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Travelling waves with the same (x , y) profile

We are looking for waves travelling in z direction, while keeping
the same (x , y) profile. I.e. the form

~E = ~E0(x , y)ei(kz z−ωt) , ~B = ~B0(x , y)ei(kz z−ωt) (1)

Maxwell’s (∇× ~E) and (∇× ~B) equations then become

∂Ey

∂x
− ∂Ex

∂y
= iωBz ,

∂By

∂x
− ∂Bx

∂y
= − iω

c2 Ez (2)

∂Ez

∂y
− ikzEy = iωBx ,

∂Bz

∂y
−−ikzBy = − iω

c2 Ex (3)

ikzEx −
∂Ez

∂x
= iωBy , ikzBx −

∂Bz

∂x
= − iω
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Note that one can factor out the ei(kz z−ωt) dependence of
Ex ,Ey ,Ez and Bx ,By ,Bz , so now onwards they have no z- or
t-dependence in this lecture.

Using the last two lines (4 equations), one can write
Ex ,Ey ,Bx ,By in terms of the other two quantities, Ez and Bz



All components in terms of Ez and Bz
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Note that if Ez and Bz both vanish (or are constants), no other
components of ~E or ~B can survive (unless kz = 0, which case
needs to be treated separately.)

However Ez and Bz are not free parameters; the above
equations just give four constraints on ~E and ~B, two more
constraints from the last page are still remaining.



Constraining Ez ,Bz themselves

Ez ,Bz themselves must satisfy consistency conditions

∂Ey

∂x
− ∂Ex
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= iωBz (9)

∂By
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c2 Ez (10)
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If there were no boundary conditions in the x − y plane, this would
have a plane wave solution – a flat x − y profile . But conducting
boundaries imply that these fields must have a non-trivial x −y profile.



EM wave propagation in waveguides

Let us consider rectangular / circular hollow conducting
cylinders, through which an EM wave will be “guided” by bending
the boundaries of the cylinders.

A simple solution would have been a plane wave travelling along
z direction, such that ~E and ~B fields are transverse,
Ez = Bz = 0. Such a solution is called as TEM (transverse
electric and magnetic) mode.

Such a mode is not possible in a hollow cylinder, proof given on
the next page

However Ez and Bz can individually vanish, such modes are
termed TE (Transverse electric: Ez = 0) and TM (Transverse
magnetic: Bz = 0).



Hollow cylinder cannot have both Ez = 0 and Bz = 0

Since Bz = 0, we have (∇× ~E)z = −∂Bz/∂t = 0. Then

∂Ey

∂x
− ∂Ex

∂y
= 0 (13)

Since Ex and Ey are independent of z, and Ez = 0, we get
∇× ~E = 0, i.e. ~E can be written as ~E = ∇Φ.

In addition, no charges inside the cylinder, so ∇ · E = 0. That is,
∇2Φ = 0.

Now we have a boundary value problem, with ∇2Φ = 0 inside
the boundary and Φ =constant on the complete boundary (the
hollow conductor).

This boundary value problem has a solution, Φ =constant
everywhere, and the uniqueness theorem states that this is the
only solution.

Thus, there can be no electric / magnetic fields inside the
waveguide.



TE and TM modes



TEM mode
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TE modes (Ez = 0,Bz 6= 0) in a rectangular waveguide

Let the walls of the waveguide be at y = 0,b and x = 0,a.
The boundary conditions are then
Ex = 0 at y = 0,b and Ey = 0 at x = 0,a

The equations that give Ex,y in terms of Bz then imply
∂Bz
∂y = 0 at y = 0,b and ∂Bz

∂y = 0 at x = 0,a

The solution to the differential equation for Bz , with these
boundary conditions, is

Bz = A cos(kxx) cos(ky y) (14)

where kx = (mπ/a) and ky = (nπ/b).

Such a mode is called TEmn mode. Note that at least one of m or
n has to be nonzero, else all fields will vanish.



Cutoff frequencies for TE modes

The TEmn solution, when substituted in the differential equation
for Bz , gives

−
(mπ

a

)2
−
(nπ

b

)2
− k2

z + (ω/c)2 = 0 (15)

For consistency with the physical situation, kz must be real; i.e.
k2

z > 0. This gives the condition

ω > c

√(mπ
a

)2
+
(nπ

b

)2
≡ ωmn (16)

Thus, for a TE mode TEmn to propagate, it must have a minimum
frequency ωmn. A waveguide thus acts like a high-pass filter.



TM modes

A similar analysis is possible for TM modes, but this will not be
done here.

Note that the cutoff frequencies ωmn for the TM modes are the
same as those for TE modes.



Phase velocity and group velocity

Phase velocity: simply the speed at which the crest of the
wavefront travels in a given direction.

For a plane wave Aei(~k·~x−ωt), the phase velocity along the
direction r̂ is

vph =
dr
dt

∣∣∣∣
constant phase

=
ω

|~k.̂r|
(17)

If ~k is not along r̂, typically vph > c. This does not mean that any
signal is travelling faster than light, though.

Group velocity measures the speed at which a signal is
transported. The signal is embedded in the distribution of
frequencies, and group velocity measures how fast the peak of
this distribution shifts. Details on the next page.



Group velocity

The Fourier transform of a wave gives the frequencies the wave
consists of. Consider the situation where the spread in
frequencies is small, which is the only one where we can define
a group velocity easily. Let the frequencies be confined to the
range ω = ω0 ±∆ω. The corresponding wave vectors are
confined to ~k = ~k0 ±∆~k.

The wave is
ψ(~x, t) =

∫
a(~k)ei(~k·~x−ωt)d3k , (18)

which may be written as

ψ(~x, t) = A(~x, t)ei(~k0·~x−ω0t) , (19)

where
A(~x, t) =

∫
a(~k)ei(∆~k·~x−∆ωt)d3k (20)

The frequency distribution shifts as a wavepacket, the velocity of
the peak of the distribution is the approximate velocity of the
wavepacket.



Group velocity: continued

Let us consider a one-dimensional case of a wave travelling
along z-axis. At the peak,

0 =
dA
dt

=
∂A
∂t

+
∂A
∂z

dz
dt

(21)

The group velocity is then

vg =
dz
dt

= − ∂A/∂t
∂A/∂z

=
∆ω

∆k
=

dω
dk

∣∣∣∣
ω0

(22)

Velocities along z axis for the waveguide

ω =
√
ω2

mn + k2
z

Phase velocity vph = ω
kz

= c√
1−(ωmn/ω)2

Group velocity vg = dω
dkz

= c
√

1− (ωmn/ω)2

Waveguide transports different frequencies at different speeds:
dispersion
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Circular cylindrical waveguides

No TEM mode, as per the earlier arguments

For TM mode

Ez = AJm(k`r)eimφei(kz z−ωt) (23)

If the cylinder has radius r0,
then the boundary condition is Jm(k`r0) = 0, gives k`(m)

For TE mode

Bz = AJm(k`r)eimφei(kz z−ωt) (24)

If the cylinder has radius r0,
then the boundary condition is J ′m(k`r0) = 0, gives k`(m)

k2
z = (ω/c)2 − k2

` ⇒ cutoff frequency ωm,` = ck`(m)

TM and TE modes have different cutoff frequencies, unlike
rectangular waveguides !



Power transmitted by a waveguide

Consider TE mode. i.e. Ez = 0.

The equations for ~E⊥ = (Ex ,Ey ) and ~B⊥ = (Bx ,By ) become

Bx = ikz
k2
⊥

∂Bz
∂x

By = ikz
k2
⊥

∂Bz
∂y

}
⇒ ~B⊥ =

ikz

k2
⊥
∇⊥Bz (25)

Ex = ck
k2
⊥

∂Bz
∂y

Ey = − ck
k2
⊥

∂Bz
∂x

}
⇒ ~E⊥ =

ick
kz

~B⊥ ×~z (26)

The magnitude of Poynting vector (power transmitted per unit
area) is then

|~N| =
|~E∗⊥0 × ~H⊥0|2

2
=
|~E⊥0|2

2
~kzckµ0 =

1
2

√
ε0
µ0

kz

k
|~E0|2 (27)

Comparing with |~N| = (1/2)σ|E0|2, this enables us to define the
conductance of the waveguide as σ =

√
ε0µ0(kz/k). This may be

compared with the conductance of free space,
√
ε0µ0.



Outline

1 Waveguides
Rectangular waveguide
Circular cylindrical waveguides

2 Coaxial cable

3 Cavities



Coaxial cable



Propagation through a coaxial cable

TEM Mode is supported (now there are two disjoint boundaries,
so the argument for hollow waveguides does not work.)

TE and TM modes also propagate, but have a threshold
frequency

The TEM mode

Electric and magnetic fields:

~E =
E0r̂
r

ei(kz z−ωt) , ~B =
E0φ̂

cr
ei(kz z−ωt) (28)

Group velocity vg = c
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Rectangular cavity

Conducting walls at x = 0,a; at y = 0,b and at z = 0, c.

Potential inside the cavity:

Φmnp = sin(kxx) sin(ky y) sin(kzz)e−iωt (29)

where kx = (mπ/a), ky = (nπ/b), kz = (pπ/c)

This can be used to obtain ~E and ~B inside the cavity.

A rectangular cavity supports discrete modes.



Microwave: waveguide and cavity



LHC accelerator: cavity principle



LHC accelerator: bunching cavities



Recap of topics civered in this lecture

Propagation in waveguides in terms of Ez and Bz

TEM, TE and TM modes from Maxwell’s equations

No TEM modes for hollow waveguides

Waveguides as high-pass filters, as dispersive media

Phase velocity and group velocity

Power transmitted through waveguide

Coaxial cable: TEM propagation, in addition to TE and TM

Cavities for bunching protons together at accelerators
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