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1. Inertial and Gravitational Masses

In the SM and even SSSM, where masses
come from, is just as obscure as were the
nature of interactions prior to the notion of
gauge invariance.

Given the current unsatisfactory understand-
ing on the origin of masses, let us look at the
problem from a different perspective:

Can general relativity give us a clue in de-
lineating between various proposed mecha-
nisms for masses ?



Inertial and gravitational masses are defined
through the energy-pressure tensor Tµν. Tµν

has one time-like (the scalar energy density)
and three space-like eigenvalues (related to
the pressure).

The trace of the energy-pressure tensor

T = Tµ
µ = ε− 3P (1)

Inertial matter mass density ρinertial may be
equated to the energy density in the local
Lorentz rest frame of the matter

ρinertial =
ε

c2
(2)



The notion of gravitational mass-density is

more subtle and requires the concept of a

tidal force which is defined through

Φλσ = Rλµσνuµuν, (3)

where uµ is the 4-velocity of the material

system.

The trace of the tidal force may be com-

puted through the Einstein equation

Rµν =
8πG

c4
[Tµν − (1/2)gµνT ], (4)



giving

Φ = Φλ
λ = Rµνuµuν =

8πG

c2
[ε−(1/2)T ] =

4πG

c2
(ε+3P )

(5)

Φ =
4πG

c2
(ε + 3P ) = (4πG)ρgravitational. (6)

Thus, the gravitational mass density is given
by

ρgravitational =
ε + 3P

c2
= ρinertial +

3P

c2
. (7)

• 1. Eq.(6) is the general relativistic ver-
sion of the Newtonian field equation ∇2φ =
(4πG) ρgravitational.



• 2. Eq.(7) generalizes Tolman’s result de-
rived for the special case of a spherically sym-
metric Schwartzschild metric.

• 3. General relativistic arguments on the
stability of a material system require that
3P ≤ ε.

Thus, we have the general relativistic in-
equality between the inertial and gravitational
mass densities

ρgravitational ≤ 2ρinertial. (8)



For any field-theoretic model with conformal

symmetry

ρgravitational = 2ρinertial, (9)

reflecting that therein

ε = 3P and T = 0. (10)

Examples:

(i). Eq.(10) is true for the Maxwell radiation

field.



(ii) In the SM (zeroeth level; sans Higgs)
with all fermions and gauge bosons massless,
Eq.(10) is true.

(iii) glue balls: Suppose one were to make
an inertial mass for glueballs made up of
massless constituent gluons. But then due
to the above general result, one would find
that its gravitational mass would be twice
its inertial mass. Thus, we can -perhaps not
surprisingly- conclude that very little of mat-
ter around us could be due to glue balls.



Since all the matter which we see around us
satisfies to a fantastic accuracy the equality

ρgravitational = ρinertial, (11)

the growth of equal inertial and gravitational
particle masses

Minertialc
2 =

∫
ε(dV ), (12)

and

Mgravitationalc
2 =

∫
(ε + 3P )(dV ), (13)

must be a requirement on any dynamical
scheme of conformal symmetry breaking. Let
us see how it works for the Higgs model.



2. Higgs Model

We all know that the conformal symmetry
with massless fermions and gauge bosons is
here broken by the Higgs field which grows
masses for all of them. Writing

φ = (1/
√

2)[v + σ] (14)

The Lagrange density for the Higgs coupling
into the QCD degrees of freedom is via the
quark fields

Lind = −T̂ (
σ

v
) = −(

∑
j

Ψ̄mjc
2Ψ)(

σ

v
) (15)



and here the equality between the inertial

and gravitational masses however posits the

Higgs field with a rather remarkable direct

interaction with the gravitational field itself.

3. Higgs into Graviton Decays

Through the Einstein equation of motion,

we have the general result that

T |PhysicalState >= −(
c4

8πG
)R|PhysicalState >

(16)



In the Higgs model, it is the Higgs field which

produces T 6= 0 and R 6= 0. The Higgs

field effective action is

Seff =
1

cv

∫
[
√
−g(d4x)]σT, (17)

which also reads

Seff = −
c3

8πGv

∫
[
√
−g(d4x)]σR, (18)

The above two equations ensure that the

Higgs couples equivalently to inertial and grav-

itational masses. But then we can relate it

to Lg, the Lagrange density of the gravita-



tional field

Sg = −
c3

16πG

∫
[
√
−g(d4x)]R = (1/c)

∫
[
√
−g(d4x)]Lg.

(19)

Finally

Seff = −(
2

cv
)

∫
[
√
−g(d4x)]σLg (20)

This is a remarkable result because in the

Higgs coupling to the gravitons, Newton’s

constant G has vanished. Using standard

techniques, we may compute the Higgs de-



cay into two gravitons

Γ(H → gg) = (

√
2

16π
)[

GFM2
H

h̄c
](

MHc2

h̄
). (21)

For MH < 2Mtop, this is larger than H → qq̄

jets.



4. Higgs Induced Mass Shifts

In the SM there is no dimensional mass pa-

rameter and we all know that what we call

the mass term for a fermion or a boson is

simply the first term in the Yukawa cou-

pling between the particle-antiparticle pair

and the vacuum expectation value of the

Higgs. What this implies is that a further

coupling to the Higgs still remains which is

the larger the higher the mass. Thus, it is to

be expected that if we produce a heavy par-

ticle (such as the W , Z or a t, or heavier still



in the SS model), the effective mass of the

pair produced particle would not quite agree

with the mass of the same particle when pro-

duced singly. This mass shift would depend

upon the mass and upon how long the ef-

fect lasts that is upon the life- time of the

”disturbing particle”.

It is difficult (at least for us) to compute this

effect using standard Feynman rules where

mass along with the spin of a particle is

considered a’ priori fixed and the total life



time of a particle does not enter the calcula-

tion. We have considered the problem semi-

classically -similar to Feynman-Wheeler for-

mulation of QED-in which one assumes that

the path of the two produced particles is un-

changed. In Feynman-Wheeler, it is the pho-

ton propagator Dµν(x− y) coupling into the

four-velocities of the two charged particles

(at space-time points x and y) whereas here

it is the scalar Higgs propagator DH(x − y)

coupling into the two massive particles at the

space-time points x and y.



The shift in the mass (∆M) is related to the

real part of the effective action

<eSeff ≈ −
∆Mc2

Γ
(22)

The effect should be the largest when the

two produced particles are at the same space-

time point. Then we may employ the light-

cone singularity of the Higgs propagator which

is independent of the Higgs mass. In this ap-

proximation (which should be accurate for

low mass Higgs), we find that the (energy

dependent) mass shift (for a particle-antiparticle



pair) is given by

∆M(s) = −Γ(

√
2GFM4

2π
√

s
)×

√
1

s− 4M2
ln(

M

Γ
).

(23)

In the limit of M >> MH, the mass shift

is independent of the Higgs mass and it is

largest near threshold.

It is a pity that at LEP while from singly

produced Zo, the Zo mass was measured with

extreme precision, in the reaction e+e− →
ZoZo also measured at LEP, the Zo mass



was assumed to be the same. Ironically, in

the radiative reaction e+e− → Zoγ, the Zo

mass was determined quite accurately and

agreed within errors with the singly produced

Zo mass. Of course, in this case there is no

mass shift predicted due to the zero mass of

the photon and its infinite life-time.

It would be desirable at the LHC that mass

be left as a free parameter so that compari-

sions can be made between singly and dou-

bly produced heavy masses. At present, the

data from Fermilab on single top and pair



produced tops lack the required mass mea-

surement precision to investigate the effect.
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