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Q Maxwell’s equations in vacuum

e Maxwell’'s equations inside matter



o Maxwell’s equations in vacuum



In the language of differential vector calculus

Gauss’s law

Ampere’s law, with Maxwell’s correction

- - E
V x B = po (J-l—eoa—) (4)

ot

Intuitive interpretations obtained through integral forms =



Gauss’s law: enclosed charges

V-E= 2
€0
@ Integrate over a closed volume:
/(v E)aV — / L gy (5)
v v €0
@ Use a mathematical identity (Gauss’s theorem)
%E’ . d§ _ Qenclosed (6)
€0

v

@ Relationship between electric field on a closed surface and the
charge enclosed inside it

@ The part in red: source of the electric field

@ Leads to Coulomb’s law if Q is a point charge at the centre of S,
a sphere of radius r: | £, - 471> = Q/¢




Gauss’s law: no magnetic monopoles

V.

@ Integrate over a closed volume:
/(V~§)dV:0 (7)
v

@ Use a mathematical identity (Gauss'’s theorem)

7{I§-d§=0 8)

V.

@ Relationship between magnetic field on a closed surface and the
magnetic charge enclosed inside it

@ The part in red: source of the magnetic field.

@ Vanishing of the source = no magnetic monopoles



Maxwell-Faraday equation: flux through a loop

V x E = —9B/ot

@ Integrate over a surface whose boundary is a loop:

/(VXE) ds — /—— d§ 9)
@ Use a mathematical identity (Stokes’ theorem)
S 0 - =
fE-dz:/—(B.dS) (10)
§ Ot
@ If the loop does not change with time
. - od
5:%E'd€_a—t/§(B.dS)_Ot (11)
¢ = [sB.dS

More comments on the next page =



More about Maxwell-Faraday equation

@ Relationship between electric field along a loop and the rate of
change of magnetic flux through an open surface whose
boundary is the loop

@ No sources needed: it is a relationship between E and B

@ The “& = —0®/0t” equation does not hold for all situations, since
it does not take into account the Lorentz force on a moving
charge in a magnetic field. For example, see the discussion
about Faraday Wheel in Feynman lectures. We’ll return to this
point later in the course.



Ampere’s law with Maxwell’s corrections

V x B = po(J + €dE /Ot

@ Integrate over a surface whose boundary is a loop:
- Lo 9E -
/(VXB)~dS=M0/J~dS+MoEo/—~dS (12)
s § § ot

@ Use a mathematical identity (Stokes’ theorem)

fé.de*: u0/+u060[%(ﬁ.d§) (13)
JS

v

@ Relationship between magnetic field along a loop and the rate of
change of magnetic flux through an open surface whose
boundary is the loop

@ /=45 J - dS is the conduction current

@ /10 [5 & (E.dS) is often called “displacement current”, this is the
correction by Maxwell to Ampere’s law



e Maxwell’s equations inside matter



Inside a dielectric medium (static case)

@ Gauss’s law always valid, when p is the total charge: V- E p/€o

@ Part of the charge is due to polarization induced in the medium,
which gives rise to the “bound charge”:
pp = V - P, where P is the polarization

® Then gV -E = (pp + prr) = V- P+ pp,
where py; is the free charge density

@ Defining D = ¢E + P, we get Gauss’s law in terms of the free
charge density:

—

VD = py (14) |

@ The relation D = ¢E defines the dielectric permittivity of the
medium, e. This is in general not a number but a tensor, and
may not be constant. Wherever it is constant, the dielectric is
called “linear”.



Inside a magnetic medium (static case)

@ Maxwell- Faraday equatlon always valid, when J is the total
current: V x B = qu

@ Part of the current is due to magnetization induced in the
medium, which gives rise to the “surface current”:
Jarice = V x M, where M is the magnetization

@ Then V x é = (Jsurface + jfr) = ,LLOV x M+ MOjfry
where Jy is the free current density

@ Defining H = E/uo — M, we get Ampere’s law in terms of the free
charge density:

— —

vV x A = J; (15) |

@ The relation B = ;H defines the magnetic permeability of the
medium, ... This is in general not a number but a tensor, and
may not be constant. Wherever it is constant, the magnetic
medium is called “linear”.



Maxwell’s equations: “macroscopic” form

V-B = 0 (17)
_ oB

VxE = 5 (18)
_ - oD

VxB = Jit oo (19)

These are equivalent to the equations (1)—(4), with the substitutions

p=petpp, j = jfr + Jsurface (20)

D=cE+P, B = 1o(H + M) (21)
_ - _ 9D

Pb = -V-P 3 Jsurface =VxM + aﬁ . (22)



A recap of topics covered in this lecture

@ Maxwell’s equations: in differential and integral form

@ Maxwell’s equations in the presence of dielectrics and magnetic
media
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