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Process and Definitions

The semi-leptonic decays are the 4 processes K → πlνl (and τ → πKντ ).

The matrix element for K+
l3 has the structure:

T =
GF√

2
V ∗

usl
µF+

µ (p′, p)

lµ = u(pν)γµ(1 − γ5)v(pl)

F+(p′, p)µ = 〈π0(p′)|sγµu|K+(p)〉 =
1√
2
((p′ + p)µf+(t) + (p − p′)µf−(t))

Neutral F 0
µ(p′, p) defined without the 1/

√
2

Recent review for isospin violation, A. Kastner and H. Neufeld, European
Physical Journal C57 (2008) 541.

f+(t), t = (p′ − p)2 is known as the vector form factor as it is the P-wave
projection of the crossed channel matrix element 〈0|sγµu|K+π0, in〉.
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Definitions continued
The scalar form factor

f0(t) = f+(t) +
t

M2
K − M2

π

f−(t)

is the analogous S-wave projection

The physical region is m2
µ ≤ t ≤ (MK − Mπ)2 where the form factor is

real

Consider the expansion about t = 0

f0(t) = f+(0)

(

1 + λ′

0

t

M2
π

+
1

2
λ′′

0

t2

M4
π

+ · · ·
)

,

λ′
0 = M2

π〈r2
πK〉/6, λ′′

0 = 2M4
π c are related to the radius 〈r2

πK〉 and
curvature c used alternatively in the literature.

Analogously defined the vector form factor.
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Sources of information

The value f+(0) comes from theory.

Chiral theorems for the scalar form factors which are related to Fπ/FK .

The slope and curvature parameters are determined from fitting to Dalitz
plot distributions. Detailed discussion on experiments will be presented.

More recently from τ decays. BELLE has fitted them with resonances in
the time-like region on the unitarity cut.

Solutions of Muskelishvili-Omnès equations for form factors using phase
shift information and some additional inputs to self- consistently generate
them.

Our work: constraints from the methods of unitarity bounds
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f+(0)

f+(0) = 1 in the limit of md = mu = ms = 0 (SU(3) limit where all the
eight pseudoscalars are Goldstone particles).

Corrections to the relation due to SU(3) breaking. Expected to depart by
∼ 20%.

Even smaller due to Ademollo-Gatto theorem.

Crucial for knowledge of Cabibbo-Kobayashi-Maskawa matrix as the
combination f+(0)Vus appears in the expression for rates and Dalitz plot
densities.

Crucial work by H. Leutwyler and M. Roos, Zeitschrift für Physik, C25
(1984) 91.

Recent determinations from the lattice, e.g., RBC+UKQCD collaboration
[P. A. Boyle et al., Physical Review Letters 100 (2008) 141601] gives
f+(0) = 0.964(5). They use 2+1 flavour of dynamical wall quarks.
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Low energy theorems, FK/Fπ - I

A soft-pion theorem due to Callan and Treiman (C. G. Callan and S. B.
Treiman, Physical Review Letters 16 (1966) 153) says

f0(M
2
K − M2

π) = FK/Fπ + ∆CT

∆CT ' 0 to two-loops in chiral perturbation theory (J. Bijnens and P.
Talavera, Nuclear Physics B 669 (2003) 341.)
This point called CT1 is above the end-point of the Kl3 but is in the
analyticity part of the timelike region.

Knowledge of FK/Fπ at high precision is therefore crucial.
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Low energy theorems, FK/Fπ - II

A soft-kaon theorem due to Oehme (R. Oehme, Physical Review Letters 16
(1966) 215) says

f0(M
2
π − M2

K) = Fπ/FK + ∆CT

∆CT = 0.03 is one-loop in chiral perturbation theory (J. Gasser and H.
Leutwyler, Nuclear Physics B250 (1985) 517).
This point known as CT2 is in the spacelike region.
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Low energy theorems, FK/Fπ - III

No such relations for vector form factor.

As a result, scalar form factor much better suited to theoretical analysis.

These relations in the unphysical region will be used by us in the unitarity
bound technique.

FK/Fπ = 1.193 ± 0.006 according to recent lattice evaluations (see e.g., L.
Lellouch, arXiv:0902.4545; see also A. Bazavov et al. [MILC
collaboration], arXiv:0910.2966, which uses 2+1 flavor with improved
staggered quark action)

An extremely interesting joint analysis of f+(0) and FK/Fπ is by V.
Bernard and E. Passemar, arXiv:0912.3792
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Information circa 1994
Important review is the article by J. Bijnens, G. Colangelo and J. Gasser in
the DAFNE Handbook on Leptonic and Semileptonic Kaon Decays.

Charged kaon decays with electron: λ+ = 0.028 ± 0.004

Neutron kaon decays with electron: λ+ = 0.030 ± 0.0016

(Comment: no information on scalar form factor. Note also that there was
no prime on the symbols at that time.)

Neutral kaon decays with muon: λ+ = 0.030 ± 0.003, λ0 = 0.019 ± 0.004

from SLAC based on 1.6 million KL decays.
Look into the handbook for more comments and status, and also on charged
kaon into muon decays.

The same article gives at one-loop in chiral perturbation theory
0.031, 0.017 ± 0.004 respectively

(Note: no mention of curvature parameters which was the state of the
art at that time)
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Neutron kaon decays with electron: λ+ = 0.030 ± 0.0016

(Comment: no information on scalar form factor. Note also that there was
no prime on the symbols at that time.)

Neutral kaon decays with muon: λ+ = 0.030 ± 0.003, λ0 = 0.019 ± 0.004

from SLAC based on 1.6 million KL decays.
Look into the handbook for more comments and status, and also on charged
kaon into muon decays.

The same article gives at one-loop in chiral perturbation theory
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ISTRA experiment

Experimental setup up at the IHEP 70 GeV proton synchrotron U-70.
Secondary beam with about 25 GeV protons. Analysis is based on Dalitz
plot density.

O. P. Yushchenko et al., Physics Letters B 581 (2004) 31. Charged kaon to
muon mode.
λ+ = 0.0277 ± 0.0013(stat) ± 0.0009(syst)

λ0 = 0.0183 ± 0.0011(stat) ± 0.0006(syst)

based on 540,000 events.
(No curvature assumed.)

O. P. Yushchenko et al., Physics Letters B 589 (2004) 111. Charged kaon to
electron mode.
Curvature assumed here for vector form factor but scalar slope not reported
based on 540,000 events.
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KLOE experiment

KLOE detector at DAFNE (e+e− collider at 1.02 GeV)

KL → πµν analysis based on about 1.8 million events from 328 pb−1 of
data.

F. Ambrosino et al., JHEP 0712 (2007) 105. Report only slope parameters
for vector and scalar to be (25.7 ± 0.6) × 10−3 and (14.0 ± 2.1) × 10−3

respectively.
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NA48 experiment

KL produced at the 450 GeV SPS proton synchrotron at CERN.

A. Lai et al., Physics Letters B 602 (2004) 41, electron mode.
Do not report slope, but reports Vusf+(0)

A. Lai et al., Physics Letters B 647 (2007) 341, muon mode

No curvature found for the scalar!

Possibly controversial.
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KTeV experiment

KTeV experiment at Fermilab. 1.9 million KL electron and 1.5 million KL

muono decays.

T. Alexopoulos et al., Physical Review D 70 (2004) 092007
vector slope and curvature to be
(20.64 ± 1.75) × 10−3, (3.20 ± 0.69) × 10−3 and scalar slope to
(13.72 ± 1.31) × 10−3 respectively.

New analysis based on dispersive techniques, E. Abouzaid et al.,
arXiv;0912.1291 takes into account constraints from lattice QCD, resulting
in a fit for the form factor at the Callan-Treiman points.

SI 21 – Feb. 10-12, 2010 – p.14/35



KTeV experiment

KTeV experiment at Fermilab. 1.9 million KL electron and 1.5 million KL

muono decays.

T. Alexopoulos et al., Physical Review D 70 (2004) 092007
vector slope and curvature to be
(20.64 ± 1.75) × 10−3, (3.20 ± 0.69) × 10−3 and scalar slope to
(13.72 ± 1.31) × 10−3 respectively.

New analysis based on dispersive techniques, E. Abouzaid et al.,
arXiv;0912.1291 takes into account constraints from lattice QCD, resulting
in a fit for the form factor at the Callan-Treiman points.

SI 21 – Feb. 10-12, 2010 – p.14/35



KTeV experiment

KTeV experiment at Fermilab. 1.9 million KL electron and 1.5 million KL

muono decays.

T. Alexopoulos et al., Physical Review D 70 (2004) 092007
vector slope and curvature to be
(20.64 ± 1.75) × 10−3, (3.20 ± 0.69) × 10−3 and scalar slope to
(13.72 ± 1.31) × 10−3 respectively.

New analysis based on dispersive techniques, E. Abouzaid et al.,
arXiv;0912.1291 takes into account constraints from lattice QCD, resulting
in a fit for the form factor at the Callan-Treiman points.

SI 21 – Feb. 10-12, 2010 – p.14/35



τ decays from BELLE

D. Epifanov et al., Physics Letters B 654 (2007) 65 reports measurement of
modulus and phase of the Kπ form factors in terms of resonances, based on
about 53,000 lepton tagged events.

Note that the measurement here is in the time-like region on the unitarity
cut. Produces an important consistency check.

Mushkelishvili-Omnès study of πK, πK∗, Kρ and use of high statistics
LASS experiment phase shifts used to produce the πK vector form factor
and compared with BELLE (B. Moussallam, European Physical Journal C
53 (2008) 401)

Series of studies based on these data: M. Jamin et al. Physics Letters B 664
(2008) 78; B 640 (2006) 176
D. R. Boito et al., European Physical Journal C 59 (2009) 821.
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Theoretical approaches

Our work is motivated by the need to exploit in a complete and optimal way
the available information.

We use analyticity, dispersion relations and theoretical inputs.

We use experimental scattering phase shifts determined using Roy-Steiner
equations via Watson theorem (the phase of the form factor is the scattering
phase shift in the elastic region).

Uses experimental information in such a way as to optimize all available
inputs, and the modulus information only to evaluate an integral.

For a guide, we look at the scalar form factor analysis of M. Jamin, J. A.
Oller and A. Pich, Nuclear Physics B622 (2002) 279; Physical Review D 74
(2006) 074009.

Our phase and modulus data come from Moussallam, group of Jamin et al.,
and from BELLE.
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QCD correlator χ
0
(Q2) - I

Consider the QCD correlator

χ
0
(Q2) ≡ ∂

∂q2

[

q2Π0

]

=
1

π

∫ ∞

t+

dt
tImΠ0(t)

(t + Q2)2
,

ImΠ0(t) ≥
3

2

t+t−
16π

[(t − t+)(t − t−)]1/2

t3
|f0(t)|2 ,

with t± = (MK ± Mπ)2.

Positive definite and can be bounded.

Bounds can be obtained using analyticity to transform the problem, and to
input values of the form factor and its derivatives at t = 0 and/or knowledge
at various points in the analyticity region (method of unitarity bounds).
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QCD correlator χ
0
(Q2) - II

On the other hand, in pQCD when Q � ΛQCD, mq, αS MS scheme.

χ0(Q
2)=

3(ms − mu)2

8π2Q2

[

1 + 1.80αs + 4.65α2
s + 15.0α3

s + . . .
]

.

For details, Gauhar Abbas et al, arXiv:0912.2831, C. Bourrely and Irinel
Caprini, Nuclear Physics B722 (2005) 149.

Reverse problem: to constrain λ′
0, λ′′

0 and f0(∆Kπ) and f0(∆Kπ).
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Transforming via Conformal map

z − 1

z + 1
= i

√

t

t+
− 1

Im t

Re t

z(t)

Conformal map
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The problem transformed

We can now use the conformal map to transform this to an integral that
reads

1

2π

∫ 2π

0

|h(exp(iθ))|2 ≤ IpQCD

and needs to be bounded.

This requires the knowledge of the outer function associated with the
function multiplying |f0(t)|2 and the Jacobian of the transformation.

For the case at hand:

w(z) =
3

16
√

2π

MK − Mπ

MK + Mπ

√
1 − z (1 + z)3/2

× (1 + z(−Q2))2

(1 − z z(−Q2))2
(1 − z z(t−))1/2

(1 + z(t−))1/2
,

h(z) = w(z)f0(z).

SI 21 – Feb. 10-12, 2010 – p.20/35



The problem transformed

We can now use the conformal map to transform this to an integral that
reads

1

2π

∫ 2π

0

|h(exp(iθ))|2 ≤ IpQCD

and needs to be bounded.

This requires the knowledge of the outer function associated with the
function multiplying |f0(t)|2 and the Jacobian of the transformation.

For the case at hand:

w(z) =
3

16
√

2π

MK − Mπ

MK + Mπ

√
1 − z (1 + z)3/2

× (1 + z(−Q2))2

(1 − z z(−Q2))2
(1 − z z(t−))1/2

(1 + z(t−))1/2
,

h(z) = w(z)f0(z).

SI 21 – Feb. 10-12, 2010 – p.20/35



The problem transformed

We can now use the conformal map to transform this to an integral that
reads

1

2π

∫ 2π

0

|h(exp(iθ))|2 ≤ IpQCD

and needs to be bounded.

This requires the knowledge of the outer function associated with the
function multiplying |f0(t)|2 and the Jacobian of the transformation.

For the case at hand:

w(z) =
3

16
√

2π

MK − Mπ

MK + Mπ

√
1 − z (1 + z)3/2

× (1 + z(−Q2))2

(1 − z z(−Q2))2
(1 − z z(t−))1/2

(1 + z(t−))1/2
,

h(z) = w(z)f0(z).
SI 21 – Feb. 10-12, 2010 – p.20/35



Power series and origin of the bound

Power series: h(z) = a0 + a1z + a2z
2 + ... [Fourier series with

non-negative powers of eiθ]. Guaranteed for such functions.

Very important to note that the origin in the complex-t plane is mapped to
the origin in the complex-z plane. Expansion in powers of z is related to
expansion in powers of t, which is why slope and curvature parameters
enter here.

Furthermore and significantly, square integrability implies
I = |a0|2 + |a1|2 + ... [Parseval theorem]

Outer function is known and can be expanded in a series in z.

If the first n coefficients of the form factor are known, a bound on the
quantity of interest is obtained after a finite number of terms.

This is the origin of the bound.
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Some explicit expressions

a0 = h(0) = f+(0)w(0),

a1 = h′(0) = f+(0)(w′(0) +
2

3
〈r2

πK〉t+w(0)),

a2 =
h′′(0)

2!
=

f+(0)

2

[

w(0)

(

−8

3
〈r2

πK〉t+ + 32 c t2+

)]

+
f+(0)

2

[

2w′(0)

(

2

3
〈r2

πK〉tπ
)

+ w′′(0)

]

,
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Improving the bounds

Improvement of the bound arises if f0(t) is known for some spacelike
values of momenta corresponding to z = xi, i = 1, 2, 3, ...

Improve the bound by using imposing constraints using Lagrange
multipliers.

Can also be improved by imposing phase of the form factor for timelike
moment in a continuous region, a ≤ t ≤ b.
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Improved bound

Can be extended to arbitrary number of such constraints, and mixed
constraints (Meiman problem). The problem solved in generality by A.
Raina and V. Singh, Journal of Physics G3 (1977) 315.

The case of two spacelike constraints is one where we solve:

Imax a0 a1 a2 J1 J2

a0 1 0 0 1 1

a1 0 1 0 x1 x2

a2 0 0 1 x2
1 x2

2

J1 1 x1 x2
1 (1 − x2

1)
−1 (1 − x1x2)

−1

J2 1 x2 x2
2 (1 − x2

1)
−1 (1 − x2

2)
−1

= 0

to obtain the bound, if ai and Ji are known. Here Imax and Ji are known,
and hence we can bound the ai!
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Cartoon with 0, 1 and 2 constraints
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Results with 1 and 2 constraints
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Results with variation at CT2 by 3%
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Inclusion of phase and modulus

In the elastic region, the phase of the form factor is the scattering phase
(Watson’s theorem). Can be included using Lagrange multipliers to obtain
improved optimal constraints but not used here.

Availability of phase of the form factor and modulus can be used to find
even more stringent constraints by adapting the formalism given earlier.

Adaptation of method first proposed by Caprini in 1999 in the context of the
pion electromagnetic form factor (I. Caprini, European Physical Journal C
13 (2000) 471).

The present work is the only other known application of this powerful
technique which is described in the following.
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Omnès function
Consider the definition

O(t) = exp

(

t

π

∫ ∞

t+

dt
δ(t′)

t′(t′ − t)

)

,

where δ(t) is the I = 1/2 elastic S-wave Kπ scattering phase, in the elastic
region and arbitrary Lipschitz continuous above tin (viz., the phase and its
first derivative are continuous).

Since the Omnès function O(t) fully accounts for the second Riemann
sheet of the form factor, the function h(t), defined by

f0(t) = h(t)O(t),

is real analytic in the t-plane with a cut only for t ≥ tin.
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New conformal map

The new conformal variable is now:

z(t) =

√
tin −√

tin − t√
tin +

√
tin − t

,

which maps the t-plane cut for t > tin onto the unit disk |z| < 1, and

h(z) = f0(t(z)) w(z) ω(z) [O(t(z))]−1,
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New Outer functions
The new outer function is

w(z) =
3(M2

K − M2
π)

16
√

2πtin

√
1 − z (1 + z)3/2(1 + z(−Q2))2

(1 − z z(−Q2))2

× (1 − z z(t+))1/2 (1 − z z(t−))1/2

(1 + z(t+))1/2 (1 + z(t−))1/2
,

An additional outer function now enters which is given by

ω(z) = exp

(√
tin − t

π

∫ ∞

tin

dt′
ln |O(t′)|√

t′ − tin(t′ − t)

)

.

The input for the bound is now given by

I = χ0(Q
2) − 3

2

t+t−
16π2

∫ tin

t+

dt
[(t − t+)(t − t−)]1/2|f0(t)|2

t2(t + Q2)2
.

The information of the modulus used in an average manner.
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Results with and without phase and
modulus, 2 parametrizations.
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Results with CT1, and CT1 and CT2

constraints
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Allowed regions for 2 values of tin
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Results and conclusion
We have reviewed the status of the vector and scalar form factors which are
of fundamental importance to the standard model.

We have introduced new methods to find stringent constraints using chiral
symmetry, perturbative QCD, dispersion relations and unitarity

The results are very stringent in the scalar form factor case.

Tests the consistency of the determinations.
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