Neutrino Physics 2010: Assignment 2

(Given 18/03/2010, To be submitted 05/04/2010)

- 1. Let two neutrino flavours, ν_{α} and ν_{β} , mix to form two mass eigenstates ν_1 and ν_2 , such that $\nu_{\alpha} = \cos \theta \ \nu_1 + \sin \theta \ \nu_2$, $\nu_{\beta} = -\sin \theta \ \nu_1 + \cos \theta \ \nu_2$. Let $\nu(0) = \nu_{\alpha}$. Find the probability of detecting a ν_{β} after the neutrino has travelled a distance L in vacuum, when the heavier neutrino ν_2 decays with a lifetime τ to particles that remain undetected.
 - Plot the conversion probability as a function of L, and find its value at L much greater than the coherence length, i.e. after the wavepackets have separated. (Use any appropriate values for $k\Delta m^2$ and θ that will bring out the main features in the plot.)
- 2. If the solution to atmospheric neutrinos was via oscillations to sterile neutrinos $(\nu_{\mu} \leftrightarrow \nu_{s})$,
 - (a) Plot $P_{\mu\mu}$ as a function of the zenith angle Θ for three values of energy: E=0.2, 2, 20 GeV (on the same plot). Show the numerical values on both the axes explicitly.
 - (b) Plot the up-down asymmetry (U-D)/(U+D) as a function of energy. The "up" events are defined as those with $\cos\Theta < -0.2$ and the "down" events are those with $\cos\Theta > 0.2$. You may do the integrals numerically. Assume that the atmospheric neutrino flux is isotropic.

Use the paremeter values $\Delta m^2 = 2.4 \times 10^{-3} \text{ eV}^2$ and $\theta = 45^{\circ}$. Take the density of the Earth to be constant at 5 g/cc. Neglect the density of the atmosphere.

Compare the results with those of the ν_{μ} - ν_{τ} oscillation problem in the earlier assignment.

- 3. Consider two-neutrino mixing between ν_e and ν_μ , with $\nu_e = \cos \theta \ \nu_1 + \sin \theta \ \nu_2$, $\nu_\mu = -\sin \theta \ \nu_1 + \cos \theta \ \nu_2$. Let the neutrinos travel through matter, so that they experience a matter potential V_c . Plot the values of $\sin^2 2\theta_m$ and Δ_m as a function of V_c for E=10 MeV. Take $m_1=0.10000$ eV, $m_2^2=m_1^2+\Delta m^2$, and $\theta=20^\circ$, with
 - (a) $\Delta m^2 = 10^{-4} \text{ eV}^2$
 - (b) $\Delta m^2 = -10^{-4} \text{ eV}^2$

Show the numerical values on both the axes explicitly. What would happen to the $\sin^2 2\theta_m$ plots if the mixing angle in vacuum were $\theta = 1^{\circ}$?

1

- 4. Plot the survival probability of solar neutrinos as a function of energy (0.5 MeV < E < 15 MeV) for the following scenarios:
 - VAC: $\Delta m^2 = 10^{-9} \text{ eV}^2$, $\theta = 45^{\circ}$
 - SMA: $\Delta m^2 = 5 \times 10^{-6} \text{ eV}^2$, $\theta = 2^{\circ}$
 - LOW: $\Delta m^2 = 10^{-7} \text{ eV}^2$, $\theta = 40^{\circ}$
 - LMA: $\Delta m^2 = 8 \times 10^{-5} \text{ eV}^2$, $\theta = 32^{\circ}$

For SMA, LMA and LOW, use $P_f = Exp(-\pi\gamma/2)$, with $\gamma \equiv \frac{\Delta m^2}{2E} \frac{\sin^2 2\theta}{\cos 2\theta} \frac{1}{|V_C'/V_C|_{\text{resonance}}}$. The density profile of the Sun is

$$\rho(r) = 245 \times 10^{-10.54(r/r_{\odot})} \text{ cm}^{-3}$$

with $r_{\odot}=700,000$ km. For VAC, use the non-adiabatic limit for P_f .

- 5. For neutrinos with energy 10 MeV, calculate the day-night asymmetry if the solution was
 - SMA
 - LMA.

Use the parameters from the problem above. Take the Earth to have an uniform density of 5 g/cc.