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0 Relaxation to a stationary state



Stationary and non-stationary states

@ Stationary state, by definition, means that the currents are
steady and there is no net charge movement, i.e.

o _

Js=0 =
\% s or ot

0 (1)

These statements are equivalent, due to continuity.

@ If the initial distribution of charges and currents does not satisfy
the above criteria, they will redistribute themselves so that a
stationary state is reached.

@ This process of “relaxation” happens over a time scale that is
characteristic of the medium, called the relaxation time.



Relaxation time

@ The continuity equation, combining with V - D = p, gives

oD .
vy, 2
\Y 5 Vv-d (2)

@ Using D = ¢E and J = ¢E,
€ 0~

vV-(1+ ;a—)d (3)

@ The solution to this differential equation is

J=Js+ (Jo — Js)e™/" (4)

where Jp is the initial current distribution

@ 7 = ¢/o is the relaxation time

() g’t’ =-V- J E= aJ etc. relax at the same rate.



9 Electromagnetic waves



Time-dependent electric field

@ No free charges, no external EMF sources. Maxwell =

Vx(VxE) = —gt(VXMH) (5)
_ - d OE
. — 2 — -
V(V -E) — V2E uat(Jfr+eat) (6)

@ This gives the second order partial differential equation

OE O92E

»
Ef
VB —nogr —hegE

=0 (7)
@ Depending on whether the (92E/912) term dominates or the
(OE/0t) one, we’'ll get two different extremes of behaviour. The

former will lead to a propagating wave, the latter will lead to a
diffusion equation, corresponding to a decaying wave.



Looking for solution of the form E()‘(’)e*’wf

@ The differential equation becomes
V2E 1 pew?(1 + 2)E =0 (8)
(&09)
@ There are two time scales here: 1/wand 7 =¢/o
V2E 1 pew?(1 + —)E=0 9)
TW
@ When 7w >> 1, . .
V2E + pew®E =0 (10)
which is a wave propagating with speed ¢ = 1/, /i€
@ When 7w << 1, _
2, WE_ 11
VPE+ —5E=0 (11)
which is the equation for diffusion. In the context of EM waves,
this will lead to a decaying solution.

@ we shall explore these behaviours in detail now.



9 Electromagnetic waves
@ Propagating plane wave



Propagating (plane wave) solution for E

@ wr >> 1 = displacement current dominates over conduction
current . . -
V2E + pew®E + iwpoE =0 (12)

@ Plane wave: all fields are functions of the distance ( of a plane
from the origin. f is the normal to this plane.
@ V — Nn(9/d¢)

@ Maxwell’s equations in this language:

. oD . OE oB
n ac 0, nxaC T (13)
ﬁaB_O, ﬁXaH:aD (14)

SaC oc — ot



Longitudinal components of E and B

E,: longitudinal component of E

@ (9D/d¢) equation and dot product of A with the (9H/d¢)
equation =

OE - h OE - f
6—<_o, = -0 (15)

ot
@ For non-conducting media (e.g. vacuum), EH is a constant.

Longitudinal component of B

@ (9B/a¢) equation and dot product of A with the (9E /()
equation =

OB - A OB - A
—_—— —_— 1
5 0, 0 (16)

@ Only stationary longitudinal component of Bis possible, i.e. éH
is constant (note: we have taken u = pyg)




Transverse components of E and B

@ Combining the two Ax equations:
. OPE  OPE
N X (aicz — Mﬁﬁ) =0
@ Differential equation for E; = E x f
@ General solution: E, = E o[f(¢ — ut) + g(¢ + ut)]
@ IfE, is sinusoidal:
EJ— _ EJ_,Oe_i(wtikC) (18)
@ Direction of propagation k =
El = E'L7Oei(*-F7wt) (19)

@ Using fi x (9E. /9¢) = —0B, /ot,

— —

kxE; =iwB, =B, =

&=



Propagating wave in short

@ E; and B are constants in space and time, hence not
interesting for wave propagation

@ E, and B, can have ekF-«0 dependence, with B, = (K/w) x E

@ E and B fields are transverse to the direction of motion, and also
orthogonal to each other.



9 Electromagnetic waves

@ Decaying plane wave



Decaying plane wave

@ When wr << 1, conduction current dominates over
displacement current

V2E + p1ew?E + iwpocE = 0 (21)

@ The solution of the form Eqe*/(k—~1) implies

o lw W i
o= e e (22)
[ w ; [ w (1—1i
k = Y aim/A e 23
= CzTe 027_ ( \/§ ) ( )
@ This gives
E _ EO e:l:i(Rc(k)Xfwt) eflm(k)x (24)

@ The wave then decays with a e '™(¥)* dependence inside the
conducting medium.



Skin depth in metals

@ For metals, 7 ~ 10~ '* sec. So for w < 10", conduction current
dominates.

@ A wave incident on a metallic surface will decay as
|E| = |Eqle™"/? (25)

where, from the last page, (check factor of 2)

2
5— /207: 3 (26)
w ow

@ Within a distance § from the surface of the metal, the wave would
decrease in magnitude by a factor 1/e. This ¢ is the “skin depth”
of the metal. The surface currents will flow within this width.

@ “ldeal” conductor = § — 0.



e Energy of EM waves



Quadratic quantities and factors of 2

@ In Electrodynamics, for convenience, we often use notation
involving complex numbers (mainly exponentials), e.g.

E— E‘Oei(kx—wi) 7 B — _,-§Oef(kX—wt) (27)

when we actually want to represent
E = Eocos(kx —wt) = Re(Eqe/(*—+) (28)
B = Bgsin(kx —wt) = Re(iBye' ™) (29)

@ While performing calculations in complex notation and taking the
real part of the final answer works as long as we are dealing with
quantities linear in E or I§, one has to be careful while dealing
with quadratic (or higher order) quantities.

@ For example, in the complex notation above,
([E[*) = (|E* - E|) = |Eof* (30)
while the actual answer should be (using real notation)

(IE?) = [Eol2(cos?(kx —wt)) = 1 [Eof? (31)



Energy density stored in EM fields

@ We have already seen that the energy stored in electric field is
Us = (1/2)eo|E[2 (we showed this result for a static field). When
the electric field represents a propagating wave, then taking into
account the “factor of 2” for averaged quadratic quantities, we get

1 =

(Ue) = eolEol? (32)
@ The energy stored in magnetic field is Uy, = (1/2)\§|2/uo (we
showed it for a static magnetic field). For a propagating wave,

IB| = |K/w||E|. Including the “factor of 2", we get

_1Bo2 1 |KP
4y 4w

_ 1 -
(Um) |Eo|? = 260|Eo|2 (33)

@ For a plane EM wave, energy stored in electric and magnetic
field is equal. The total energy of an EM wave is

(U) = (Ua) + (Un) = yeolEol (34



Energy transported by the EM fields

@ The rate of energy transport is given by the Poynting vector,

—

N=E*xH (35)
@ The time-averaged value of this quantity is

SR T P R ey
ol- = —|Ej|—|Eo| = =/ —|E
3l 1ol = 51E3]  Eol = 5/ IEol?  (@6)

—

(IN[) =

N —

@ Compared with the rate of energy consumption in a conductor,

(1/2)0|Eo|2, the quantity /e /s is termed the conductance of
vacuum

@ Similarly, \/¢/u is the conductance of a medium through which
an EM wave propagates

@ Note that (|N|) = c(U), since the wave transports energy at the
speed c.



Recap of topics covered in this lecture

@ Relaxation to stationary state, relaxation time

@ Electromagnetic wave: displacement current and conduction
current

@ Transverse electromagnetic field solutions for a propagating
wave

@ Decay of EM waves in a condunctor, skin depth

@ Energy stored and transported by an EM wave
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