p+1, p+2, \cdots, 25\right)
$$

- This quotient creates a fixed locus at $X^{i}=0$ that stretches along the X^{μ} directions: an orientifold plane.
- There is a nice way to extend this to other gauge groups.
- Let us quotient the string theory by a Z_{2} symmetry that simultaneously acts as a geometrical inversion along $25-p$ directions and also inverts the orientation of the string:

$$
\begin{aligned}
X^{\mu}(t, \sigma) & =X^{\mu}(t,-\sigma), \quad \mu=0,1,2, \cdots, p \\
X^{i}(t, \sigma) & =-X^{i}(t,-\sigma), \quad i=p+1, p+2, \cdots, 25
\end{aligned}
$$

- This quotient creates a fixed locus at $X^{i}=0$ that stretches along the X^{μ} directions: an orientifold plane.
- Strings reverse their orientation on passing through an orientifold plane.
- Now place N Dp-branes parallel to an orientifold p-plane. There is an equal number of images on the other side.
- Now place N Dp-branes parallel to an orientifold p-plane. There is an equal number of images on the other side.
- Open strings stretching between pairs of branes can be projected in or out of the spectrum by the orientifold action.

- Now place N Dp-branes parallel to an orientifold p-plane. There is an equal number of images on the other side.
- Open strings stretching between pairs of branes can be projected in or out of the spectrum by the orientifold action.

- Depending on the choice of orientifold action, this breaks $U(2 N)$ to its subgroups $S O(2 N)$ or $S p(2 N)$.
- We have noted that D-branes are dynamical objects that can be created or destroyed in string theory.
- We have noted that D-branes are dynamical objects that can be created or destroyed in string theory.
- They are characterised by a tension which can be found by doing a calculation involving open strings stretching between a pair of branes.

- We have noted that D-branes are dynamical objects that can be created or destroyed in string theory.
- They are characterised by a tension which can be found by doing a calculation involving open strings stretching between a pair of branes.

- The above picture can also be interpreted as closed-string exchange between a pair of branes. This includes graviton exchange and therefore measures the tension.
- The result is found to be:

$$
\tau_{p} \sim \frac{1}{g_{s}} \frac{1}{\left(\alpha^{\prime}\right)^{\frac{p+1}{2}}}
$$

- The result is found to be:

$$
\tau_{p} \sim \frac{1}{g_{s}} \frac{1}{\left(\alpha^{\prime}\right)^{\frac{p+1}{2}}}
$$

- The α^{\prime} dependence can be found by dimensional analysis. More striking is the dependence on the string coupling g_{s}.
- The result is found to be:

$$
\tau_{p} \sim \frac{1}{g_{s}} \frac{1}{\left(\alpha^{\prime}\right)^{\frac{p+1}{2}}}
$$

- The α^{\prime} dependence can be found by dimensional analysis. More striking is the dependence on the string coupling g_{s}.
- A similar calculation can be done for orientifold planes. They behave effectively like objects with negative tension.
- As we have seen, the closed bosonic string has a tachyon that propagates in spacetime.
- As we have seen, the closed bosonic string has a tachyon that propagates in spacetime.
- And the open bosonic string also has a tachyon, localised on the corresponding D-brane.
- As we have seen, the closed bosonic string has a tachyon that propagates in spacetime.
- And the open bosonic string also has a tachyon, localised on the corresponding D-brane.
- From the worldsheet point of view, a tachyon corresponds to negative energy. It is plausible that it can be eliminated by having worldsheet supersymmetry, due to which the worldsheet energy would be bounded below by zero.
- As we have seen, the closed bosonic string has a tachyon that propagates in spacetime.
- And the open bosonic string also has a tachyon, localised on the corresponding D-brane.
- From the worldsheet point of view, a tachyon corresponds to negative energy. It is plausible that it can be eliminated by having worldsheet supersymmetry, due to which the worldsheet energy would be bounded below by zero.
- This is the motivation to consider superstrings.

Outline

(1) Closed Bosonic Strings

(2) Open Bosonic Strings

(3) Closed superstrings

4 Open superstrings
(5) Compactification

Closed superstrings

- The superstring can be defined in various different formalisms.

Closed superstrings

- The superstring can be defined in various different formalisms.
- We choose the Green-Schwarz formalism defined by adding fermionic coordinates $S_{\alpha}^{A}(\sigma, t)$ to the usual $X^{\mu}(\sigma, t)$ on the worldsheet.

Closed superstrings

- The superstring can be defined in various different formalisms.
- We choose the Green-Schwarz formalism defined by adding fermionic coordinates $S_{\alpha}^{A}(\sigma, t)$ to the usual $X^{\mu}(\sigma, t)$ on the worldsheet.
- This can be done consistently only in $3,4,6,10$ spacetime dimensions. We anticipate that 10 will be the only consistent choice.

Closed superstrings

- The superstring can be defined in various different formalisms.
- We choose the Green-Schwarz formalism defined by adding fermionic coordinates $S_{\alpha}^{A}(\sigma, t)$ to the usual $X^{\mu}(\sigma, t)$ on the worldsheet.
- This can be done consistently only in $3,4,6,10$ spacetime dimensions. We anticipate that 10 will be the only consistent choice.
- The S_{α}^{A} are both worldsheet fermions (via the index $\alpha=1,2$) and and spacetime fermions (via the index $A=1,2, \cdots, 8$ which makes a spinor of $S O(9,1))$.
- The local reparametrisation symmetry on the worldsheet is now promoted to supersymmetry.
- The local reparametrisation symmetry on the worldsheet is now promoted to supersymmetry.
- After gauge-fixing and incorporating the constraints, one finds the light-cone action:

$$
S=-\frac{T}{2} \int d \sigma d t\left(\partial_{a} X^{i} \partial_{a} X_{i}-i S_{+}^{A} \partial_{-} S_{+}^{A}-i \bar{S}_{-}^{A} \partial_{+} \bar{S}_{-}^{A}\right)
$$

- The local reparametrisation symmetry on the worldsheet is now promoted to supersymmetry.
- After gauge-fixing and incorporating the constraints, one finds the light-cone action:

$$
S=-\frac{T}{2} \int d \sigma d t\left(\partial_{a} X^{i} \partial_{a} X_{i}-i S_{+}^{A} \partial_{-} S_{+}^{A}-i \bar{S}_{-}^{A} \partial_{+} \bar{S}_{-}^{A}\right)
$$

- This time too there is an anomaly, proportional to $D-10$. Thus the superstring is consistent in 10 dimensions.
- The local reparametrisation symmetry on the worldsheet is now promoted to supersymmetry.
- After gauge-fixing and incorporating the constraints, one finds the light-cone action:

$$
S=-\frac{T}{2} \int d \sigma d t\left(\partial_{a} X^{i} \partial_{a} X_{i}-i S_{+}^{A} \partial_{-} S_{+}^{A}-i \bar{S}_{-}^{A} \partial_{+} \bar{S}_{-}^{A}\right)
$$

- This time too there is an anomaly, proportional to $D-10$. Thus the superstring is consistent in 10 dimensions.
- The equations of motion are the familiar Klein-Gordon and Dirac equations in two dimensions:

$$
\partial_{-} \partial_{+} X^{\mu}=0, \quad \partial_{-} S_{+}^{A}=0, \quad \partial_{+} S_{-}^{A}=0
$$

- The mode expansion of the X^{μ} is as before. But now we would also like to make a mode expansion of the $S_{ \pm}^{A}$.
- The mode expansion of the X^{μ} is as before. But now we would also like to make a mode expansion of the $S_{ \pm}^{A}$.
- Impose closed string boundary conditions on the fermions:

$$
S_{ \pm}^{A}(\sigma+\pi, t)=S_{ \pm}^{A}(\sigma, t)
$$

- The mode expansion of the X^{μ} is as before. But now we would also like to make a mode expansion of the $S_{ \pm}^{A}$.
- Impose closed string boundary conditions on the fermions:

$$
S_{ \pm}^{A}(\sigma+\pi, t)=S_{ \pm}^{A}(\sigma, t)
$$

- The mode expansions are then:

$$
\begin{aligned}
& S_{-}^{A}(\sigma, t)=\sum_{n \in \mathbb{Z}} S_{n}^{A} e^{-2 i n(t-\sigma)} \\
& S_{+}^{A}(\sigma, t)=\sum_{n \in \mathbb{Z}} \tilde{S}_{n}^{A} e^{-2 i n(t+\sigma)}
\end{aligned}
$$

and the fermion oscillators are quantised by anticommutators:

$$
\left\{S_{m}^{A}, S_{n}^{B}\right\}=\delta_{m+n, 0} \delta^{A B}
$$

- To be economical with equations, we will again do everything in the left-moving sector first.
The left-moving part of the mass operator is given by:

$$
M^{2}=\frac{2}{\alpha^{\prime}}\left(\sum_{m=1}^{\infty} \alpha_{-m}^{i} \alpha_{m}^{i}+\sum_{n=1}^{\infty} n S_{-n}^{A} S_{n}^{A}\right)
$$

- To be economical with equations, we will again do everything in the left-moving sector first.
The left-moving part of the mass operator is given by:

$$
M^{2}=\frac{2}{\alpha^{\prime}}\left(\sum_{m=1}^{\infty} \alpha_{-m}^{i} \alpha_{m}^{i}+\sum_{n=1}^{\infty} n S_{-n}^{A} S_{n}^{A}\right)
$$

- As anticipated, supersymmetry has eliminated the additive constant.
- To be economical with equations, we will again do everything in the left-moving sector first.
The left-moving part of the mass operator is given by:

$$
M^{2}=\frac{2}{\alpha^{\prime}}\left(\sum_{m=1}^{\infty} \alpha_{-m}^{i} \alpha_{m}^{i}+\sum_{n=1}^{\infty} n S_{-n}^{A} S_{n}^{A}\right)
$$

- As anticipated, supersymmetry has eliminated the additive constant.
- Therefore the ground state is massless and the theory is manifestly tachyon-free.
- However, due to zero modes of the periodic worldsheet fermions, the ground state is degenerate.
- However, due to zero modes of the periodic worldsheet fermions, the ground state is degenerate.
- This state is defined (as usual) by:

$$
S_{n}^{A}|0\rangle=0, \quad n>0
$$

and the operators $S_{-n}^{A}, n>0$ are creation operators.

- However, due to zero modes of the periodic worldsheet fermions, the ground state is degenerate.
- This state is defined (as usual) by:

$$
S_{n}^{A}|0\rangle=0, \quad n>0
$$

and the operators $S_{-n}^{A}, n>0$ are creation operators.

- However there are also zero-frequency modes S_{0}^{A}.
- These zero modes satisfy a Clifford algebra, much like gamma-matrices:

$$
\left\{S_{0}^{A}, S_{0}^{B}\right\}=\delta^{A B}
$$

- These zero modes satisfy a Clifford algebra, much like gamma-matrices:

$$
\left\{S_{0}^{A}, S_{0}^{B}\right\}=\delta^{A B}
$$

- There is a slight difference: gamma matrices are spacetime vectors while the S_{0}^{A} are spacetime spinors.
- These zero modes satisfy a Clifford algebra, much like gamma-matrices:

$$
\left\{S_{0}^{A}, S_{0}^{B}\right\}=\delta^{A B}
$$

- There is a slight difference: gamma matrices are spacetime vectors while the S_{0}^{A} are spacetime spinors.
- True gamma matrices in 8 d would give rise to a 16 -fold degeneracy corresponding to spinors.
- These zero modes satisfy a Clifford algebra, much like gamma-matrices:

$$
\left\{S_{0}^{A}, S_{0}^{B}\right\}=\delta^{A B}
$$

- There is a slight difference: gamma matrices are spacetime vectors while the S_{0}^{A} are spacetime spinors.
- True gamma matrices in 8 d would give rise to a 16 -fold degeneracy corresponding to spinors.
- Similarly the S_{0}^{A} give rise to a 16 -fold degeneracy, but this time the degenerate state contains a spacetime vector and a spacetime spinor.
- There are two inequivalent spinor representations of the transverse Lorentz group SO(8):

$$
\begin{aligned}
\text { spinor: } & |A\rangle \\
\text { conjugate spinor: } & \left|A^{\prime}\right\rangle
\end{aligned}
$$

where $A, A^{\prime}=1,2, \ldots 8$.

- There are two inequivalent spinor representations of the transverse Lorentz group SO(8):

spinor:	$\|A\rangle$
conjugate spinor:	$\left\|A^{\prime}\right\rangle$

- These correspond to spacetime chirality.
- There are two inequivalent spinor representations of the transverse Lorentz group SO(8):

$$
\begin{aligned}
\text { spinor: } & |A\rangle \\
\text { conjugate spinor: } & \left|A^{\prime}\right\rangle
\end{aligned}
$$

where $A, A^{\prime}=1,2, \ldots 8$.

- These correspond to spacetime chirality.
- By choosing a chirality for the S_{-}^{A}, we can determine the chirality of the ground state, namely spinor or conjugate spinor.
- Thus the massless spectrum of left movers is a vector (Neveu-Schwartz) and a spinor (Ramond):

$$
|i\rangle,|A\rangle \quad \text { or } \quad|i\rangle,\left|A^{\prime}\right\rangle
$$

where we have assigned them certain historical names.

- Thus the massless spectrum of left movers is a vector (Neveu-Schwartz) and a spinor (Ramond):

$$
|i\rangle,|A\rangle \quad \text { or } \quad|i\rangle,\left|A^{\prime}\right\rangle
$$

where we have assigned them certain historical names.

- These manifestly form a supermultiplet of massless left-moving ground states.
- Thus the massless spectrum of left movers is a vector (Neveu-Schwartz) and a spinor (Ramond):

$$
|i\rangle,|A\rangle \quad \text { or } \quad|i\rangle,\left|A^{\prime}\right\rangle
$$

where we have assigned them certain historical names.

- These manifestly form a supermultiplet of massless left-moving ground states.
- The (left-moving) excited states of the superstring are obtained by acting with $\alpha_{-n}^{i}, S_{-n}^{A}, n>0$ on these ground states.
- Combining left and right movers, we have to make a choice between spinor and conjugate spinor for the Ramond state, independently for left-movers and right-movers.
- Combining left and right movers, we have to make a choice between spinor and conjugate spinor for the Ramond state, independently for left-movers and right-movers.
- The overall choice is a convention, but the relative sign between left and right movers is important.
- Combining left and right movers, we have to make a choice between spinor and conjugate spinor for the Ramond state, independently for left-movers and right-movers.
- The overall choice is a convention, but the relative sign between left and right movers is important.
- Thus we have the following possibilities for the massless states:

$$
\begin{array}{rccl}
\text { NS-NS: } & |i\rangle & \otimes|\tilde{j}\rangle \\
\text { R-R: } & |A\rangle & \otimes|\tilde{B}\rangle \text { or }\left|\tilde{B}^{\prime}\right\rangle \\
\text { NS-R: } & |i\rangle & \otimes|\tilde{B}\rangle \text { or }\left|\tilde{B}^{\prime}\right\rangle \\
\text { R-NS: } & |A\rangle \otimes & \otimes \tilde{j}\rangle &
\end{array}
$$

- The NS-NS states, just as for the bosonic string, break up into a symmetric traceless, antisymmetric and trace part.
- The NS-NS states, just as for the bosonic string, break up into a symmetric traceless, antisymmetric and trace part.
- In covariant language these are represented by massless fields propagating in 10 spacetime dimensions:

$$
G_{\mu \nu}(x), B_{\mu \nu}(x), \Phi(x)
$$

- In the R-R sector we have two physically inequivalent choices:

$$
|A\rangle \otimes|\tilde{B}\rangle \text { or }|A\rangle \otimes\left|\tilde{B}^{\prime}\right\rangle
$$

- In the R-R sector we have two physically inequivalent choices:

$$
|A\rangle \otimes|\tilde{B}\rangle \text { or }|A\rangle \otimes\left|\tilde{B}^{\prime}\right\rangle
$$

- The product of two spinorial representations of the Lorentz group is a tensorial representation. Thus in both cases, the $R-R$ sector contains only bosons.
- In the R-R sector we have two physically inequivalent choices:

$$
|A\rangle \otimes|\tilde{B}\rangle \text { or }|A\rangle \otimes\left|\tilde{B}^{\prime}\right\rangle
$$

- The product of two spinorial representations of the Lorentz group is a tensorial representation. Thus in both cases, the $R-R$ sector contains only bosons.
- Introduce the notation:

$$
C_{\mu_{1}, \mu_{2}, \ldots, \mu_{r}}^{(r)}
$$

for a totally antisymmetric tensor field of rank r.

- A bit of group theory tells us that

$$
|A\rangle \otimes\left|\tilde{B}^{\prime}\right\rangle \rightarrow C_{\mu}^{(1)}(x), C_{\mu \nu \lambda}^{(3)}(x)
$$

while

$$
|A\rangle \otimes|\tilde{B}\rangle \rightarrow C^{(0)}(x), C_{\mu \nu}^{(2)}(x), C_{\mu \nu \lambda \rho}^{(4)}(x)
$$

- A bit of group theory tells us that

$$
|A\rangle \otimes\left|\tilde{B}^{\prime}\right\rangle \rightarrow C_{\mu}^{(1)}(x), C_{\mu \nu \lambda}^{(3)}(x)
$$

while

$$
|A\rangle \otimes|\tilde{B}\rangle \rightarrow C^{(0)}(x), C_{\mu \nu}^{(2)}(x), C_{\mu \nu \lambda \rho}^{(4)}(x)
$$

- These are inequivalent sets of bosonic fields in 10 dimensions.
- A bit of group theory tells us that

$$
|A\rangle \otimes\left|\tilde{B}^{\prime}\right\rangle \rightarrow C_{\mu}^{(1)}(x), C_{\mu \nu \lambda}^{(3)}(x)
$$

while

$$
|A\rangle \otimes|\tilde{B}\rangle \rightarrow C^{(0)}(x), C_{\mu \nu}^{(2)}(x), C_{\mu \nu \lambda \rho}^{(4)}(x)
$$

- These are inequivalent sets of bosonic fields in 10 dimensions.
- A small technical point: the 4 th rank tensor $C^{(4)}$ satisfies a self-duality condition.
- Finally we look at the NS-R and R-NS sectors. In each case, we are combining a tensor and spinor representation, so the result is spinorial.
- Finally we look at the NS-R and R-NS sectors. In each case, we are combining a tensor and spinor representation, so the result is spinorial.
- Therefore these sectors contain spacetime fermions.
- Finally we look at the NS-R and R-NS sectors. In each case, we are combining a tensor and spinor representation, so the result is spinorial.
- Therefore these sectors contain spacetime fermions.
- At the massless level, each of these sectors gives a gravitino and another fermion.
- Finally we look at the NS-R and R-NS sectors. In each case, we are combining a tensor and spinor representation, so the result is spinorial.
- Therefore these sectors contain spacetime fermions.
- At the massless level, each of these sectors gives a gravitino and another fermion.
- The two gravitinos have opposite chiralities for type IIA and the same chirality for type IIB. Therefore the latter theory is parity violating in 10 dimensions.
- The resulting string theory has spacetime supersymmetry.
- The resulting string theory has spacetime supersymmetry.
- Its massless fields are in one-to-one correspondence with those of type IIA and type IIB supergravity.
- The resulting string theory has spacetime supersymmetry.
- Its massless fields are in one-to-one correspondence with those of type IIA and type IIB supergravity.
- It follows that the low-energy effective action of ten-dimensional type IIA/IIB string theory is ten-dimensional type IIA/IIB supergravity.
- The resulting string theory has spacetime supersymmetry.
- Its massless fields are in one-to-one correspondence with those of type IIA and type IIB supergravity.
- It follows that the low-energy effective action of ten-dimensional type IIA/IIB string theory is ten-dimensional type IIA/IIB supergravity.
- But this is only to leading order in α^{\prime}. The effective action has calculable derivative corrections that come with higher powers of α^{\prime}.
- To summarise, the massless field contents are as follows:

Type IIA bosons: $\quad G_{\mu \nu}, B_{\mu \nu}, \Phi$

$$
C_{\mu}^{(1)}, C_{\mu \nu \lambda}^{(3)}
$$

(NS-NS)
(R-R)
fermions :

$$
\begin{array}{ll}
\chi_{\mu, \alpha}^{(L)}, & \lambda_{\alpha}^{(R)} \\
\hat{\chi}_{\mu, \alpha}^{(R)}, & \hat{\lambda}_{\alpha}^{(L)} \tag{NS-R}
\end{array}
$$

(NS-NS)
(R-R)
fermions:

$$
\begin{array}{ll}
\chi_{\mu, \alpha}^{(L)}, & \lambda_{\alpha}^{(R)} \\
\hat{\chi}_{\mu, \alpha}^{(L)}, & \hat{\lambda}_{\alpha}^{(R)}
\end{array}
$$

(R-NS)
(NS-R)

- To conclude this section, some comments:
- To conclude this section, some comments:
- (i) The RR fields enter only through their field strengths:

$$
F_{\mu_{1} \mu_{2} \cdots \mu_{n+1}}^{(n+1)}=\partial_{\left[m u_{1}\right.} C_{\left.\mu_{2} \mu_{3} \cdots \mu_{n+1}\right]}^{(n)}
$$

where the indices are totally antisymmetrised.

- To conclude this section, some comments:
- (i) The RR fields enter only through their field strengths:

$$
F_{\mu_{1} \mu_{2} \cdots \mu_{n+1}}^{(n+1)}=\partial_{\left[m u_{1}\right.} C_{\left.\mu_{2} \mu_{3} \cdots \mu_{n+1}\right]}^{(n)}
$$

where the indices are totally antisymmetrised.

- (ii) Therefore we have:

IIA: Even field strengths $\quad F^{(2)}, F^{(4)}$

$$
F^{(6)}={ }^{*} F^{(4)}, F^{(8)}={ }^{*} F^{(2)}
$$

IIB: Odd field strengths $\quad F^{(1)}, F^{(3)}, F^{(5)}={ }^{*} F^{(5)}$

$$
F^{(7)}={ }^{*} F^{(3)}, F^{(9)}={ }^{*} F^{(1)}
$$

- (iii) In type IIB, the dilaton Φ naturally combines with the RR scalar $C^{(0)}$ to make the axiodilaton:

$$
\tau=C^{(0)}+i e^{-\Phi}
$$

- (iii) In type IIB, the dilaton Φ naturally combines with the RR scalar $C^{(0)}$ to make the axiodilaton:

$$
\tau=C^{(0)}+i e^{-\Phi}
$$

- (iv) At tree level, the bosonic part of the effective action can be written as:

$$
S_{e f f}=\int d^{10} x \sqrt{-\|G\|}\left[e^{-2 \Phi}(\text { NS-NS terms })+(\mathrm{R}-\mathrm{R} \text { terms })\right]
$$

- (iii) In type IIB, the dilaton Φ naturally combines with the RR scalar $C^{(0)}$ to make the axiodilaton:

$$
\tau=C^{(0)}+i e^{-\Phi}
$$

- (iv) At tree level, the bosonic part of the effective action can be written as:

$$
S_{\text {eff }}=\int d^{10} x \sqrt{-\|G\|}\left[e^{-2 \Phi}(\text { NS-NS terms })+(\mathrm{R}-\mathrm{R} \text { terms })\right]
$$

- So the scaling with coupling constant of the tree-level R-R terms is different from the NS-NS terms.

Outline

(1) Closed Bosonic Strings

(2) Open Bosonic Strings
(3) Closed superstrings

4 Open superstrings
(5) Compactification

Open superstrings

- For the open superstring, the boundary conditions in the variation of the fermionic part of the action are easily seen to be:

$$
\int d t\left[\delta S_{+}^{A} S_{+}^{A}-\delta S_{-}^{A} S_{-}^{A}\right]_{0}^{\pi}=0
$$

Open superstrings

- For the open superstring, the boundary conditions in the variation of the fermionic part of the action are easily seen to be:

$$
\int d t\left[\delta S_{+}^{A} S_{+}^{A}-\delta S_{-}^{A} S_{-}^{A}\right]_{0}^{\pi}=0
$$

- The solution of these conditions is:

$$
\begin{aligned}
& S_{-}^{A}(0, t)=\eta_{1} S_{+}^{A}(0, t) \\
& S_{-}^{A}(\pi, t)=\eta_{2} S_{+}^{A}(\pi, t)
\end{aligned}
$$

where $\eta_{1}, \eta_{2}= \pm 1$.

Open superstrings

- For the open superstring, the boundary conditions in the variation of the fermionic part of the action are easily seen to be:

$$
\int d t\left[\delta S_{+}^{A} S_{+}^{A}-\delta S_{-}^{A} S_{-}^{A}\right]_{0}^{\pi}=0
$$

- The solution of these conditions is:

$$
\begin{aligned}
& S_{-}^{A}(0, t)=\eta_{1} S_{+}^{A}(0, t) \\
& S_{-}^{A}(\pi, t)=\eta_{2} S_{+}^{A}(\pi, t)
\end{aligned}
$$

where $\eta_{1}, \eta_{2}= \pm 1$.

- The physics only depends on the relative sign. The supersymmetry-preserving choice is $\eta_{1}=\eta_{2}$.
- For the bosonic coordinates, the mode expansion depends on whether we have NN,DD,ND or DN boundary conditions, just as for the open bosonic string.
- For the bosonic coordinates, the mode expansion depends on whether we have NN,DD,ND or DN boundary conditions, just as for the open bosonic string.
- For the moment we assume NN conditions on all 9 directions, which amounts to having a D9-brane filling spacetime.
- For the bosonic coordinates, the mode expansion depends on whether we have NN,DD,ND or DN boundary conditions, just as for the open bosonic string.
- For the moment we assume NN conditions on all 9 directions, which amounts to having a D9-brane filling spacetime.
- Again there are worldsheet (super) gauge constraints, which leave only the coordinates with transverse indices.
- With the above boundary conditions, the fermions have integer modes:

$$
\begin{aligned}
& S_{-}^{A}(\sigma, t)=\sum_{n \in \mathbb{Z}} S_{n}^{A} e^{-i n(t-\sigma)} \\
& S_{+}^{A}(\sigma, t)=\sum_{n \in \mathbb{Z}} S_{n}^{A} e^{-i n(t+\sigma)}
\end{aligned}
$$

and we see again that there is only one set of oscillators.

- With the above boundary conditions, the fermions have integer modes:

$$
\begin{aligned}
& S_{-}^{A}(\sigma, t)=\sum_{n \in \mathbb{Z}} S_{n}^{A} e^{-i n(t-\sigma)} \\
& S_{+}^{A}(\sigma, t)=\sum_{n \in \mathbb{Z}} S_{n}^{A} e^{-i n(t+\sigma)}
\end{aligned}
$$

and we see again that there is only one set of oscillators.

- The mass is given by:

$$
M^{2}=\frac{1}{\alpha^{\prime}}\left(\sum_{m=1}^{\infty} \alpha_{-m}^{i} \alpha_{m}^{i}+\sum_{n=1}^{\infty} n S_{-n}^{A} S_{n}^{A}\right)
$$

- With the above boundary conditions, the fermions have integer modes:

$$
\begin{aligned}
& S_{-}^{A}(\sigma, t)=\sum_{n \in \mathbb{Z}} S_{n}^{A} e^{-i n(t-\sigma)} \\
& S_{+}^{A}(\sigma, t)=\sum_{n \in \mathbb{Z}} S_{n}^{A} e^{-i n(t+\sigma)}
\end{aligned}
$$

and we see again that there is only one set of oscillators.

- The mass is given by:

$$
M^{2}=\frac{1}{\alpha^{\prime}}\left(\sum_{m=1}^{\infty} \alpha_{-m}^{i} \alpha_{m}^{i}+\sum_{n=1}^{\infty} n S_{-n}^{A} S_{n}^{A}\right)
$$

- Again there is no tachyon, but we have the now-familiar ground-state degeneracy.
- Thus the massless spectrum is:

$$
\begin{array}{rll}
\text { bosons: } & A_{\mu} & (\mathrm{NS}) \\
\text { fermions: } & \lambda_{A} & (\mathrm{R})
\end{array}
$$

- Thus the massless spectrum is:

- This is the field content of $\mathcal{N}=1$ supersymmetric gauge theory in 10 dimensions.
- Thus the massless spectrum is:

- This is the field content of $\mathcal{N}=1$ supersymmetric gauge theory in 10 dimensions.
- We see that a D9-brane supports a supersymmetric gauge theory on its worldvolume.
- If we choose N coincident D9-branes then A_{μ}, λ_{A} are promoted to matrices and we get $\mathcal{N}=1$ supersymmetric Yang-Mills theory in 10D.
- If we choose N coincident D9-branes then A_{μ}, λ_{A} are promoted to matrices and we get $\mathcal{N}=1$ supersymmetric Yang-Mills theory in 10D.
- Instead of all NN boundary conditions, if we choose p NN and $9-p$ DD boundary conditions, we find a Dp-brane instead of a D9-brane.
- If we choose N coincident D9-branes then A_{μ}, λ_{A} are promoted to matrices and we get $\mathcal{N}=1$ supersymmetric Yang-Mills theory in 10D.
- Instead of all NN boundary conditions, if we choose p NN and $9-p$ DD boundary conditions, we find a Dp-brane instead of a D9-brane.
- In this case, the massless fields are a photon A_{μ} in $p+1$ spacetime dimensions, as well as $9-p$ scalar fields ϕ_{i}.
- If we choose N coincident D9-branes then A_{μ}, λ_{A} are promoted to matrices and we get $\mathcal{N}=1$ supersymmetric Yang-Mills theory in 10D.
- Instead of all NN boundary conditions, if we choose p NN and $9-p$ DD boundary conditions, we find a Dp-brane instead of a D9-brane.
- In this case, the massless fields are a photon A_{μ} in $p+1$ spacetime dimensions, as well as $9-p$ scalar fields ϕ_{i}.
- The fermions also decompose suitably, depending on the dimension p of the brane.
- The result is always the maximally supersymmetric gauge theory in that dimension.
- The result is always the maximally supersymmetric gauge theory in that dimension.
- It can be simply obtained as the dimensional reduction of the 10d supersymmetric gauge theory.
- The result is always the maximally supersymmetric gauge theory in that dimension.
- It can be simply obtained as the dimensional reduction of the 10d supersymmetric gauge theory.
- A classic example is a D3-brane. We find a gauge field A_{μ}, six scalars ϕ^{K} and four fermions λ^{a}. This is the spectrum of $\mathcal{N}=4$ supersymmetric gauge theory in 3+1 dimensions.
- We mentioned earlier that D-branes are dynamical objects in string theory.
- We mentioned earlier that D-branes are dynamical objects in string theory.
- One way to verify this is to notice that objects with the same properties exist as stable solitonic solutions of the supergravity equations of motion.
- We mentioned earlier that D-branes are dynamical objects in string theory.
- One way to verify this is to notice that objects with the same properties exist as stable solitonic solutions of the supergravity equations of motion.
- The tension of these objects can be computed from this solution and compared with that obtained for D-branes from open-string scattering amplitudes. In both cases, we find:

$$
T_{p}=\frac{1}{g_{s}} \frac{1}{(2 \pi)^{p}} \frac{1}{\left(\alpha^{\prime}\right)^{\frac{p+1}{2}}}
$$

- We mentioned earlier that D-branes are dynamical objects in string theory.
- One way to verify this is to notice that objects with the same properties exist as stable solitonic solutions of the supergravity equations of motion.
- The tension of these objects can be computed from this solution and compared with that obtained for D-branes from open-string scattering amplitudes. In both cases, we find:

$$
T_{p}=\frac{1}{g_{s}} \frac{1}{(2 \pi)^{p}} \frac{1}{\left(\alpha^{\prime}\right)^{\frac{p+1}{2}}}
$$

- This shows that we are dealing with two different descriptions of the same object.
- It can also be shown using supergravity that the solitonic brane solutions are accompanied by a flux of some Ramond-Ramond (R-R) tensor gauge field.
- It can also be shown using supergravity that the solitonic brane solutions are accompanied by a flux of some Ramond-Ramond (R-R) tensor gauge field.
- This means they carry the corresponding R-R charge.
- It can also be shown using supergravity that the solitonic brane solutions are accompanied by a flux of some Ramond-Ramond (R-R) tensor gauge field.
- This means they carry the corresponding R-R charge.
- One finds the same result from open-string scattering amplitudes: D-branes carry Ramond-Ramond charge.
- It can also be shown using supergravity that the solitonic brane solutions are accompanied by a flux of some Ramond-Ramond (R-R) tensor gauge field.
- This means they carry the corresponding R-R charge.
- One finds the same result from open-string scattering amplitudes: D-branes carry Ramond-Ramond charge.
- Thus they can only be pair-produced, due to conservation of charge.
- Moreover, they are the lightest objects with the minimum quantum of charge. This is how we know that they are stable.
- Moreover, they are the lightest objects with the minimum quantum of charge. This is how we know that they are stable.
- The mechanism is similar to that which makes the string stable, except that it uses R-R rather than NS-NS gauge fields.
- Moreover, they are the lightest objects with the minimum quantum of charge. This is how we know that they are stable.
- The mechanism is similar to that which makes the string stable, except that it uses R-R rather than NS-NS gauge fields.
- Since they minimise their tension for a given charge, these D-branes saturate a bound called the Bogomolny-Prasad-Sommerfeld bound:

$$
\text { tension } \geq \text { charge }
$$

- Moreover, they are the lightest objects with the minimum quantum of charge. This is how we know that they are stable.
- The mechanism is similar to that which makes the string stable, except that it uses R-R rather than NS-NS gauge fields.
- Since they minimise their tension for a given charge, these D-branes saturate a bound called the Bogomolny-Prasad-Sommerfeld bound:

$$
\text { tension } \geq \text { charge }
$$

- Hence they are called BPS branes.
- As an explicit example, consider type IIA string theory, which has an RR gauge field $C_{\mu}^{(1)}$ with a field strength:

$$
F_{\mu \nu}^{(2)}=\partial_{\mu} C_{\nu}^{(1)}-\partial_{\nu} C_{\mu}^{(1)}
$$

- As an explicit example, consider type IIA string theory, which has an RR gauge field $C_{\mu}^{(1)}$ with a field strength:

$$
F_{\mu \nu}^{(2)}=\partial_{\mu} C_{\nu}^{(1)}-\partial_{\nu} C_{\mu}^{(1)}
$$

- In the presence of a D0-brane, this field strength satisfies the equation:

$$
\sum_{j=1}^{9} \partial^{j} F_{0 j}^{(2)} \sim q \delta^{9}(x)
$$

with $q= \pm 1$

- As an explicit example, consider type IIA string theory, which has an RR gauge field $C_{\mu}^{(1)}$ with a field strength:

$$
F_{\mu \nu}^{(2)}=\partial_{\mu} C_{\nu}^{(1)}-\partial_{\nu} C_{\mu}^{(1)}
$$

- In the presence of a D0-brane, this field strength satisfies the equation:

$$
\sum_{j=1}^{9} \partial^{j} F_{0 j}^{(2)} \sim q \delta^{9}(x)
$$

with $q= \pm 1$

- Thus we can have both D0 and anti-D0 branes, which behave like electrically charged point particles.
- In the same type IIA superstring theory, there are also D2-branes.
- In the same type IIA superstring theory, there are also D2-branes.
- These are charged under the third rank R-R tensor gauge field $C_{\mu \nu \lambda}^{(3)}$. They are sources for the field strength $F^{(4)}$.
- In the same type IIA superstring theory, there are also D2-branes.
- These are charged under the third rank R-R tensor gauge field $C_{\mu \nu \lambda}^{(3)}$. They are sources for the field strength $F^{(4)}$.
- The charged, BPS branes are as follows:

$$
\begin{array}{ll}
\text { type IIA : } & D 0, D 2, D 4, D 6, D 8 \\
\text { type IIB : } & D 1, D 3, D 5, D 7, D 9
\end{array}
$$

- In the same type IIA superstring theory, there are also D2-branes.
- These are charged under the third rank R-R tensor gauge field $C_{\mu \nu \lambda}^{(3)}$. They are sources for the field strength $F^{(4)}$.
- The charged, BPS branes are as follows:

$$
\begin{array}{ll}
\text { type IIA : } & D 0, D 2, D 4, D 6, D 8 \\
\text { type IIB : } & D 1, D 3, D 5, D 7, D 9
\end{array}
$$

- There are other, uncharged, branes in superstring theory:

$$
\begin{array}{ll}
\text { type IIA : } & D 1, D 3, D 5, D 7, D 9 \\
\text { type IIB : } & D 0, D 2, D 4, D 6, D 8
\end{array}
$$

which have tachyons on their world-volume.

- In the same type IIA superstring theory, there are also D2-branes.
- These are charged under the third rank R-R tensor gauge field $C_{\mu \nu \lambda}^{(3)}$. They are sources for the field strength $F^{(4)}$.
- The charged, BPS branes are as follows:

$$
\begin{array}{ll}
\text { type IIA : } & D 0, D 2, D 4, D 6, D 8 \\
\text { type IIB : } & D 1, D 3, D 5, D 7, D 9
\end{array}
$$

- There are other, uncharged, branes in superstring theory:

$$
\begin{array}{ll}
\text { type IIA : } & D 1, D 3, D 5, D 7, D 9 \\
\text { type IIB : } & D 0, D 2, D 4, D 6, D 8
\end{array}
$$

which have tachyons on their world-volume.

- As Sen has explained, these tachyons are manifestations of the brane's instability.

Outline

(1) Closed Bosonic Strings

(2) Open Bosonic Strings
(3) Closed superstrings

4 Open superstrings
(5) Compactification

Compactification

- Type IIA/B superstring theories in 10 dimensions are consistent theories that reduce to $\mathcal{N}=2$ supergravity with derivative corrections.

Compactification

- Type IIA/B superstring theories in 10 dimensions are consistent theories that reduce to $\mathcal{N}=2$ supergravity with derivative corrections.
- What does this have to do with 4-dimensional physics?

Compactification

- Type IIA/B superstring theories in 10 dimensions are consistent theories that reduce to $\mathcal{N}=2$ supergravity with derivative corrections.
- What does this have to do with 4-dimensional physics?
- Our quantisation of the theory in 10 flat, extended spacetime dimensions has perhaps been slightly misleading. We could have chosen to have the string propagate in any 10-dimensional spacetime.

Compactification

- Type IIA/B superstring theories in 10 dimensions are consistent theories that reduce to $\mathcal{N}=2$ supergravity with derivative corrections.
- What does this have to do with 4-dimensional physics?
- Our quantisation of the theory in 10 flat, extended spacetime dimensions has perhaps been slightly misleading. We could have chosen to have the string propagate in any 10-dimensional spacetime.
- All such choices need not be consistent. But there is one very simple choice that is always consistent.

Compactification

- Type IIA/B superstring theories in 10 dimensions are consistent theories that reduce to $\mathcal{N}=2$ supergravity with derivative corrections.
- What does this have to do with 4-dimensional physics?
- Our quantisation of the theory in 10 flat, extended spacetime dimensions has perhaps been slightly misleading. We could have chosen to have the string propagate in any 10-dimensional spacetime.
- All such choices need not be consistent. But there is one very simple choice that is always consistent.
- This is to compactify the spacetime on a product of circles.
- Let us use new labels for the spacetime directions:

$$
\begin{aligned}
0,1,2,3 & \rightarrow \mu, \nu \cdots \\
4,5,6,7,8,9 & \rightarrow i, j, \cdots
\end{aligned}
$$

- Let us use new labels for the spacetime directions:

$$
\begin{aligned}
0,1,2,3 & \rightarrow \mu, \nu \cdots \\
4,5,6,7,8,9 & \rightarrow i, j, \cdots
\end{aligned}
$$

- Now suppose that the six coordinates X^{i} are periodic:

$$
X^{i} \sim X^{i}+2 \pi R^{i}
$$

- Let us use new labels for the spacetime directions:

$$
\begin{aligned}
0,1,2,3 & \rightarrow \mu, \nu \cdots \\
4,5,6,7,8,9 & \rightarrow i, j, \cdots
\end{aligned}
$$

- Now suppose that the six coordinates X^{i} are periodic:

$$
X^{i} \sim X^{i}+2 \pi R^{i}
$$

- This has nothing to do with worldsheet boundary conditions! It says that some directions of physical space are curled up:
- Let us use new labels for the spacetime directions:

$$
\begin{aligned}
0,1,2,3 & \rightarrow \mu, \nu \cdots \\
4,5,6,7,8,9 & \rightarrow i, j, \cdots
\end{aligned}
$$

- Now suppose that the six coordinates X^{i} are periodic:

$$
X^{i} \sim X^{i}+2 \pi R^{i}
$$

- This has nothing to do with worldsheet boundary conditions! It says that some directions of physical space are curled up:
- If we probe such a world through experiments whose available energy E satisfies:

$$
E \ll \frac{1}{R_{i}} \quad \text { for all } i
$$

then this world will not appear 10-dimensional, but rather 4-dimensional.

- This is because, for its Fourier modes to fit into the compact dimension, an elementary particle needs an energy of order the inverse radius.
- This is because, for its Fourier modes to fit into the compact dimension, an elementary particle needs an energy of order the inverse radius.
- What would change if we formulated superstring theory in this kind of "toroidally compactified" spacetime?
- This is because, for its Fourier modes to fit into the compact dimension, an elementary particle needs an energy of order the inverse radius.
- What would change if we formulated superstring theory in this kind of "toroidally compactified" spacetime?
- (i) The periodicity of the six X^{i} 's breaks the Lorentz group:

$$
S O(9,1) \rightarrow S O(3,1)
$$

This is, of course, a good thing!

- This is because, for its Fourier modes to fit into the compact dimension, an elementary particle needs an energy of order the inverse radius.
- What would change if we formulated superstring theory in this kind of "toroidally compactified" spacetime?
- (i) The periodicity of the six X^{i} 's breaks the Lorentz group:

$$
S O(9,1) \rightarrow S O(3,1)
$$

This is, of course, a good thing!

- (ii) The mode expansion of the closed string changes and we get additional modes. Instead of

$$
X^{i}=x^{i}+2 \alpha^{\prime} p^{i} t+\text { oscillators }
$$

we now have

$$
X^{i}=x^{i}+2 \alpha^{\prime} p^{i} t+2 L^{i} \sigma+\text { oscillators }
$$

where L^{i} are quantised winding modes.

- The impact of toroidal compactification is as follows.
- The impact of toroidal compactification is as follows.
- The massless modes in 10 dimensions must be decomposed into four-dimensional modes whose coefficients can vary over the compact directions:

$$
f\left(x^{0}, x^{1}, \cdots, x^{9}\right)=\sum_{i} g_{i}\left(x^{4}, x^{5}, \cdots, x^{9}\right) h_{i}\left(x^{0}, x^{1}, x^{2}, x^{3}\right)
$$

- The impact of toroidal compactification is as follows.
- The massless modes in 10 dimensions must be decomposed into four-dimensional modes whose coefficients can vary over the compact directions:

$$
f\left(x^{0}, x^{1}, \cdots, x^{9}\right)=\sum_{i} g_{i}\left(x^{4}, x^{5}, \cdots, x^{9}\right) h_{i}\left(x^{0}, x^{1}, x^{2}, x^{3}\right)
$$

- If g_{i} is harmonic ("massless") in the internal directions then h_{i} is a massless field, in fact a flat direction or modulus.
- The number of moduli depends on the type of 10 d field we are considering, and the geometry of the compactification space.
- The number of moduli depends on the type of 10 d field we are considering, and the geometry of the compactification space.
- In particular, if the 10d field is the metric then we generate one modulus field for every geometric deformation of the torus (its lengths and angles).
- Unfortunately, plain toroidal compactification is extremely unrealistic.
- Unfortunately, plain toroidal compactification is extremely unrealistic.
- It does not break any symmetries other than rotational invariance. In particular, we get the same supersymmetry as $\mathcal{N}=2$ in 10 dimensions, which is $N=8$ in 4 dimensions.
- Unfortunately, plain toroidal compactification is extremely unrealistic.
- It does not break any symmetries other than rotational invariance. In particular, we get the same supersymmetry as $\mathcal{N}=2$ in 10 dimensions, which is $N=8$ in 4 dimensions.
- And there are many moduli (36 for a 6 -torus).
- A better way to compactify is to choose a 6 -manifold that is not flat but nontrivially solves the supergravity equations of motion.
- A better way to compactify is to choose a 6 -manifold that is not flat but nontrivially solves the supergravity equations of motion.
- First, note that one has to solve the vacuum Einstein equation:

$$
R_{i j}=0
$$

in the internal space. Therefore the space is "Ricci flat".

- A better way to compactify is to choose a 6 -manifold that is not flat but nontrivially solves the supergravity equations of motion.
- First, note that one has to solve the vacuum Einstein equation:

$$
R_{i j}=0
$$

in the internal space. Therefore the space is "Ricci flat".

- Next, to preserve some supersymmetry after compactification one has to make the RHS of the gravitino variation vanish:

$$
\delta \chi_{\mu, \alpha}=\left(\nabla_{\mu} \epsilon\right)_{\alpha}=0
$$

which puts a further constraint on the internal space.

- A better way to compactify is to choose a 6 -manifold that is not flat but nontrivially solves the supergravity equations of motion.
- First, note that one has to solve the vacuum Einstein equation:

$$
R_{i j}=0
$$

in the internal space. Therefore the space is "Ricci flat".

- Next, to preserve some supersymmetry after compactification one has to make the RHS of the gravitino variation vanish:

$$
\delta \chi_{\mu, \alpha}=\left(\nabla_{\mu} \epsilon\right)_{\alpha}=0
$$

which puts a further constraint on the internal space.

- Additional conditions come from SUSY variations of the other fermions in 10d. These also restrict the possible values of RR fluxes along the compact directions.
- The simplest solution is to put all RR fluxes to zero.
- The simplest solution is to put all RR fluxes to zero.
- The 6-manifold then has to be a particular kind of Ricci-flat complex manifold satisfying other topological conditions, called a Calabi-Yau space.
- The simplest solution is to put all RR fluxes to zero.
- The 6-manifold then has to be a particular kind of Ricci-flat complex manifold satisfying other topological conditions, called a Calabi-Yau space.
- These spaces break supersymmetry down to $\mathcal{N}=2$ in 4 d , which is not really good enough since we would like $\mathcal{N}=1$.
- The simplest solution is to put all RR fluxes to zero.
- The 6-manifold then has to be a particular kind of Ricci-flat complex manifold satisfying other topological conditions, called a Calabi-Yau space.
- These spaces break supersymmetry down to $\mathcal{N}=2$ in 4 d , which is not really good enough since we would like $\mathcal{N}=1$.
- Moreover, there is a family of geometrical deformations for any given Calabi-Yau, that are known to mathematicians as moduli.
- The simplest solution is to put all RR fluxes to zero.
- The 6-manifold then has to be a particular kind of Ricci-flat complex manifold satisfying other topological conditions, called a Calabi-Yau space.
- These spaces break supersymmetry down to $\mathcal{N}=2$ in 4 d , which is not really good enough since we would like $\mathcal{N}=1$.
- Moreover, there is a family of geometrical deformations for any given Calabi-Yau, that are known to mathematicians as moduli.
- Each CY modulus corresponds to a scalar field with an exactly flat potential in 4d. As we saw, these are called moduli fields.
- Thus, Calabi-Yau compactifications where the RR fluxes are set to zero fail on two counts:
(i) too much supersymmetry.
(ii) too many moduli fields.
- Thus, Calabi-Yau compactifications where the RR fluxes are set to zero fail on two counts:
(i) too much supersymmetry.
(ii) too many moduli fields.
- However, this happened because we chose the solutions with vanishing RR flux in the internal directions.
- Thus, Calabi-Yau compactifications where the RR fluxes are set to zero fail on two counts:
(i) too much supersymmetry.
(ii) too many moduli fields.
- However, this happened because we chose the solutions with vanishing RR flux in the internal directions.
- If we give up that assumption, things are much better.
- Thus, Calabi-Yau compactifications where the RR fluxes are set to zero fail on two counts:
(i) too much supersymmetry.
(ii) too many moduli fields.
- However, this happened because we chose the solutions with vanishing RR flux in the internal directions.
- If we give up that assumption, things are much better.
- We find that RR fluxes generically stabilise moduli.
- Example: on the torus, consider a 2-form field strength F_{12} along the x^{1}, x^{2} directions. The flux quantisation condition is:

$$
F_{12} L_{1} L_{2}=N
$$

- Example: on the torus, consider a 2-form field strength F_{12} along the x^{1}, x^{2} directions. The flux quantisation condition is:

$$
F_{12} L_{1} L_{2}=N
$$

- Then the energy of this configuration is:

$$
E \sim F_{12}^{2} L_{1} L_{2}=\frac{N^{2}}{L_{1} L_{2}}
$$

which is minimised by having the lengths of the torus expand.

- Example: on the torus, consider a 2-form field strength F_{12} along the x^{1}, x^{2} directions. The flux quantisation condition is:

$$
F_{12} L_{1} L_{2}=N
$$

- Then the energy of this configuration is:

$$
E \sim F_{12}^{2} L_{1} L_{2}=\frac{N^{2}}{L_{1} L_{2}}
$$

which is minimised by having the lengths of the torus expand.

- By considering more complicated configurations of fluxes, and manifolds more general than the torus, one can generate potentials that freeze the moduli at finite values.
- Example: on the torus, consider a 2 -form field strength F_{12} along the x^{1}, x^{2} directions. The flux quantisation condition is:

$$
F_{12} L_{1} L_{2}=N
$$

- Then the energy of this configuration is:

$$
E \sim F_{12}^{2} L_{1} L_{2}=\frac{N^{2}}{L_{1} L_{2}}
$$

which is minimised by having the lengths of the torus expand.

- By considering more complicated configurations of fluxes, and manifolds more general than the torus, one can generate potentials that freeze the moduli at finite values.
- This is the basis of flux compactifications.

