Mathematical Physics, Autumn 2008

Assignment 4 (due Monday 24/11/2008)

- 1. (a) Find the Cauchy-Riemann conditions in polar form, i.e. find the relationship between $\partial u/\partial r$, $\partial u/\partial \theta$, $\partial v/\partial r$ and $\partial v/\partial \theta$ for $f(re^{i\theta}) = u(r,\theta) + v(r,\theta)$ to be differentiable at a point (r,θ) .
 - (b) Find the Cauchy-Riemann conditions in polar form, when the function is written as $f(re^{i\theta}) = R(r,\theta)e^{i\Theta(r,\theta)}$.
- 2. (a) Find the region in the complex plane where $0 \leq \text{Im}(e^{z^2}) \leq 1$.
 - (b) Find the values of z for which $Log(\sin z)$ is a real positive number.
- 3. Consider the integral

$$I \equiv \int_C e^z z^2 dz$$

where the contour C is $(0,0) \to (1,0) \to (1,1)$. Show that $|I| < 2e\sqrt{2}$.

4. When C is a unit circle traversed anticlockwise, find

$$\oint_C \frac{e^z \sin z}{z^3}$$

- 5. Find the Laurent series for $\ln(1+z)$. What is its radius of convergence? Does the series converge on the circle of convergence?
- 6. Find all the poles, their order and the residues for

$$f(z) = \frac{\sin z}{z(z - 1/2)^2 \cos(\pi z)}$$

7. Calculate

$$I = \int_0^{2\pi} \frac{d\theta}{a + b\cos^2\theta}$$

- 8. Calculate $\int_0^\infty e^{ix^2} dx$ by considering the limit of $\int_0^\infty e^{(i-\epsilon)x^2} dx$ as $\epsilon \to 0$, and choosing a proper contour (Hint: use the first octant of the circle of infinite radius).
- 9. Arfken 7.1.4

- 10. Arfken 7.2.17
- 11. Arfken 7.2.18
- 12. Arfken 7.4.1

Not to be submitted:

- 1. Show that a function f(x, y) is differentible at z_0 if in a neighbourhood of z_0 , the partial derivatives u_x, u_y, v_x, v_y (a) exist (b) are continuous (c) satisfy the Cauchy-Riemann conditions. Point out explicitly in your proof where the conditions (a), (b) and (c) have been used.
- 2. Show that there is no function analytic in any domain whose real part is $u(x,y) = x^2 + y^2$
- 3. Show that $|\cos z| \le \sqrt{|1 |\sin z|^2|}$
- 4. Arfken 6.5.11
- 5. Arfken 7.2.27