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Reflection and refraction

An EM wave is incident from one medium (ε1, µ1,n1, c1) to another
medium (ε1, µ1,n1, c1), at an angle θI with the normal to the boundary.

The figure:



Incident, reflected and refracted waves

Incident wave

~EI = ~EI0ei(~kI ·~r−ωt) (1)

~BI =
~kI

ω
× ~EI =

1
c1

(k̂I × ~EI) (2)

Reflected wave

~ER = ~ER0ei(~kR ·~r−ωt) (3)

~BR =
~kR

ω
× ~ER =

1
c1

(k̂R × ~ER) (4)

Transmitted wave

~ET = ~ET0ei(~kT ·~r−ωt) (5)

~BT =
~kT

ω
× ~ET =

1
c2

(k̂T × ~ET ) (6)



Boundary conditions on phases

~D⊥ is continuous across the boundary

ε1~EI⊥ + ε1~ER⊥ = ε2~ET⊥ (7)

ε1~EI⊥0ei(~kI ·~r−ωt) + ε1~ER⊥0ei(~kR ·~r−ωt) = ε2~ET⊥0ei(~kT ·~r−ωt) (8)

The equatity should be valid at all~r on the boundary

~kI ·~r = ~kR ·~r = ~kT ·~r (9)

With origin at the point of incidence:

|~kI |r sin θI = |~kR |r sin θR = |~kT |r sin θT (10)

Using |kI | = |kR | and |kT |/|kI | = n2/n1,

sin θI = sin θR ,
sin θI

sin θT
=

n2

n1
(11)

The first is the law of reflection the second is the Snell’s law



Boundary conditions on amplitudes

The discussion on the previous page would have worked for any of
the boundary conditions, we just took ~D⊥ as an example. Now we
need not worry about the phases, since the laws of reflection and
refraction derived there guarantee that the phase conditions will be
satisfied.

Boundary conditions

ε1~EI⊥0 + ε1~ER⊥0 = ε2~ET⊥0 (12)
~BI⊥0 + ~BR⊥0 = ~BT⊥0 (13)
~EI‖0 + ~ER‖0 = ~ET‖0 (14)

1
µ1

~BI‖0 +
1
µ1

~BR‖0 =
1
µ2

~BT‖0 (15)

For convenience we’ll divide the incident electric field into a
component in the plane of incidence (the plane that contains
~kI , ~kR , ~kT ) and a component normal to the plane of incidence. These
two clearly won’t interfere, and they can be added together at any
time, using the principle of superposition, to get the net electric field.
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Applying boundary conditions

Boundary conditions involving ~E

−ε1EI0 sin θI + ε1ER0 sin θR = −ε2ET0 sin θT (16)
−EI0 cos θI + ER0 cos θR = ET0 cos θT (17)

Solution:

ER0 =

(
α− β
α+ β

)
EI0 , ET0 =

(
2

α+ β

)
EI0 (18)

where
α ≡ cos θT

cos θI
, β =

µ1

µ2

c1

c2
(19)

Boundary conditions involving ~B give exactly the same conditions.



Reflection and transmission coefficient

Rate of energy transported by incoming wave normal to the
boundary: (Correct this, right language, factors of c, connect
with N)

Incident wave : II =
1
2
ε1c1|~EI0|2 cos θI (20)

Reflected wave : IR =
1
2
ε1c1|~ER0|2 cos θR (21)

Transmitted wave : IT =
1
2
ε2c2|~ET0|2 cos θT (22)

Reflection coefficient

R =
IR
II

=

∣∣∣∣α− βα+ β

∣∣∣∣2 (23)

Transmission coefficient

T =
IT
II

=
ε2c2

ε1c1

cos θT

cos θI
=

4Re(α∗β)
|α+ β|2

(24)



Comments on reflection and transmission coefficients

R + T = 1, as expected

R = 1,T = 0 possible if α is purely imaginary.

α =

√
1− sin2 θT

cos θI
=

√
1− (n2/n1)2 sin2 θT

cos θI
, (25)

so if sin θI > (n1/n2), there is no transmission.
This is the condition for Total Internal reflection.

R = 0,T = 1 possible if α = β. This condition takes a simple
form if µ1 = µ2, since then

cos θT

cos θI
=

c1

c2
=

sin θI

sin θT
=

c1

c2
(26)

This leads to sin 2θI = sin 2θT , that is θI + θT = π/2.
In such a case, θI is called the Brewster’s angle.
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The figure



Comments on this scenario

The values for R and T will in general be different. In particular,
R = 0 is not possible here.

If an unpolarized wave is incident on a dielectric surface, the
reflected and transmitted waves will therefore, in general, be
polarized.
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Reflection from a conducting surface

No wave is transmitted inside the conductor; i.e. fields inside the
conductor are zero.

For a normal incidence, ~EI = −~ER
I.e. there is a phase-shift by π.

For incidence at an angle, the components of ~EI and ~ER parallel
to the boundary cancel, i.e. ~EI‖ = −~ER‖

There will be charge oscillations at the metal surface
corresponding to ε1(~EI⊥ + ~EI⊥) = σs, where σs is the surface
charge density

The movements of these charges along the surface correspond
to surface currents, which account for finite values of ~HI‖ + ~HR‖
at the boundary.

The net ~B normal to the surface vanishes, i.e. ~BI⊥ + ~BR⊥ = 0.
This follows automatically from the ~E‖ conditions above.



Recap of topics covered in this lecture

Reflection and transmission at the surface of a dielectric

Boundary conditions at a condusting surface
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	 normal to the plane of incidence

	EM waves in conductors: inside and at the boundary

