Mathematical Methods: Autumn 2008 Final Exam, Tuesday Dec 23, 10:00 am

1. Express the matrix

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$

as the product of a unit lower triangular matrix, a diagonal matrix and and a unit upper triangular matrix.

[5 points]

2. A potential in the x-y plane is given by

$$V = V_0(\cos x \cosh y - \sin y \cosh x) .$$

If this is the real part of an analytic function $\Phi(z)$ with z=x+iy, find $\Phi(z)$.

[5 points]

3. Find the Laurent series for $f(z) = 1/(z^2 - 1)$ around the point z = 1. Specify the region in the complex plane over which the Laurent series equals f(z).

[5 points]

4. A sequence of numbers a_n is generated by the recurrence relation

$$a_n = 4(a_{n-1} - a_{n-2}) \quad (n \ge 2),$$

with $a_0 = 1$ and $a_1 = 3$.

(a) Bring the recurrence relation to a form

$$\left(\begin{array}{c} a_n \\ a_{n-1} \end{array}\right) = M \left(\begin{array}{c} a_{n-1} \\ a_{n-2} \end{array}\right) .$$

Evaluate eigenvalues and eigenvectors of the 2×2 matrix M.

- (b) Determine the matrix S that will bring M to its Jordan form J through the similarity transformation $S^{-1}MS = J$.
- (c) Calculate the appropriate power of M and hence find the general expression for a_n .

[20 points]

continued \longrightarrow

5. Evaluate

$$\int_0^\infty \frac{\cos ax}{(1+x^2)^2} dx \;, \quad (a>0)$$

by choosing appropriate contours in the complex plane and using the residue theorem.

[15 points]

6. We need to evaluate the leading behaviour of the integral

$$I(\omega) \equiv \int_0^\infty e^{i\omega(x-x^2/2)} dx$$

for large ω using the method of steepest descent.

- (a) Convert I(w) to an appropriate contour integral, and draw the corresponding contour in the complex plane. The relevant features of the contour near the saddle point should be clearly highlighted.
- (b) Obtain the leading behaviour of the above integral for large ω by the steepest descent method.

[15 points]

7. Consider the differential equation

$$z^2y'' + 2zy' - (2+z^2)y = 0.$$

- (a) Find all the singular points of this equation, and determine the nature of these singular points.
- (b) Find two series solutions of this differential equation in the vicinity of z = 0. Keep only those terms that are up to $\mathcal{O}(z^3)$ times the leading term in the expansion.

[20 points]

continued \longrightarrow

8. The solutions of the differential equation

$$(1 - x^2)y'' - 2xy' + l(l+1)y = 0$$

are Legendre polynomials $P_l(x)$, when l is a positive integer. The first few Legendre polynomials are given by

$$P_0(x) = 1$$
, $P_1(x) = x$, $P_2(x) = (3x^2 - 1)/2$.

Given the orthogonality property of Legendre polynomials

$$\int_{-1}^{1} P_n(x) P_m(x) dx = \frac{2}{2n+1} \delta_{mn} ,$$

find the most general solution to

$$(1 - x^2)y'' - 2xy' + 6y = x$$

that is of the form

$$y = \sum_{n=0}^{\infty} a_n P_n(x) .$$

[15 points]

— The paper ends —