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In the language of differential vector calculus

Gauss’s law

∇ · ~E =
ρ

ε0
(1)

Gauss’s law for magnetism

∇ · ~B = 0 (2)

Maxwell-Faraday equation

∇× ~E = −∂
~B
∂t

(3)

Ampere’s law, with Maxwell’s correction

∇× ~B = µ0

(
~J + ε0

∂~E
∂t

)
(4)

Intuitive interpretations obtained through integral forms⇒



Gauss’s law: enclosed charges

∇ · ~E = ρ
ε0

Integrate over a closed volume:∫
V

(∇ · ~E)dV =

∫
V

ρ

ε0
dV (5)

Use a mathematical identity (Gauss’s theorem)∮
~E · d~S =

Qenclosed

ε0
(6)

Relationship between electric field on a closed surface and the
charge enclosed inside it

The part in red: source of the electric field

Leads to Coulomb’s law if Q is a point charge at the centre of ~S,
a sphere of radius r : Er · 4πr2 = Q/ε0



Gauss’s law: no magnetic monopoles

∇ · ~B = 0

Integrate over a closed volume:∫
V

(∇ · ~B)dV = 0 (7)

Use a mathematical identity (Gauss’s theorem)∮
~B · d~S = 0 (8)

Relationship between magnetic field on a closed surface and the
magnetic charge enclosed inside it

The part in red: source of the magnetic field.

Vanishing of the source⇒ no magnetic monopoles



Maxwell-Faraday equation: flux through a loop

∇× ~E = −∂~B/∂t

Integrate over a surface whose boundary is a loop:∫
~S

(∇× ~E) · d~S =

∫
~S
−∂

~B
∂t
· d~S (9)

Use a mathematical identity (Stokes’ theorem)∮
~E · d ~̀=

∫
~S

∂

∂t
(~B.d~S) (10)

If the loop does not change with time

E ≡
∮
~E · d ~̀=

∂

∂t

∫
~S

(~B.d~S) = −∂Φ

∂t
(11)

Φ ≡
∫
~S
~B.d~S

More comments on the next page⇒



More about Maxwell-Faraday equation

Relationship between electric field along a loop and the rate of
change of magnetic flux through an open surface whose
boundary is the loop

No sources needed: it is a relationship between ~E and ~B

The “E = −∂Φ/∂t” equation does not hold for all situations, since
it does not take into account the Lorentz force on a moving
charge in a magnetic field. For example, see the discussion
about Faraday Wheel in Feynman lectures. We’ll return to this
point later in the course.



Ampere’s law with Maxwell’s corrections

∇× ~B = µ0(~J + ε0∂~E/∂t)

Integrate over a surface whose boundary is a loop:∫
~S

(∇× ~B) · d~S = µ0

∫
~S

~J · d~S + µ0ε0

∫
~S

∂~E
∂t
· d~S (12)

Use a mathematical identity (Stokes’ theorem)∮
~B · d ~̀= µ0I + µ0ε0

∫
~S

∂

∂t
(~E.d~S) (13)

Relationship between magnetic field along a loop and the rate of
change of magnetic flux through an open surface whose
boundary is the loop

I =
∮
~S
~J · d~S is the conduction current

µ0
∫
~S
∂
∂t (~E.d~S) is often called “displacement current”, this is the

correction by Maxwell to Ampere’s law
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Inside a dielectric medium (static case)

Gauss’s law always valid, when ρ is the total charge: ∇· ~E = ρ/ε0

Part of the charge is due to polarization induced in the medium,
which gives rise to the “bound charge”:
ρb = ∇ · ~P, where ~P is the polarization

Then ε0∇ · ~E = (ρb + ρfr) = ∇ · P + ρfr,
where ρfr is the free charge density

Defining ~D = ε0~E + ~P, we get Gauss’s law in terms of the free
charge density:

∇ · ~D = ρfr (14)

The relation ~D = ε~E defines the dielectric permittivity of the
medium, ε. This is in general not a number but a tensor, and
may not be constant. Wherever it is constant, the dielectric is
called “linear”.



Inside a magnetic medium (static case)

Maxwell-Faraday equation always valid, when ~J is the total
current: ∇× ~B = µ0~J

Part of the current is due to magnetization induced in the
medium, which gives rise to the “surface current”:
~Jsurface = ∇× ~M, where ~M is the magnetization

Then ∇× ~B = (~Jsurface + ~Jfr) = µ0∇×M + µ0~Jfr,
where ~Jfr is the free current density

Defining ~H = ~B/µ0 − ~M, we get Ampere’s law in terms of the free
charge density:

∇× ~H = ~Jfr (15)

The relation ~B = µ~H defines the magnetic permeability of the
medium, µ. This is in general not a number but a tensor, and
may not be constant. Wherever it is constant, the magnetic
medium is called “linear”.



Maxwell’s equations: “macroscopic” form

∇ · ~D = ρfr (16)

∇ · ~B = 0 (17)

∇× ~E = −∂
~B
∂t

(18)

∇× ~B = ~Jfr +
∂~D
∂t

(19)

These are equivalent to the equations (1)–(4), with the substitutions

ρ = ρfr + ρb , ~J = ~Jfr + ~Jsurface (20)

~D = ε0~E + ~P , ~B = µ0(~H + ~M) (21)

ρb = −∇ · ~P , ~Jsurface = ∇× ~M +
∂~D
∂t

. (22)



A recap of topics covered in this lecture

Maxwell’s equations: in differential and integral form

Maxwell’s equations in the presence of dielectrics and magnetic
media
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