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Stationary and non-stationary states

Stationary state, by definition, means that the currents are
steady and there is no net charge movement, i.e.

∇ · ~Js = 0 or
∂ρ

∂t
= 0 (1)

These statements are equivalent, due to continuity.

If the initial distribution of charges and currents does not satisfy
the above criteria, they will redistribute themselves so that a
stationary state is reached.

This process of “relaxation” happens over a time scale that is
characteristic of the medium, called the relaxation time.



Relaxation time

The continuity equation, combining with ∇ · ~D = ρ, gives

∇ · ∂
~D
∂t

= −∇ · ~J (2)

Using ~D = ε~E and ~J = σ~E,

∇ · (1 +
ε

σ

∂

∂t
)~J = 0 (3)

The solution to this differential equation is

~J = ~Js + (~J0 − ~Js)e−t/τ (4)

where J0 is the initial current distribution

τ = ε/σ is the relaxation time
∂ρ
∂t = −∇ · ~J, ~E = σ~J, etc. relax at the same rate.
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Time-dependent electric field

No free charges, no external EMF sources. Maxwell⇒

∇× (∇× ~E) = − ∂

∂t
(∇× µ~H) (5)

∇(∇ · ~E)−∇2~E = −µ ∂
∂t

(~Jfr + ε
∂~E
∂t

) (6)

This gives the second order partial differential equation

∇2~E− µσ∂
~E
∂t
− µε∂

2~E
∂t2 = 0 (7)

Depending on whether the (∂2~E/∂t2) term dominates or the
(∂~E/∂t) one, we’ll get two different extremes of behaviour. The
former will lead to a propagating wave, the latter will lead to a
diffusion equation, corresponding to a decaying wave.



Looking for solution of the form ~E(~x)e−iωt

The differential equation becomes

∇2~E + µεω2(1 +
iσ
εω

)~E = 0 (8)

There are two time scales here: 1/ω and τ = ε/σ

∇2~E + µεω2(1 +
i
τω

)~E = 0 (9)

When τω >> 1,
∇2~E + µεω2~E = 0 (10)

which is a wave propagating with speed c = 1/
√
µε

When τω << 1,

∇2~E +
iω
τc2

~E = 0 (11)

which is the equation for diffusion. In the context of EM waves,
this will lead to a decaying solution.

we shall explore these behaviours in detail now.
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Propagating (plane wave) solution for ~E

ωτ >> 1⇒ displacement current dominates over conduction
current

∇2~E + µεω2~E + iωµσ~E = 0 (12)

Plane wave: all fields are functions of the distance ζ of a plane
from the origin. n̂ is the normal to this plane.

∇ → n̂(∂/∂ζ)

Maxwell’s equations in this language:

n̂ · ∂
~D
∂ζ

= 0 , n̂× ∂~E
∂ζ

= −∂
~B
∂t

(13)

n̂ · ∂
~B
∂ζ

= 0 , n̂× ∂~H
∂ζ

=
∂~D
∂t

(14)



Longitudinal components of ~E and ~B

~E‖: longitudinal component of ~E

(∂~D/∂ζ) equation and dot product of n̂ with the (∂~H/∂ζ)
equation⇒

∂~E · n̂
∂ζ

= 0 ,
∂~E · n̂
∂t

= 0 (15)

For non-conducting media (e.g. vacuum), ~E‖ is a constant.

Longitudinal component of ~B

(∂~B/∂ζ) equation and dot product of n̂ with the (∂~E/∂ζ)
equation⇒

∂~B · n̂
∂ζ

= 0 ,
∂~B · n̂
∂t

= 0 (16)

Only stationary longitudinal component of ~B is possible, i.e. ~B‖
is constant (note: we have taken µ = µ0)



Transverse components of ~E and ~B

Combining the two n̂× equations:

n̂× (
∂2~E
∂ζ2 − µε

∂2~E
∂t2 ) = 0 (17)

Differential equation for ~E⊥ = ~E× n̂

General solution: ~E⊥ = ~E⊥,0[f (ζ − ut) + g(ζ + ut)]

If ~E⊥ is sinusoidal:
~E⊥ = ~E⊥,0e−i(ωt±kζ) (18)

Direction of propagation ~k⇒

~E⊥ = ~E⊥,0ei(~k·~r−ωt) (19)

Using n̂× (∂~E⊥/∂ζ) = −∂~B⊥/∂t ,

i~k× ~E⊥ = iω~B⊥ ⇒ ~B⊥ =
~k
ω
× ~E (20)



Propagating wave in short

~E‖ and ~B‖ are constants in space and time, hence not
interesting for wave propagation

~E⊥ and ~B⊥ can have ei(~k·~r−ωt) dependence, with ~B⊥ = (~k/ω)× ~E
~E and ~B fields are transverse to the direction of motion, and also
orthogonal to each other.
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Decaying plane wave

When ωτ << 1, conduction current dominates over
displacement current

∇2~E + µεω2~E + iωµσ~E = 0 (21)

The solution of the form ~E0e±i(kx−ωt) implies

k2 = − iω
c2τ

=
ω

c2τ
e−iπ/2 (22)

⇒ k =

√
ω

c2τ
e−iπ/4 =

√
ω

c2τ

(
1− i√

2

)
(23)

This gives
~E = ~E0e±i(Re(k)x−ωt)e−Im(k)x (24)

The wave then decays with a e−Im(k)x dependence inside the
conducting medium.



Skin depth in metals

For metals, τ ∼ 10−14 sec. So for ω < 1014, conduction current
dominates.

A wave incident on a metallic surface will decay as

|~E| = |~E0|e−r/δ (25)

where, from the last page, (check factor of 2)

δ =

√
2c2τ

ω
=

√
2
σω

(26)

Within a distance δ from the surface of the metal, the wave would
decrease in magnitude by a factor 1/e. This δ is the “skin depth”
of the metal. The surface currents will flow within this width.

“Ideal” conductor⇒ δ → 0.
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Quadratic quantities and factors of 2

In Electrodynamics, for convenience, we often use notation
involving complex numbers (mainly exponentials), e.g.

~E = ~E0ei(kx−ωt) , ~B = −i~B0ei(kx−ωt) (27)

when we actually want to represent
~E = ~E0 cos(kx − ωt) = Re(~E0ei(kx−ωt)) (28)
~B = ~B0 sin(kx − ωt) = Re(i~B0ei(kx−ωt)) (29)

While performing calculations in complex notation and taking the
real part of the final answer works as long as we are dealing with
quantities linear in ~E or ~B, one has to be careful while dealing
with quadratic (or higher order) quantities.

For example, in the complex notation above,

〈|~E|2〉 = 〈|~E∗ · ~E|〉 = |~E0|2 (30)

while the actual answer should be (using real notation)

〈|~E|2〉 = |~E0|2〈cos2(kx − ωt)〉 = 1
2
|~E0|2 (31)



Energy density stored in EM fields

We have already seen that the energy stored in electric field is
Ue = (1/2)ε0|~E|2 (we showed this result for a static field). When
the electric field represents a propagating wave, then taking into
account the “factor of 2” for averaged quadratic quantities, we get

〈Ue〉 =
1
4
ε0|~E0|2 (32)

The energy stored in magnetic field is Um = (1/2)|~B|2/µ0 (we
showed it for a static magnetic field). For a propagating wave,
|~B| = |~k/ω||~E|. Including the “factor of 2”, we get

〈Um〉 =
1
4
|~B0|2

µ0
=

1
4
|~k|2

ω2µ0
|~E0|2 =

1
4
ε0|~E0|2 (33)

For a plane EM wave, energy stored in electric and magnetic
field is equal. The total energy of an EM wave is

〈U〉 = 〈Ue〉+ 〈Um〉 =
1
2
ε0|~E0|2 (34)



Energy transported by the EM fields

The rate of energy transport is given by the Poynting vector,

~N = ~E∗ × ~H (35)

The time-averaged value of this quantity is

〈|~N|〉 = 1
2
|~E∗0|.|~H0| =

1
2
|~E∗0|
|~k|
ωµ
|~E0| =

1
2

√
ε0
µ0
|~E0|2 (36)

Compared with the rate of energy consumption in a conductor,
(1/2)σ|~E0|2, the quantity

√
ε0/µ0 is termed the conductance of

vacuum

Similarly,
√
ε/µ is the conductance of a medium through which

an EM wave propagates

Note that 〈|~N|〉 = c〈U〉, since the wave transports energy at the
speed c.



Recap of topics covered in this lecture

Relaxation to stationary state, relaxation time

Electromagnetic wave: displacement current and conduction
current

Transverse electromagnetic field solutions for a propagating
wave

Decay of EM waves in a condunctor, skin depth

Energy stored and transported by an EM wave
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