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Introduction

Anomalies arise when the classical symmetries are broken at the
quantum level. One such example is the axial-vector current anomaly
in QED.

UA(1) in QCD is anomalous. The non zero mass of η′ due to this
U(1) axial anomaly[Witten(79)].

In recent years, QCD phase diagram has been an important subject of
study. For two light flavours we expect a critical point at Tc and
small finite density.

The size of the anomaly term affects the order of chiral phase
transition. For Nf = 2 the chiral phase transition is of second order if
anomaly term is sizable at Tc [Pisarski & Wilczek(84)] .
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We want to study how non-zero densities affect the anomaly in QCD
→ would be important for understanding the phase diagram of QCD.
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We want to study how non-zero densities affect the anomaly in QCD
→ would be important for understanding the phase diagram of QCD.

We calculate the continuum anomaly equation at finite density both
perturbatively from the triangle diagram as well as non-perturbatively
from Fujikawa’s method.

There has been recent efforts to incorporate chemical potential in
chiral fermion operators on the lattice. We discuss some of the
properties of such operators like the anomaly and discuss the
consequences.
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Triangle diagram at µ 6= 0

We compute the axial anomaly perturbatively at µ 6= 0 in the Euclidean
spacetime→ easily extendable to weak coupling lattice QCD.

The partition function in QCD with fermion fields ψ coupled to SU(3) gauge
fields Aν = Aa

νT
a , ν = 1 − 4 is,

Z =

∫

Dψ̄Dψ[DAν ]e
−

R

d4x ψ̄(6Dν+m−µγ4)ψ+SYM

with Dν = ∂ν − igAa
νTa and SYM is the free Yang-Mills action with

appropriate gauge-fixing. The matrices γν , γ5 → hermitian.

Under chiral transformation of the massless fermion fields the action remains
invariant with a classically conserved chiral current

∂ν j
ν
5 (x) = 0.
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Triangle diagram at µ 6= 0

We calculate the quantum effects to the flavour singlet anomaly by
measuring 〈∂µjµ5〉.

〈∂µjµ,5〉 =
1

Z

∫

Dψ̄DψDAµ ∂µjµ,5 e
−S,

= −
1

2

∫

d4x1d
4x2∂λ〈T{j5,λ(x)jρ(x1)jσ(x2)}〉A

ρ(x1)A
σ(x2) .

Now the expectation value of the divergence amounts to the calculation of
the triangle diagram [Adler, Bell, Jackiw(69)].

p

p-k1

p-q

k1

k2

γ5γλ

p

γ5γλ

p-q

γσ

p-k2

γρ
γσ γρ

k2

k1

We calculate the triangle diagrams in the momentum space,
〈∂µjµ,5〉 → qλ∆

λρσ(k1, k2, q). The propagators at finite density changes
from p4 → p4 − iµ.
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Triangle diagram at µ 6= 0

At non-zero µ the qλ∆
λρσ(k1, k2, q) has terms like (p4 − iµ)2 + ~p2 in the

denominator and terms proportional to µ0 , µ and µ2 in the numerator.

In the numerator, the term ∝ µ2 vanishes because
Tr [γ5γ4γσγ4γρ] ∼ ǫ4σ4ρ = 0.

The integrals are linearly divergent and hence must be regulated by
introducing a cut-off scale, Λ.

Gauge invariance has to be maintained by demanding that
k1ρ∆

λρσ(k1, k2) = k2σ∆
λρσ(k1, k2) = 0 ⇒ Λ → ∞.

The term ∝ µ, goes as 4iµ
Λ ǫ4σβρk1µk2β and hence vanishes as Λ → ∞.

The anomaly equation remains same as in the absence of µ as,

qλ∆
λρσ = −tr[T aT b] ig2

2π2 ǫ
αβσρk1αk2β.
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Gauge invariance has to be maintained by demanding that
k1ρ∆

λρσ(k1, k2) = k2σ∆
λρσ(k1, k2) = 0 ⇒ Λ → ∞.

The term ∝ µ, goes as 4iµ
Λ ǫ4σβρk1µk2β and hence vanishes as Λ → ∞.

The anomaly equation remains same as in the absence of µ as,

qλ∆
λρσ = −tr[T aT b] ig2

2π2 ǫ
αβσρk1αk2β.

Can be generalized to finite temperature, the finite T − µ part are
modulated by the Fermi-Dirac distribution function,

Lt|~p|→∞
4π|~p|
(2π)3

[

(~k1 · ~p)f (|~p|)
(

1
eβ(|~p|−µ)+1

+ 1
eβ(|~p|+µ)+1

)

+ {ρ, k1 ↔ σ, k2}
]

−→ 0.

Rajiv Gavai & Sayantan Sharma



Outline

1 Introduction

2 Anomaly at non-zero density: Perturbative

3 Anomaly at µ 6= 0: Non-Perturbative

4 Introducing chemical potential for chiral fermions on the lattice

5 Conclusions

Rajiv Gavai & Sayantan Sharma



Review of Fujikawa’s method at T = 0, µ = 0

Under chiral transformation, the fermion measure changes by a Jacobian

factor Dψ̄
′

Dψ
′

= Dψ̄DψDet|∂(ψ̄
′
,ψ

′
)

∂(ψ̄,ψ)
| = Dψ̄Dψe

−2i
R

d
4
x α(x)Trγ5 .

6D is anti-Hermitian in this spacetime. The chiral Jacobian is evaluated in
the eigenspace of 6D represented by φn satisfying 6Dφn = λnφn.

Since {γ5, 6D} = 0, for every eigen vector φn with eigenvalue λn there is a
corresponding γ5φn with e.v. −λn hence the trace of γ5 vanishes for
non-zero eigenvalues of fermion operator.

The only finite contribution comes from the zero modes of the Dirac
operator. Thus,

Trγ5 =
∑

n

φ†nγ5φn = n+ − n−

with n± being the no. of left(right-handed) zero modes.
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Anomaly at µ 6= 0 in the continuum

Fujikawa’s analysis can be extended to finite density by noting that
S(µ) → S(µ = 0) − µ

∫

d4x ψ̄γ4ψ.

The fermion operator in this case → 6D − µγ4. It still anti-commutes
with γ5 ⇒ the action is still invariant.

The measure has to be evaluated with some care → to be calculated
in the eigenspace of 6D(µ).

6D(µ) is no longer Hermitian yet diagonalizable. Evident in a new set
of vectors obtained from the µ = 0 basis vectors by a non-unitary
transformation

ζm(x, τ) = e
µτφm(x, τ) , υ†m(x, τ) = φ†m(x, τ)e−µτ .
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Anomaly at µ 6= 0 in the continuum

ζm and υ†m are the eigenvectors of 6D(µ) and 6D†(µ) with (purely
imaginary) eigenvalues λm , λ∗m,

6D(µ)ζm = λmζm , υ†m 6D
†(µ) = −λmυ

†
m.

The sets of vectors {ζ} and {υ} are in one-to-one correspondence
with the complete set {φ} as these follow
a)completeness
b)normality.

For non-zero eigenvalues, for each eigenvector ζm has corresponding
γ5ζm, hence Trγ5 = 0.

In the space of the zero modes of 6D(µ), given by ζn and υ†n, the
chiral Jacobian

Trγ5 =
∑

n

υ†nγ5ζn =
∑

n

φ†ne
−µτγ5e

µτφn = n+ − n−.
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Anomaly at µ 6= 0 in the continuum

Most general method of introducing µ, by the (unphysical)
non-unitary transformation of the fermion fields in the QCD action:

ψ
′

(x, τ) = e
−µτψ(x, τ) , ψ̄

′

(x, τ) = ψ̄(x, τ)eµτ .

Such transformation changes the L(µ = 0) → L(µ).

Commutes with flavour and chiral transformations, leaving the
spectrum unchanged → Preserves the anomaly relation too, as
derived in the previous slide.
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Chiral fermions on the lattice

Having exact chiral symmetry on lattice is desirable for the study of chiral
symmetry restoration in QCD.
The Domain wall fermions [Kaplan(92)] with N5 = ∞ and the Overlap
fermions[Narayanan & Neuberger(95), Neuberger(98), Narayanan(98)] have
exact chiral symmetry on the lattice. Example: The Overlap operator
for Nf = 1 is,

aDov = 1 + γ5ǫ(γ5DW (−M)) , ǫ(γ5DW ) =
DW

√

DW D
†
W

, 0 < M < 2.

These operators satisfy the Ginsparg-Wilson(GW) relation {γ5,D} = aDγ5D.
These actions are invariant under infinitesimal chiral transformations
[Luscher(98)] on the lattice:

δψ = αγ5(1 −
a

2
D(µ = 0))ψ and δψ̄ = αψ̄(1 −

a

2
D(µ = 0))γ5 ,

Such transformations also give the correct index on the
lattice[Hasenfratz, Laliena and Neidermeyer(98), Luscher(98)].
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Forms of DW (µ)

Naively adding a µN term to lattice fermion operator like
Wilson-Dirac operator leads to µ2 divergence in the energy density in
the continuum limit.
Adding e

±µa4 with U4 ,U
†
4 respectively in DW (0) leads to a DW (µ)

with cancellation of such divergences
[Hasenfratz-Karsch method(83)].
In general functions, f (µa4), g(µa4) satisfying f .g = 1 , f − g ≈ µa4

lead to cancellation of the divergences [Gavai(85)].
Interestingly, non-unitary rotation of the fermion fields gives DW (µ)
as prescribed by the H-K method → true for any local fermion
operator.

S =
∑

x

ψ̄xDW (0)xyψy →
∑

x

ψ̄
′

xDW (µ)xyψ
′

y

with
ψ

′

(x, τ) = e
µτψ(x, τ) , ψ̄

′

(x, τ) = ψ̄(x, τ)e−µτ ,
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Forms of Dov(µ) and anomaly on the lattice

Recently a Dov (µ) was suggested by Bloch & Wettig (06) as,
aDov(µ) = 1 + γ5ǫ(γ5DW (µ)).

Satisfies the relation: {γ5,Dov (µ)} = aDov (µ)γ5Dov (µ).

Thermodynamic quantities has no potentially divergent µ2/a2 terms.
[Gattringer, Liptak(07);Banerjee,Gavai,Sharma (08)]

The action is not invariant under chiral transformations as

δS = α
∑

x,y

ψ̄x [γ5Dov(µ) + Dov(µ)γ5

−
a

2
Dov (0)γ5Dov (µ) −

a

2
Dov (µ)γ5Dov(0)]x,yψy 6= 0

Incorporating chemical potential to chiral fermion operators like the Overlap
and Domain wall operators necessarily leads to chiral symmetry breaking.
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It was shown by Bloch & Wettig (06) that Dov (µ) satisfies the index
theorem and has exact chiral symmetry on the lattice.

To keep the action invariant, one has to modify the chiral
transformations to δψ = αγ5(1 − a

2Dov (µ))ψ [BGS (08)].

The anomaly due to change of measure in this case,
Tr [2γ5(1 − a/2Dov (µ))] is µ-dependent on the lattice → depend on
the zero modes of Dov (µ).
Contradicts our finding that the measure is indep. of µ.
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theorem and has exact chiral symmetry on the lattice.

To keep the action invariant, one has to modify the chiral
transformations to δψ = αγ5(1 − a

2Dov (µ))ψ [BGS (08)].

The anomaly due to change of measure in this case,
Tr [2γ5(1 − a/2Dov (µ))] is µ-dependent on the lattice → depend on
the zero modes of Dov (µ).
Contradicts our finding that the measure is indep. of µ.

Making the symmetry transformations dependent on the intensive
thermodynamic variable µ is unphysical[BGS (08)] as there is no
unique order parameter for chiral symmetry breaking.

It is always desirable to keep the symmetries on the lattice as close to
the continuum as possible with a unique order parameter.
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A simple method for introducing µ

Introduce µ as a Lagrange multiplier corresponding to a “number density”
defined in a point-split form to Dov (0).

Dov (µ̂)xy = (Dov )xy −
µ̂

2a4 M

[

(γ4 + 1)U†
4 (y)δx,y+4̂ − (1 − γ4)U4(x)δx,y−4̂

]

.

This operator breaks chiral symmetry explicitly on the lattice with the same
O(a) corrections as the Bloch-Wettig operator.

Potentially divergent 1/a2 terms present in the lattice expression of energy
density, quark no. susceptibility→ have to do a zero-temperature
subtraction.
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Advantages

The proposed D(µ) has exact chiral symmetry at µ = 0 so best for critical
point search by Taylor expansion about µ = 0 rather than the oft-used
staggered fermions.

This method of introducing µ is useful for computing higher order quark no.
susceptibilities(QNS) in QCD even for other fermion operators like the
staggered operator since

D ′ =
∑

x,y

N(x , y), and D ′′ = D ′′′ = D ′′′′... = 0 ,

incontrast to the to the popular exp(±µ)-prescription, where,

D ′ = D ′′′... =
∑

x,y

N(x , y) and D ′′ = D ′′′′ = D ′′′′′′... 6= 0 .

Computing higher order QNS is important for locating critical end point of
QCD[Gavai& Gupta(’03)].
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Conclusions

The anomaly is unaffected at finite density in the continuum as
observed
a)from the perturbative calculation of ABJ triangle diagram.
b)Non-perturbatively from Fujikawa’s method.

At finite density the eigenvectors of 6D(µ) are related to that of 6D(0)
by non-unitary rotation.

The chiral determinant is still independent of µ so its relation to the
zero modes is independent of finite density effects.

Introduction of chemical potential in chiral fermion operators
necessarily leads to chiral symmetry breaking on the lattice.
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Conclusions

On the lattice however if we try to keep the action invariant at finite
µ by making µ-dep. chiral transformations then the anomaly has
finite density corrections. This has been argued to be inconsistent
physically.

Finally we propose a new method of incorporating µ in lattice Dirac
operators which still breaks chiral invariance but useful in computing
higher order QNS in QCD.
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