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Closed Bosonic Strings

We define a string through its spacetime coordinates Xµ(σ, t).

To start with, assume it propagates in flat D-dimensional
spacetime.

σ is a coordinate along the string. Its range is 0 ≤ σ ≤ π.

t is the worldsheet time.
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Closed Bosonic Strings

We start with a worldsheet action generalising 1
2m(Ẋ i )2 for a

free nonrelativistic particle:

S = −T

2

∫
dσ dt ∂aX

µ∂aXµ

The solutions of the equations of motion will be vibration
modes of a free string along with the center of mass
position/momentum mode of the string.

Strings can be closed or open.

We first discuss the simpler case of closed strings, defined by:

Xµ(σ + π, t) = Xµ(σ, t)
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In units where ~ = c = 1, the constant T has dimensions of

length−2 ∼ mass/length

It is called the string tension.

We often use a parameter α′ of dimension length2 defined by:

T =
1

2πα′

√
α′ is a length scale called the string length: the typical size

of a string.
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Closed Bosonic Strings

The above action leads to the worldsheet equation of motion:

∂a∂
aXµ = (∂2

t − ∂2
σ)Xµ ∼ ∂−∂+Xµ = 0

where the light-cone coordinates are:

ξ± = t ± σ, ∂± = 1
2(∂t ± ∂σ)

The equations of motion are solved by:

Xµ(σ, t) = Xµ
L (t − σ) + Xµ

R (t + σ)

where XL,XR are arbitrary functions of one argument, called
left movers and right movers respectively.
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For closed strings Xµ must be periodic, which leads to the
mode expansion:

Xµ
L (t − σ) = 1

2xµ + 1
2pµ (t − σ) + i

2

∑
n 6=0

1
n αµ

n e−2in(t−σ)

Xµ
R (t + σ) = 1

2xµ + 1
2pµ (t + σ) + i

2

∑
n 6=0

1
n α̃µ

n e−2in(t+σ)

where we have put α′ = 1
2 for convenience.

As promised, the modes αµ, α̃µ are the vibrational modes of
the string, while xµ, pµ are the position/momentum of the
string centre-of-mass.

Reality of the coordinates implies that:

(α̃µ
n)∗ = α̃µ

−n, (αµ
n)∗ = αµ

−n
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Closed Bosonic Strings

To quantise the system we impose the natural commutation
relations:

[αµ
m, αν

n] = m δm+n,0 ηµν , [α̃µ
m, α̃ν

n] = m δm+n,0 ηµν

on the oscillators, and

[xµ, pν ] = iηµν

on the zero modes.

Henceforth we focus only on the left-moving oscillators. It is
understood that at the end, the states we construct must be
combined with right-moving ones.
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Closed Bosonic Strings

The reality condition on the classical oscillators implies that
the corresponding operators satisfy:

(αµ
n)† = αµ

−n

Next one defines a ground state for each oscillator, and treats
αµ

n as creation operators for n < 0 and annihilation operators
for n > 0.
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Closed Bosonic Strings

We can now construct the vibrational states of the string.

The normalised ground state |0〉 of the string is defined by

αµ
n |0〉 = 0, n > 0

〈0|0〉 = 1

Excited states of the string are then constructed as, for
example,

αµ
−n|0〉

and more generally

αµ1
−m1

αµ2
−m2

· · ·αµM
−mM

|0〉
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Closed Bosonic Strings

We see right away that something is wrong.

Consider the excited state αµ
−n|0〉. Its norm is:

‖αµ
−n|0〉‖2 = 〈0|αµ

n αµ
−n|0〉 = n ηµµ

Thus for µ = 0 (the time direction) we have negative-norm
states, which are unacceptable in any physical theory.

This exemplifies a very general problem in relativistic physics.
Degrees of freedom with spacetime indices always lead to
negative-norm states, unless the theory has gauge constraints.
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Therefore we must modify the action to incorporate a suitable
gauge symmetry, namely worldsheet general coordinate
invariance:

(t, σ) → (t ′(t, σ), σ′(t, σ))

After gauge fixing, we recover our original action:

S = −T

2

∫
dξ+ dξ− ∂+Xµ ∂−Xµ

but now it is supplemented by the bilinear constraints:

∂+Xµ ∂+Xµ = 0, ∂−Xµ ∂−Xµ = 0
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Closed Bosonic Strings

The worldsheet invariance also imposes two additional
conditions:
(i) for a closed string, the total number of left and right
moving excitations must be equal.
(ii) there is an anomaly proportional to D − 26.

To cancel the anomaly, we have to work in 26 dimensions.
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Closed Bosonic Strings

The constraints eliminate all negative-norm states.

This is most conveniently seen in light-cone gauge where they
simply remove two of the D components of the vector index,
including the time component.

This is very much like the photon field Ai , i = 1, 2, . . . ,D − 2
in light cone gauge, having only D − 2 components.

Therefore in string theory we need only focus on the
transverse oscillators αi

−n, α̃
j
−n with i , j = 1, 2, . . . ,D − 2.
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Closed Bosonic Strings

Now the string excitations start to resemble familiar objects.

We interpret the string in any given excitation state as an
elementary particle whose quantum numbers can be read off
from the state.

The mass-squared of the particle is given by the weighted
number operator counting the oscillator excitations:

M2 =
2

α′

( ∞∑
m=1

αi
−m αi

m +
∞∑

m=1

α̃i
−m α̃i

m − 2

)

The −2 is determined by consistency, and has sinister
consequences.
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The ground state |0〉 has no quantum numbers. So it is a
scalar particle at zero transverse momentum.

By acting with a zero-mode operator exp(ik · X ) this can be
converted to a state with transverse momentum ki .

Henceforth we always keep the transverse momentum zero. It
can be restored at the end.

This particle has

M2 = − 4

α′

and is therefore a tachyon.

Due to the left-right matching constraint, the first excited
state is:

ζijα
i
−1α̃

j
−1|0〉

and this state is massless.
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Closed Bosonic Strings

The polarisation tensor ζij decomposes into three irreducible
parts: symmetric traceless, antisymmetric, and a trace part
which is a singlet.

Each one can be identified with the transverse components of
a field:

ζ(ij)(k)− 1
D−2 δij δmn ζmn(k) → Gij(x)

ζ[ij](k) → Bij(x)

δij ζij(k) → Φ(x)

These fields, in turn, are the transverse components of the
massless fields Gµν ,Bµν ,Φ in ten dimensions.
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But it is a theorem that the only consistent action for a
massless symmetric rank-2 tensor field is that of gravity.

Therefore closed string theory is a theory of gravity!

The other two particles are important too. The antisymmetric
tensor Bµν is responsible for the stability of the string. And in
four dimensions it will be an axion.

Finally, the scalar Φ is called the dilaton and governs the
interaction strength of the string.
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Closed Bosonic Strings

String interactions are introduced by defining “vertex
operators” for each excited state and computing their
correlation functions on the worldsheet.

This leads to unique answers for every amplitude.

From the amplitudes one can read off the tree-level
low-energy effective action of the massless modes, to find:

S =

∫
d10x

√
−‖G‖e−2Φ

(
R− 1

3!∂[µBνλ] ∂
[µBνλ]−1

2∂µΦ ∂µΦ
)
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Closed Bosonic Strings

The existence of the parameter α′ means this action can –
and does – have corrections involving higher derivatives of
fields along with higher powers of α′.

Also we see that the dilaton vev governs the string coupling:

S ∼ e−2<Φ>

∫
· · · ∼ 1

g2
s

∫
· · · =⇒ e<Φ> = gs

From a particle physicist’s point of view, string theory can
most often be reduced to such a low energy effective action,
with higher derivative and higher loop corrections.

Importantly, given a spacetime background the effective
action is unique and computable.
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For open strings, Xµ(σ, t) is no longer periodic in σ.

Instead, the string must end at σ = 0, π.

At each end, we need to specify boundary conditions for the
coordinate Xµ or its derivatives.

These are restricted by demanding the absence of boundary
terms when varying the worldsheet action.
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We have:

δS = T

∫ π

0
dσ

∫
dt δXµ ∂a ∂aXµ − T

∫
dt [δXµ ∂σXµ]π0

To make the second term vanish, we require:

δXµ(0, t) ∂σXµ(0, t) = δXµ(π, t) ∂σXµ(π, t) = 0

Thus, at σ = 0, we can impose one of the following two
boundary conditions on each of the spacetime coordinates Xµ:

∂σXµ(0, t) = 0 (Neumann)

Xµ(0, t) = cµ (Dirichlet)

where cµ is an arbitrary constant.
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The D boundary condition states that the end of the string is
stuck on a particular hypersurface, called a D-brane.

A D-brane has space dimension p if there are p coordinates
with Neumann boundary conditions and 25− p coordinates
with Dirichlet boundary conditions:

1,2,...,p

p+1,p+2,...,25

One should remember that there is also time, so the
worldvolume of a p-brane is a p + 1-dimensional spacetime.
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At the other end σ = π, we must also independently choose N
or D boundary conditions.

Thus an open string can be Neumann-Neumann (NN),
Dirichlet-Dirichlet (DD) or Neumann-Dirichlet (ND), with
respect to each of its spacetime coordinates.

In the DD case, the two ends can be stuck at the same
location cµ or at two different locations cµ, dµ.

In one case, the string starts and ends on the same brane,
while in the other, it stretches between two different branes.
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With open-string boundary conditions, a wave travelling one
way on the string gets reflected back from the end. So there
is only one set of vibrational modes rather than two.

For NN boundary conditions, we find:

Xµ(σ, t) = xµ + pµ t + i
∑
n 6=0

1
n αµ

n e−int cos nσ

For DD boundary conditions the result is:

Xµ(σ, t) = cµ
(
1− σ

π

)
+ dµ σ

π
−
∑
n 6=0

1
n αµ

n e−int sin nσ

Here cµ, dµ specify the locations of the D-branes on which
the ends of the string are fixed. As one would expect, there
are no translational zero modes xµ, pµ in this case.
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half-integer modes, as one can easily check.

This case typically arises for strings connecting intersecting
branes.
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In all the above cases, quantising the open string leads to the
same problem as for the closed string: negative norm states.

The solution is also the same: these unphysical states are
eliminated by gauge constraints on the worldsheet.

We are left with the modes transverse to two light-cone
directions.
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Consider first the case of NN boundary conditions in all 25
directions. This defines a D25-brane, which coincides with all
of spacetime.

Thus the ends of the strings can be anywhere in spacetime.

In light cone gauge the states of such a string are:

αi1
−n1

αi2
−n2

· · ·αiN
−nN

|0〉

since there is only one type of oscillator.

The masses of these states are given by:

M2 =
1

α′

( ∞∑
m=1

αi
−m αi

m − 1

)
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Thus we again have a tachyon at the lowest level, the state
|0〉 of M2 = − 1

α′ . However, this is the open-string tachyon,
distinct from the closed string tachyon that we encountered
earlier.

The first excited state is a vector:

αi
−1|0〉

and we see that it is massless.

A massless vector field in field theory has to be a gauge field,
and indeed it is so.

Thus the massless spectrum of open strings on a D25-brane
consists of a gauge field in spacetime.
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Next consider boundary conditions that are NN in p directions
and DD in the remaining 25− p directions.

According to our notation this corresponds to a Dp-brane.

The boundary conditions break translation invariance in
25− p directions. They also break rotation invariance:

SO(25, 1) → SO(25− p)× SO(p, 1)

Both these effects would be natural if we were dealing with an
excited state of string theory that contained a physical object
(like a soliton) stretching over p spatial dimensions.

In other words, the D-brane can be interpreted as a physical
excitation in string theory.
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What is the spectrum of string states in this case?

As before we have the tachyon, but now it is confined to the
brane, where the open strings end.

Next there is a massless state:

αi
−1|0〉, i = 1, 2, . . . , 24

and this too is confined to the brane.

Because of this, we cannot think of the above as the
transverse components of a 26-dimensional gauge field.

Rather, the components of the state with i = 1, 2, . . . , p − 1
are the transverse components of a p-dimensional gauge field
confined to the brane.

The remaining components with i = p, p + 1, . . . 25 are 25− p
massless scalar fields confined to the brane.
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The fact that translational invariance is broken in precisely
25− p directions and we have found the same number of
massless scalars can hardly be a coincidence.

These are in fact the Goldstone bosons associated with
spontaneously broken translation invariance in the state
containing a Dp-brane.

In fact the VEV of these scalars is nothing but the position of
the brane in the transverse space.
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To conclude our study of the bosonic string, let’s notice that
if we can have one Dp-brane, we can surely have N of them.

In this case there are N open strings that start and end on the
same brane.

But there are also N(N − 1) open strings stretching from one
brane to another, as illustrated here for N = 2:
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First take all N Dp-branes to be coincident.

Quantising the N2 open strings, we find N2 massless gauge
fields, which can be conveniently encoded into an N × N
Hermitian matrix.

And there are 25− p scalars, also encoded in similar matrices.

From the study of interactions among these gauge fields, we
find that they are non-Abelian gauge fields for the group
U(N).

The scalars, being matrices, are in the adjoint representation
of this group.
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fields as their massless states, along with an adjoint scalar for
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Now let us separate the branes.

The gauge fields from the “diagonal” strings continue to be
massless, but the ones stretching from one brane to another
become massive due to their length and tension.

This is just the Higgs mechanism:

U(N) → U(1)N

which is what we expect if the Higgsing is done by an adjoint
scalar – namely, the one corresponding to the transverse
direction along which the branes were separated.

To summarise, N parallel Dp-branes describe the dynamics of
a p + 1-dimensional U(N) non-Abelian gauge theory on their
worldvolume.
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There is a nice way to extend this to other gauge groups.

Let us quotient the string theory by a Z2 symmetry that
simultaneously acts as a geometrical inversion along 25− p
directions and also inverts the orientation of the string:

Xµ(t, σ) = Xµ(t,−σ), µ = 0, 1, 2, · · · , p

X i (t, σ) = −X i (t,−σ), i = p + 1, p + 2, · · · , 25

This quotient creates a fixed locus at X i = 0 that stretches
along the Xµ directions: an orientifold plane.

Strings reverse their orientation on passing through an
orientifold plane.
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Now place N Dp-branes parallel to an orientifold p-plane.
There is an equal number of images on the other side.

Open strings stretching between pairs of branes can be
projected in or out of the spectrum by the orientifold action.

Depending on the choice of orientifold action, this breaks
U(2N) to its subgroups SO(2N) or Sp(2N).
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We have noted that D-branes are dynamical objects that can
be created or destroyed in string theory.

They are characterised by a tension which can be found by
doing a calculation involving open strings stretching between
a pair of branes.

The above picture can also be interpreted as closed-string
exchange between a pair of branes. This includes graviton
exchange and therefore measures the tension.
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The result is found to be:

τp ∼
1

gs

1

(α′)
p+1
2

The α′ dependence can be found by dimensional analysis.
More striking is the dependence on the string coupling gs .

A similar calculation can be done for orientifold planes. They
behave effectively like objects with negative tension.
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As we have seen, the closed bosonic string has a tachyon that
propagates in spacetime.

And the open bosonic string also has a tachyon, localised on
the corresponding D-brane.

From the worldsheet point of view, a tachyon corresponds to
negative energy. It is plausible that it can be eliminated by
having worldsheet supersymmetry, due to which the
worldsheet energy would be bounded below by zero.

This is the motivation to consider superstrings.
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Closed superstrings

The superstring can be defined in various different formalisms.

We choose the Green-Schwarz formalism defined by adding
fermionic coordinates SA

α (σ, t) to the usual Xµ(σ, t) on the
worldsheet.

This can be done consistently only in 3, 4, 6, 10 spacetime
dimensions. We anticipate that 10 will be the only consistent
choice.

The SA
α are both worldsheet fermions (via the index α = 1, 2)

and and spacetime fermions (via the index A = 1, 2, · · · , 8
which makes a spinor of SO(9, 1)).
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Closed superstrings

The local reparametrisation symmetry on the worldsheet is
now promoted to supersymmetry.

After gauge-fixing and incorporating the constraints, one finds
the light-cone action:

S = −T

2

∫
dσ dt

(
∂aX

i∂aXi − iSA
+∂−SA

+ − i S̄A
−∂+S̄A

−

)
This time too there is an anomaly, proportional to D − 10.
Thus the superstring is consistent in 10 dimensions.

The equations of motion are the familiar Klein-Gordon and
Dirac equations in two dimensions:

∂−∂+Xµ = 0, ∂−SA
+ = 0, ∂+SA

− = 0
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The mode expansion of the Xµ is as before. But now we
would also like to make a mode expansion of the SA

±.

Impose closed string boundary conditions on the fermions:

SA
±(σ + π, t) = SA

±(σ, t)

The mode expansions are then:

SA
−(σ, t) =

∑
n∈ZZ

SA
n e−2in(t−σ)

SA
+(σ, t) =

∑
n∈ZZ

S̃A
n e−2in(t+σ)

and the fermion oscillators are quantised by anticommutators:

{SA
m, SB

n } = δm+n,0 δAB
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To be economical with equations, we will again do everything
in the left-moving sector first.
The left-moving part of the mass operator is given by:

M2 =
2

α′

( ∞∑
m=1

αi
−m αi

m +
∞∑

n=1

n SA
−n SA

n

)

As anticipated, supersymmetry has eliminated the additive
constant.

Therefore the ground state is massless and the theory is
manifestly tachyon-free.
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However, due to zero modes of the periodic worldsheet
fermions, the ground state is degenerate.

This state is defined (as usual) by:

SA
n |0〉 = 0, n > 0

and the operators SA
−n, n > 0 are creation operators.

However there are also zero-frequency modes SA
0 .
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These zero modes satisfy a Clifford algebra, much like
gamma-matrices:

{SA
0 , SB

0 } = δAB

There is a slight difference: gamma matrices are spacetime
vectors while the SA

0 are spacetime spinors.

True gamma matrices in 8d would give rise to a 16-fold
degeneracy corresponding to spinors.

Similarly the SA
0 give rise to a 16-fold degeneracy, but this

time the degenerate state contains a spacetime vector and a
spacetime spinor.
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There are two inequivalent spinor representations of the
transverse Lorentz group SO(8):

spinor: |A〉
conjugate spinor: |A′〉

where A,A′ = 1, 2, . . . 8.

These correspond to spacetime chirality.

By choosing a chirality for the SA
−, we can determine the

chirality of the ground state, namely spinor or conjugate
spinor.
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Thus the massless spectrum of left movers is a vector
(Neveu-Schwartz) and a spinor (Ramond):

|i〉, |A〉 or |i〉, |A′〉

where we have assigned them certain historical names.

These manifestly form a supermultiplet of massless
left-moving ground states.

The (left-moving) excited states of the superstring are
obtained by acting with αi

−n,S
A
−n, n > 0 on these ground

states.
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Combining left and right movers, we have to make a choice
between spinor and conjugate spinor for the Ramond state,
independently for left-movers and right-movers.

The overall choice is a convention, but the relative sign
between left and right movers is important.

Thus we have the following possibilities for the massless
states:

NS-NS: |i〉 ⊗ |̃j〉
R-R: |A〉 ⊗ |B̃〉 or |B̃ ′〉

NS-R: |i〉 ⊗ |B̃〉 or |B̃ ′〉
R-NS: |A〉 ⊗ |̃j〉
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The NS-NS states, just as for the bosonic string, break up
into a symmetric traceless, antisymmetric and trace part.

In covariant language these are represented by massless fields
propagating in 10 spacetime dimensions:

Gµν(x),Bµν(x),Φ(x)
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Closed superstrings

In the R-R sector we have two physically inequivalent choices:

|A〉 ⊗ |B̃〉 or |A〉 ⊗ |B̃ ′〉

The product of two spinorial representations of the Lorentz
group is a tensorial representation. Thus in both cases, the
R-R sector contains only bosons.

Introduce the notation:

C (r)
µ1,µ2,...,µr

for a totally antisymmetric tensor field of rank r .
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A bit of group theory tells us that

|A〉 ⊗ |B̃ ′〉 → C (1)
µ (x), C

(3)
µνλ(x)

while

|A〉 ⊗ |B̃〉 → C (0)(x), C (2)
µν (x), C

(4)
µνλρ(x)

These are inequivalent sets of bosonic fields in 10 dimensions.

A small technical point: the 4th rank tensor C (4) satisfies a
self-duality condition.
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Finally we look at the NS-R and R-NS sectors. In each case,
we are combining a tensor and spinor representation, so the
result is spinorial.

Therefore these sectors contain spacetime fermions.

At the massless level, each of these sectors gives a gravitino
and another fermion.

The two gravitinos have opposite chiralities for type IIA and
the same chirality for type IIB. Therefore the latter theory is
parity violating in 10 dimensions.
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The resulting string theory has spacetime supersymmetry.

Its massless fields are in one-to-one correspondence with those
of type IIA and type IIB supergravity.

It follows that the low-energy effective action of
ten-dimensional type IIA/IIB string theory is ten-dimensional
type IIA/IIB supergravity.

But this is only to leading order in α′. The effective action
has calculable derivative corrections that come with higher
powers of α′.
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To summarise, the massless field contents are as follows:

Type IIA bosons : Gµν , Bµν , Φ (NS-NS)

C
(1)
µ , C

(3)
µνλ (R-R)

fermions : χ
(L)
µ,α, λ

(R)
α (R-NS)

χ̂
(R)
µ,α, λ̂

(L)
α (NS-R)

Type IIB bosons : Gµν , Bµν , Φ (NS-NS)

C (0), C
(2)
µν , C

(4)
µνλρ (R-R)

fermions : χ
(L)
µ,α, λ

(R)
α (R-NS)

χ̂
(L)
µ,α, λ̂

(R)
α (NS-R)



String Basics

Closed superstrings

To conclude this section, some comments:

(i) The RR fields enter only through their field strengths:

F
(n+1)
µ1µ2···µn+1 = ∂[mu1

C
(n)
µ2µ3···µn+1]

where the indices are totally antisymmetrised.

(ii) Therefore we have:

IIA: Even field strengths F (2),F (4)

F (6) = ∗F (4),F (8) = ∗F (2)

IIB: Odd field strengths F (1),F (3),F (5) = ∗F (5)

F (7) = ∗F (3),F (9) = ∗F (1)
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(iii) In type IIB, the dilaton Φ naturally combines with the RR
scalar C (0) to make the axiodilaton:

τ = C (0) + ie−Φ

(iv) At tree level, the bosonic part of the effective action can
be written as:

Seff =

∫
d10x

√
−‖G‖

[
e−2Φ(NS-NS terms) + (R-R terms)

]
So the scaling with coupling constant of the tree-level R-R
terms is different from the NS-NS terms.
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Open superstrings

For the open superstring, the boundary conditions in the
variation of the fermionic part of the action are easily seen to
be: ∫

dt
[
δSA

+ SA
+ − δSA

− SA
−

]π
0

= 0

The solution of these conditions is:

SA
−(0, t) = η1 SA

+(0, t)

SA
−(π, t) = η2 SA

+(π, t)

where η1, η2 = ±1.

The physics only depends on the relative sign. The
supersymmetry-preserving choice is η1 = η2.
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For the bosonic coordinates, the mode expansion depends on
whether we have NN,DD,ND or DN boundary conditions, just
as for the open bosonic string.

For the moment we assume NN conditions on all 9 directions,
which amounts to having a D9-brane filling spacetime.

Again there are worldsheet (super) gauge constraints, which
leave only the coordinates with transverse indices.
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With the above boundary conditions, the fermions have
integer modes:

SA
−(σ, t) =

∑
n∈ZZ

SA
n e−in(t−σ)

SA
+(σ, t) =

∑
n∈ZZ

SA
n e−in(t+σ)

and we see again that there is only one set of oscillators.

The mass is given by:

M2 =
1

α′

( ∞∑
m=1

αi
−m αi

m +
∞∑

n=1

n SA
−n SA

n

)

Again there is no tachyon, but we have the now-familiar
ground-state degeneracy.
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Thus the massless spectrum is:

bosons: Aµ (NS)

fermions: λA (R)

This is the field content of N = 1 supersymmetric gauge
theory in 10 dimensions.

We see that a D9-brane supports a supersymmetric gauge
theory on its worldvolume.
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If we choose N coincident D9-branes then Aµ, λA are
promoted to matrices and we get N = 1 supersymmetric
Yang-Mills theory in 10D.

Instead of all NN boundary conditions, if we choose p NN and
9− p DD boundary conditions, we find a Dp-brane instead of
a D9-brane.

In this case, the massless fields are a photon Aµ in p + 1
spacetime dimensions, as well as 9− p scalar fields φi .

The fermions also decompose suitably, depending on the
dimension p of the brane.
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The result is always the maximally supersymmetric gauge
theory in that dimension.

It can be simply obtained as the dimensional reduction of the
10d supersymmetric gauge theory.

A classic example is a D3-brane. We find a gauge field Aµ, six
scalars φK and four fermions λa. This is the spectrum of
N = 4 supersymmetric gauge theory in 3+1 dimensions.
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We mentioned earlier that D-branes are dynamical objects in
string theory.

One way to verify this is to notice that objects with the same
properties exist as stable solitonic solutions of the supergravity
equations of motion.

The tension of these objects can be computed from this
solution and compared with that obtained for D-branes from
open-string scattering amplitudes. In both cases, we find:

Tp =
1

gs

1

(2π)p
1

(α′)
p+1
2

This shows that we are dealing with two different descriptions
of the same object.
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It can also be shown using supergravity that the solitonic
brane solutions are accompanied by a flux of some
Ramond-Ramond (R-R) tensor gauge field.

This means they carry the corresponding R-R charge.

One finds the same result from open-string scattering
amplitudes: D-branes carry Ramond-Ramond charge.

Thus they can only be pair-produced, due to conservation of
charge.
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Moreover, they are the lightest objects with the minimum
quantum of charge. This is how we know that they are stable.

The mechanism is similar to that which makes the string
stable, except that it uses R-R rather than NS-NS gauge fields.

Since they minimise their tension for a given charge, these
D-branes saturate a bound called the
Bogomolny-Prasad-Sommerfeld bound:

tension ≥ charge

Hence they are called BPS branes.
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As an explicit example, consider type IIA string theory, which

has an RR gauge field C
(1)
µ with a field strength:

F (2)
µν = ∂µC (1)

ν − ∂νC
(1)
µ

In the presence of a D0-brane, this field strength satisfies the
equation:

9∑
j=1

∂jF
(2)
0j ∼ q δ9(x)

with q = ±1

Thus we can have both D0 and anti-D0 branes, which behave
like electrically charged point particles.
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In the same type IIA superstring theory, there are also
D2-branes.

These are charged under the third rank R-R tensor gauge field

C
(3)
µνλ. They are sources for the field strength F (4).

The charged, BPS branes are as follows:

type IIA : D0,D2,D4,D6,D8

type IIB : D1,D3,D5,D7,D9

There are other, uncharged, branes in superstring theory:

type IIA : D1,D3,D5,D7,D9

type IIB : D0,D2,D4,D6,D8

which have tachyons on their world-volume.

As Sen has explained, these tachyons are manifestations of
the brane’s instability.
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Type IIA/B superstring theories in 10 dimensions are
consistent theories that reduce to N = 2 supergravity with
derivative corrections.

What does this have to do with 4-dimensional physics?

Our quantisation of the theory in 10 flat, extended spacetime
dimensions has perhaps been slightly misleading. We could
have chosen to have the string propagate in any
10-dimensional spacetime.

All such choices need not be consistent. But there is one very
simple choice that is always consistent.

This is to compactify the spacetime on a product of circles.
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Let us use new labels for the spacetime directions:

0, 1, 2, 3 → µ, ν · · ·
4, 5, 6, 7, 8, 9 → i , j , · · ·

Now suppose that the six coordinates X i are periodic:

X i ∼ X i + 2πR i

This has nothing to do with worldsheet boundary conditions!
It says that some directions of physical space are curled up:

If we probe such a world through experiments whose available
energy E satisfies:

E � 1

Ri
for all i

then this world will not appear 10-dimensional, but rather
4-dimensional.
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This is because, for its Fourier modes to fit into the compact
dimension, an elementary particle needs an energy of order the
inverse radius.

What would change if we formulated superstring theory in this
kind of “toroidally compactified” spacetime?

(i) The periodicity of the six X i ’s breaks the Lorentz group:

SO(9, 1) → SO(3, 1)

This is, of course, a good thing!

(ii) The mode expansion of the closed string changes and we
get additional modes. Instead of

X i = x i + 2α′pi t + oscillators

we now have

X i = x i + 2α′pi t + 2Liσ + oscillators

where Li are quantised winding modes.
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The impact of toroidal compactification is as follows.

The massless modes in 10 dimensions must be decomposed
into four-dimensional modes whose coefficients can vary over
the compact directions:

f (x0, x1, · · · , x9) =
∑

i

gi (x
4, x5, · · · , x9)hi (x

0, x1, x2, x3)

If gi is harmonic (“massless”) in the internal directions then
hi is a massless field, in fact a flat direction or modulus.
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The number of moduli depends on the type of 10d field we are
considering, and the geometry of the compactification space.

In particular, if the 10d field is the metric then we generate
one modulus field for every geometric deformation of the torus
(its lengths and angles).
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Unfortunately, plain toroidal compactification is extremely
unrealistic.

It does not break any symmetries other than rotational
invariance. In particular, we get the same supersymmetry as
N = 2 in 10 dimensions, which is N = 8 in 4 dimensions.

And there are many moduli (36 for a 6-torus).
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A better way to compactify is to choose a 6-manifold that is
not flat but nontrivially solves the supergravity equations of
motion.

First, note that one has to solve the vacuum Einstein
equation:

Rij = 0

in the internal space. Therefore the space is “Ricci flat”.

Next, to preserve some supersymmetry after compactification
one has to make the RHS of the gravitino variation vanish:

δχµ,α = (∇µε)α = 0

which puts a further constraint on the internal space.

Additional conditions come from SUSY variations of the other
fermions in 10d. These also restrict the possible values of RR
fluxes along the compact directions.
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The simplest solution is to put all RR fluxes to zero.

The 6-manifold then has to be a particular kind of Ricci-flat
complex manifold satisfying other topological conditions,
called a Calabi-Yau space.

These spaces break supersymmetry down to N = 2 in 4d,
which is not really good enough since we would like N = 1.

Moreover, there is a family of geometrical deformations for
any given Calabi-Yau, that are known to mathematicians as
moduli.

Each CY modulus corresponds to a scalar field with an exactly
flat potential in 4d. As we saw, these are called moduli fields.
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Thus, Calabi-Yau compactifications where the RR fluxes are
set to zero fail on two counts:
(i) too much supersymmetry.
(ii) too many moduli fields.

However, this happened because we chose the solutions with
vanishing RR flux in the internal directions.

If we give up that assumption, things are much better.

We find that RR fluxes generically stabilise moduli.
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Example: on the torus, consider a 2-form field strength F12

along the x1, x2 directions. The flux quantisation condition is:

F12L1L2 = N

Then the energy of this configuration is:

E ∼ F 2
12L1L2 =

N2

L1L2

which is minimised by having the lengths of the torus expand.

By considering more complicated configurations of fluxes, and
manifolds more general than the torus, one can generate
potentials that freeze the moduli at finite values.

This is the basis of flux compactifications.
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