ED II: Lecture 1 Maxwell's equations: a review

Amol Dighe

Aug 3, 2011

2

Maxwell's equations inside matter

In the language of differential vector calculus

Gauss's law
$$abla \cdot \vec{\mathbf{E}} = rac{
ho}{\epsilon_0}$$
 (1) Gauss's law for magnetism

$$abla \cdot \vec{\mathbf{B}} = \mathbf{0}$$

Maxwell-Faraday equation

Gaus

$$abla imes \vec{\mathbf{E}} = -rac{\partial \vec{\mathbf{B}}}{\partial t}$$

Ampere's law, with Maxwell's correction

$$\nabla \times \vec{\mathbf{B}} = \mu_0 \left(\vec{\mathbf{J}} + \epsilon_0 \frac{\partial \vec{\mathbf{E}}}{\partial t} \right)$$
(4)

(2)

(3)

Intuitive interpretations obtained through integral forms \Rightarrow

Gauss's law: enclosed charges

$\nabla \cdot \vec{\mathbf{E}} = \frac{\rho}{\epsilon_0}$ • Integrate over a closed volume: $\int_V (\nabla \cdot \vec{\mathbf{E}}) dV = \int_V \frac{\rho}{\epsilon_0} dV \qquad (5)$ • Use a mathematical identity (Gauss's theorem) $\oint \vec{\mathbf{E}} \cdot d\vec{\mathbf{S}} = \frac{Q_{\text{enclosed}}}{\epsilon_0} \qquad (6)$

- Relationship between electric field on a closed surface and the charge enclosed inside it
- The part in red: source of the electric field
- Leads to Coulomb's law if *Q* is a point charge at the centre of \vec{S} , a sphere of radius *r*: $E_r \cdot 4\pi r^2 = Q/\epsilon_0$

(日) (日) (日) (日) (日) (日) (日)

Gauss's law: no magnetic monopoles

$abla \cdot \vec{\mathbf{B}} = \mathbf{0}$

Integrate over a closed volume:

$$\int_{V} (\nabla \cdot \vec{\mathbf{B}}) dV = 0 \tag{7}$$

Use a mathematical identity (Gauss's theorem)

$$\oint \vec{\mathbf{B}} \cdot d\vec{\mathbf{S}} = \mathbf{0} \tag{8}$$

- Relationship between magnetic field on a closed surface and the magnetic charge enclosed inside it
- The part in red: source of the magnetic field.
- Vanishing of the source \Rightarrow no magnetic monopoles

Maxwell-Faraday equation: flux through a loop

$abla imes \vec{\mathbf{E}} = -\partial \vec{\mathbf{B}} / \partial t$

Integrate over a surface whose boundary is a loop:

$$\int_{\vec{\mathbf{S}}} (\nabla \times \vec{\mathbf{E}}) \cdot d\vec{\mathbf{S}} = \int_{\vec{\mathbf{S}}} -\frac{\partial \vec{\mathbf{B}}}{\partial t} \cdot d\vec{\mathbf{S}}$$
(9)

Use a mathematical identity (Stokes' theorem)

$$\oint \vec{\mathbf{E}} \cdot d\vec{\ell} = \int_{\vec{\mathbf{S}}} \frac{\partial}{\partial t} (\vec{\mathbf{B}}.d\vec{\mathbf{S}})$$
(10)

If the loop does not change with time

$$\mathcal{E} \equiv \oint \vec{\mathbf{E}} \cdot d\vec{\ell} = \frac{\partial}{\partial t} \int_{\vec{\mathbf{S}}} (\vec{\mathbf{B}} \cdot d\vec{\mathbf{S}}) = -\frac{\partial \Phi}{\partial t}$$
(11)

More comments on the next page \Rightarrow

・ロト ・ 同ト ・ ヨト ・ ヨ

- Relationship between electric field along a loop and the rate of change of magnetic flux through an open surface whose boundary is the loop
- No sources needed: it is a relationship between \vec{E} and \vec{B}
- The " $\mathcal{E} = -\partial \Phi / \partial t$ " equation does not hold for all situations, since it does not take into account the Lorentz force on a moving charge in a magnetic field. For example, see the discussion about Faraday Wheel in Feynman lectures. We'll return to this point later in the course.

(日) (日) (日) (日) (日) (日) (日)

Ampere's law with Maxwell's corrections

$abla imes \vec{\mathsf{B}} = \mu_0 (\vec{\mathsf{J}} + \epsilon_0 \partial \vec{\mathsf{E}} / \partial t)$

Integrate over a surface whose boundary is a loop:

$$\int_{\vec{\mathbf{S}}} (\nabla \times \vec{\mathbf{B}}) \cdot d\vec{\mathbf{S}} = \mu_0 \int_{\vec{\mathbf{S}}} \vec{\mathbf{J}} \cdot d\vec{\mathbf{S}} + \mu_0 \epsilon_0 \int_{\vec{\mathbf{S}}} \frac{\partial \vec{\mathbf{E}}}{\partial t} \cdot d\vec{\mathbf{S}}$$
(12)

• Use a mathematical identity (Stokes' theorem)

$$\oint \vec{\mathbf{B}} \cdot d\vec{\ell} = \mu_0 \mathbf{I} + \mu_0 \epsilon_0 \int_{\vec{\mathbf{S}}} \frac{\partial}{\partial t} (\vec{\mathbf{E}}.d\vec{\mathbf{S}})$$
(13)

- Relationship between magnetic field along a loop and the rate of change of magnetic flux through an open surface whose boundary is the loop
- $I = \oint_{\vec{S}} \vec{J} \cdot d\vec{S}$ is the conduction current
- μ₀ ∫_S ∂/∂t</sub>(E.dS) is often called "displacement current", this is the correction by Maxwell to Ampere's law

Maxwell's equations in vacuum

Inside a dielectric medium (static case)

- Gauss's law always valid, when ρ is the total charge: $\nabla \cdot \vec{\mathbf{E}} = \rho/\epsilon_0$
- Part of the charge is due to polarization induced in the medium, which gives rise to the "bound charge":

 ρ_b = ∇ · P, where P is the polarization
- Then $\epsilon_0 \nabla \cdot \vec{\mathbf{E}} = (\rho_b + \rho_{\rm fr}) = \nabla \cdot P + \rho_{\rm fr}$, where $\rho_{\rm fr}$ is the free charge density
- Defining $\vec{D} = \epsilon_0 \vec{E} + \vec{P}$, we get Gauss's law in terms of the free charge density:

$$7 \cdot \vec{\mathbf{D}} = \rho_{\rm fr} \tag{14}$$

The relation D
 = εE defines the dielectric permittivity of the medium, ε. This is in general not a number but a tensor, and may not be constant. Wherever it is constant, the dielectric is called "linear".

Inside a magnetic medium (static case)

- Maxwell-Faraday equation always valid, when J
 is the total current: ∇ × B
 = μ₀J
- Part of the current is due to magnetization induced in the medium, which gives rise to the "surface current":
 J_{surface} = ∇ × M, where M is the magnetization
- Then $\nabla \times \vec{\mathbf{B}} = (\vec{\mathbf{J}}_{surface} + \vec{\mathbf{J}}_{fr}) = \mu_0 \nabla \times M + \mu_0 \vec{\mathbf{J}}_{fr}$, where $\vec{\mathbf{J}}_{fr}$ is the free current density
- Defining $\vec{\mathbf{H}} = \vec{\mathbf{B}}/\mu_0 \vec{\mathbf{M}}$, we get Ampere's law in terms of the free charge density:

$$\nabla imes \vec{\mathbf{H}} = \vec{\mathbf{J}}_{\mathrm{fr}}$$
 (15)

The relation B = μH defines the magnetic permeability of the medium, μ. This is in general not a number but a tensor, and may not be constant. Wherever it is constant, the magnetic medium is called "linear".

Maxwell's equations: "macroscopic" form

$$\nabla \cdot \mathbf{D} = \rho_{\rm fr} \tag{16}$$

$$\nabla \cdot \vec{\mathbf{B}} = 0 \tag{17}$$

$$\nabla \times \vec{\mathbf{E}} = -\frac{\partial \vec{\mathbf{B}}}{\partial t}$$
(18)
$$\nabla \times \vec{\mathbf{B}} = \vec{\mathbf{J}}_{fr} + \frac{\partial \vec{\mathbf{D}}}{\partial t}$$
(19)

These are equivalent to the equations (1)–(4), with the substitutions

$$\rho = \rho_{\rm fr} + \rho_b , \qquad \vec{\mathbf{J}} = \vec{\mathbf{J}}_{\rm fr} + \vec{\mathbf{J}}_{\rm surface}$$
(20)
$$\vec{\mathbf{D}} = \epsilon_0 \vec{\mathbf{E}} + \vec{\mathbf{P}} , \qquad \vec{\mathbf{B}} = \mu_0 (\vec{\mathbf{H}} + \vec{\mathbf{M}})$$
(21)
$$\rho_b = -\nabla \cdot \vec{\mathbf{P}} , \qquad \vec{\mathbf{J}}_{\rm surface} = \nabla \times \vec{\mathbf{M}} + \frac{\partial \vec{\mathbf{D}}}{\partial t} .$$
(22)

A recap of topics covered in this lecture

- Maxwell's equations: in differential and integral form
- Maxwell's equations in the presence of dielectrics and magnetic media