Mathematical Methods: Autumn 2008 Midterm Exam

Thursday Oct 2, 10:00 am

1. If two matrices A and B have the same eigenvalues, all of which are distinct, show that A and B are related by a similarity transformation. Outline an explicit, step-by-step construction of the transformation matrix.

[5 points]

2. Find all the solutions of the equation $M^4 = M$ where M is a 4×4 matrix.

[5 points]

- 3. An object is acted upon by a force $\vec{F} = \rho \hat{\phi}$ in the circular cylindrical coordinate system.
 - (a) Calculate curl F in the circular cylindrical coordinate system.
 - (b) Calculate work done by this force while taking the particle along a square of side 2R, centered at the origin, in the z=0 plane.

[10 points]

4. Using the QR decomposition, find the least square fit for the following set of simultaneous equations:

$$x + 4y = 15$$

$$2x + 5y = 25$$

$$2x + 2y = 10$$

$$4x = 2y$$

The values of elements of Q, R and the best fit values of x and y should be given numerically, accurate to (at least) two significant figures.

[15 points]

5. Test the following series for convergence:

$$s = \sum_{n=1}^{\infty} \left(\frac{1 \cdot 3 \cdot 5 \cdot \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdot \cdots (2n)} \right)^{2}$$

[10 points]

6. Consider the matrix

$$A = \left(\begin{array}{cc} 2 & 3\\ 0 & 2 \end{array}\right)$$

- (a) Find the Jordan normal form of A.
- (b) Find the matrix P that would bring A to the Jordan normal form through $P^{-1}AP$. Calculate $P^{-1}AP$ explicitly to check.
- (c) Find the characteristic and minimal polynomials for A.

[15 points]

7. For the above matrix A, calculate e^A exactly (Hint: Write A as the sum of a diagonal matrix D and a nilpotent matrix N.)

[10 points]

8. The electromagnetic field tensor is given by $(\alpha, \beta \in \{0, 1, 2, 3\})$

$$F_{\alpha\beta} = \begin{pmatrix} 0 & E_x & E_y & E_z \\ -E_x & 0 & B_z & -B_y \\ -E_y & -B_z & 0 & B_x \\ -E_z & B_y & -B_x & 0 \end{pmatrix} .$$

The Levi-Civita tensor in four dimensions, the completely antisymmetric tensor of the fourth rank, is defined as

$$\epsilon^{\alpha\beta\gamma\delta} = \left\{ \begin{array}{ll} 0 & \text{if any two of } \alpha,\beta,\gamma,\delta \text{ are identical} \\ +1 & \text{if } (\alpha,\beta,\gamma,\delta) \text{ is an even permutation of } (0,1,2,3) \\ -1 & \text{if } (\alpha,\beta,\gamma,\delta) \text{ is an odd permutation of } (0,1,2,3) \end{array} \right.$$

Explicitly calculate the quantity $\epsilon^{\alpha\beta\gamma\delta}F_{\alpha\beta}F_{\gamma\delta}$. If the angle between \vec{E} and \vec{B} is 45° in one reference frame, what are the possible values of this angle in any other reference frame?

[15 points]

9. The series expansion of the function

$$f(x) = \sum_{1}^{\infty} \frac{x^n}{n^2} = x + \frac{x^2}{4} + \frac{x^3}{9} + \dots$$

converges as n^{-2} . Calculate an "improved" series for f(x) that converges as n^{-3} .

[15 points]

— The paper ends —