Neutrino Physics: Lecture 17

Supernova neutrinos

Amol Dighe

Department of Theoretical Physics Tata Institute of Fundamental Research

May 17, 2010

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

+18

2 Neutrino flavour conversions

Oetection of SN neutrinos

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Explosion and neutrino emission

Detection of SN neutrinos

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

The would-be supernova before the collapse

Trapped neutrinos before the collapse

• Neutrinos trapped inside "neutrinospheres" around $\rho \sim 10^{10} {\rm g/cc.}$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

• Escaping neutrinos: $\langle E_{\nu_e} \rangle < \langle E_{\bar{\nu}_e} \rangle < \langle E_{\nu_x} \rangle$

Core collapse and the shock wave

Gravitational core collapse \Rightarrow Shock Wave

Neutronization burst: ν_e emitted for \sim 10 ms

Cooling through neutrino emission: $\sim 10^{58}$ neutrinos

 $\nu_{e}, \bar{\nu}_{e}, \nu_{\mu}, \bar{\nu}_{\mu}, \nu_{\tau}, \bar{\nu}_{\tau}$ Duration: About 10 sec Emission of 99% of the SN energy in neutrinos

¿¿¿ Explosion ???

Role of neutrinos in explosion

Neutrino heating needed for pushing the shock wave

Large scale convection also needed for explosion

The star after explosion

(Crab nebula, supernova seen in 1054)

Primary fluxes and spectra

- Almost blackbody spectra, slightly "pinched"
- Energy hierarchy: $E_0(\nu_e) < E_0(\bar{\nu}_e) < E_0(\nu_x)$
- $E_0(\nu_e) \approx 10-12 \text{ MeV}$ $E_0(\bar{\nu}_e) \approx 13-16 \text{ MeV}$ $E_0(\nu_{\chi}) \approx 15-25 \text{ MeV}$

Detection of SN neutrinos

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Neutrino oscillations in matter of varying density

Inside the SN: flavour conversion

Non-linear "collective" effects and resonant matter effects

Between the SN and Earth: no flavour conversion

Mass eigenstates travel independently

Inside the Earth: flavour oscillations

Resonant matter effects (if detector is shadowed by the Earth)

Nonlinear effects due to $\nu - \nu$ coherent interactions

• Large neutrino density \Rightarrow substantial $\nu - \nu$ potential $H = H_{vac} + H_{MSW} + H_{\nu\nu}$

$$\begin{array}{lll} & \mathcal{H}_{vac}(\vec{p}) &=& M^2/(2p) \\ & \mathcal{H}_{MSW} &=& \sqrt{2}G_F n_{e^-} diag(1,0,0) \\ & \mathcal{H}_{\nu\nu}(\vec{p}) &=& \sqrt{2}G_F \int \frac{d^3q}{(2\pi)^3} (1 - \cos\theta_{pq}) \left(\rho(\vec{q}) - \bar{\rho}(\vec{q})\right) \\ & \\ & \frac{d\rho}{dt} = i[\mathcal{H}(\rho), \rho] \quad \Rightarrow \quad \text{Nonlinear effects } ! \end{array}$$

Synchronized osc. \rightarrow Bipolar osc. \rightarrow Spectral split

Synchronized oscillations

- ν and $\bar{\nu}$ of all energies oscillate with the same frequency
- No significant flavour change since mixing angle is small

Bipolar oscillations

- Coherent $\nu_e \bar{\nu}_e \leftrightarrow \nu_X \bar{\nu}_X$ oscillations
- A nutating top ??
- Even $\theta_{13} \lesssim 10^{-10}$ OK !
 - Prepare neutrinos for the "spectral split"

Spectral split

- \$\bar{\nu}_e\$ and \$\bar{\nu}_x\$ spectra interchange completely
- ν_e and ν_x spectra interchange for E > E_c

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへで

"Collective" effects: qualitatively new phenomena

Synchronized oscillations:

u and $\bar{\nu}$ of all energies oscillate with the same frequency

S. Pastor, G. Raffelt and D. Semikoz, PRD65, 053011 (2002)

Bipolar/pendular oscillations:

Coherent $\nu_e \bar{\nu}_e \leftrightarrow \nu_x \bar{\nu}_x$ oscillations even for extremely small θ_{13}

S. Hannestad, G. Raffelt, G. Sigl, Y. Wong, PRD74, 105010 (2006)

Spectral split/swap:

 ν_e and ν_x ($\bar{\nu}_e$ and $\bar{\nu}_x$) spectra interchange completely, only within certain energy ranges.

G.Raffelt, A.Smirnov, PRD76, 081301 (2007), PRD76, 125008 (2007)

B. Dasgupta, AD, G.Raffelt, A.Smirnov, PRL103,051105 (2009)

Collective effects influencing supernova astrophysics

- Nucleosynthesis of heavy elements (r-process)
- Shock wave propagation

"Collective" effects: qualitatively new phenomena

Synchronized oscillations:

 ν and $\bar{\nu}$ of all energies oscillate with the same frequency

S. Pastor, G. Raffelt and D. Semikoz, PRD65, 053011 (2002)

Bipolar/pendular oscillations:

Coherent $\nu_e \bar{\nu}_e \leftrightarrow \nu_x \bar{\nu}_x$ oscillations even for extremely small θ_{13}

S. Hannestad, G. Raffelt, G. Sigl, Y. Wong, PRD74, 105010 (2006)

Spectral split/swap:

 ν_e and ν_x ($\bar{\nu}_e$ and $\bar{\nu}_x$) spectra interchange completely, only within certain energy ranges.

G.Raffelt, A.Smirnov, PRD76, 081301 (2007), PRD76, 125008 (2007)

B. Dasgupta, AD, G.Raffelt, A.Smirnov, PRL103,051105 (2009)

Collective effects influencing supernova astrophysics

- Nucleosynthesis of heavy elements (r-process)
- Shock wave propagation

Neutrino spectra after collective effects

red Ve blue Vr

Sequential dominance of phenomena (Fe-core SN)

- $r \leq 200$ km: collective effects dominate
- r > 200 km: standard MSW matter effects dominate

G.L.Fogli, E. Lisi, A. Marrone, A. Mirizzi, JCAP 0712, 010 (2007)

(日) (四) (日) (日) (日)

MSW Resonances inside a SN

H resonance: ($\Delta m_{
m atm}^2$, $heta_{
m 13}$), $ho \sim 10^3 - 10^4$ g/cc

- In $\nu(\bar{\nu})$ for normal (inverted) hierarchy
- Adiabatic (non-adiabatic) for $\sin^2 \theta_{13} \gtrsim 10^{-3} (\lesssim 10^{-5})$

L resonance: (Δm_{\odot}^2 , θ_{\odot}), $\rho \sim 10-100$ g/cc

Always adiabatic, always in v

Fluxes arriving at the Earth

Mixture of initial fluxes:

$$\longrightarrow F_{\nu_e} = p F_{\nu_e}^0 + (1-p) F_{\nu_x}^0 ,$$

$$\longrightarrow F_{\bar{\nu}_e} = \bar{p} F_{\bar{\nu}_e}^0 + (1-\bar{p}) F_{\nu_x}^0 ,$$

p and \bar{p} in the swapped and unswapped energy regimes (Low- Δm^2 swaps not included)

		Θ_{13}	р	р	p	p
			unswapped	swapped	unswapped	swapped
Α	NH	Large	0	$\sin^2 \theta_{12}$	$\cos^2 \theta_{12}$	0
В	IH	Large	$\sin^2 \theta_{12}$	0	0	$\cos^2 \theta_{12}$
С	NH	small	$\sin^2 \theta_{12}$	0	$\cos^2 \theta_{12}$	0
D	IH	small	$\sin^2 \theta_{12}$	0	$\cos^2 \theta_{12}$	0

・ロト・西ト・ヨト・ヨト・ 中・ シック

• "Small": $\sin^2 \theta_{13} \leq 10^{-5}$, "Large": $\sin^2 \theta_{13} \gtrsim 10^{-3}$.

Explosion and neutrino emission

A recent nearby supernova: SN1987A

(Hubble image)

- Confirmed the SN cooling mechanism through neutrinos
- Number of events too small to say anything concrete about neutrino mixing
- Some constraints on SN parameters obtained

・ロト・日本・日本・日本・日本

Signal expected from a galactic SN (10 kpc)

Water Cherenkov detector:

- $\bar{\nu}_e p \to n e^+$: $\approx 7000 12000^*$
- $\nu e^- \rightarrow \nu e^-$: $\approx 200 300^*$
- $\nu_e + {}^{16} O \rightarrow X + e^{-1} \approx 150 800^*$

* Events expected at Super-Kamiokande with a galactic SN at 10 kpc

Carbon-based scintillation detector:

•
$$\bar{
u}_e p
ightarrow ne^+$$

30 0/kt

• $\nu + {}^{12}C \rightarrow \nu + X + \gamma$ (15.11 MeV)

Liquid Argon detector:

•
$$\nu_e$$
 + ${}^{40}Ar \rightarrow {}^{40}K^* + e^-$

Pointing to the SN in advance

- Neutrinos reach 6-24 hours before the light from SN explosion (SNEWS network)
- $\bar{\nu}_e p \rightarrow ne^+$: nearly isotropic background
- $\nu e^- \rightarrow \nu e^-$: forward-peaked "signal"
- Background-to-signal ratio: $N_B/N_S \approx 30-50$
- SN at 10 kpc may be detected within a cone of $\sim 5^\circ$ at SK

Earth matter effects

• If F_{ν_1} and F_{ν_2} reach the earth,

$$\begin{aligned} F^D_{\nu_e}(L) - F^D_{\nu_e}(0) &= (F_{\nu_2} - F_{\nu_1}) \times \\ & \sin 2\theta_{12}^\oplus \sin(2\theta_{12}^\oplus - 2\theta_{12}) \sin^2\left(\frac{\Delta m_\oplus^2 L}{4E}\right) \end{aligned}$$

(Sign changes for antineutrinos)

- Nonzero Earth matter effects require
 - Neutrinos: $p \neq 0$
 - Antineutrinos: p
 [¯] ≠ 0
- Can distinguish scenarios depending on Earth effects in different energy regimes
- A more efficient way of detecting split positions

Event spectra observed at detectors

- Identify oscillations at one detector
- Compare total luminosity at two detectors

IceCube: the best luminosity counter

(日) (字) (日) (日) (日)

When shock wave passes through a resonance region (density ρ_H or ρ_L):

- adiabatic resonances may become momentarily non-adiabatic
- Sharp changes in the final spectra even if the primary spectra change smoothly

R. C. Schirato, G. M. Fuller, astro-ph/0205390

・ロト ・ 理 ト ・ ヨ ト ・ ヨ

G. L. Fogli, E. Lisi, D. Montanino and A. Mirizzi, PRD 68, 033005 (2003)

Tracking the shock fronts

- At $t \approx 4.5$ sec, (reverse) shock at ρ_{40}
- At $t \approx 7.5$ sec, (forward) shock at ρ_{40}
- Multiple energy bins ⇒ the times the shock fronts reach different densities of ρ ~ 10²−10⁴ g/cc

Shock signals at a megaton water Cherenkov

- Time-dependent dip/peak features in $N_{\nu_e,\bar{\nu}_e}(E)$, $\langle E_{\nu_e,\bar{\nu}_e} \rangle$, $\langle E_{\nu_e,\bar{\nu}_e}^2 \rangle$, etc.
- Times at which dips/peaks appear in $N_{\bar{\nu}_e}(E)$ are the times at which the shock waves enter the densities

$$\rho(E) = \frac{m_N \Delta m_{atm}^2}{2\sqrt{2}G_F Y_e E}$$

ullet \Rightarrow Tracking of shock wave while it is still inside the mantle

R.Tomas, M.Kachelriess, G.Raffelt, AD, H.T.Janka and L.Scheck, JCAP 0409, 015 (2004)

Identifying mixing scenario

- Shock wave present in ν_e only for scenario A
- Shock wave present in $\bar{\nu}_e$ only for scenario B

Shock signals at a megaton water Cherenkov

- Time-dependent dip/peak features in $N_{\nu_e,\bar{\nu}_e}(E)$, $\langle E_{\nu_e,\bar{\nu}_e} \rangle$, $\langle E_{\nu_e,\bar{\nu}_e}^2 \rangle$, etc.
- Times at which dips/peaks appear in $N_{\bar{\nu}_e}(E)$ are the times at which the shock waves enter the densities

$$\rho(E) = \frac{m_N \Delta m_{atm}^2}{2\sqrt{2}G_F Y_e E}$$

ullet \Rightarrow Tracking of shock wave while it is still inside the mantle

R.Tomas, M.Kachelriess, G.Raffelt, AD, H.T.Janka and L.Scheck, JCAP 0409, 015 (2004)

Identifying mixing scenario

- Shock wave present in ve only for scenario A
- Shock wave present in
 *v
 _e* only for scenario B

What supernova neutrinos can tell us

On neutrino physics

- Identify neutrino mass ordering: normal or inverted

On supernova astrophysics

- Locate a supernova hours before the light arrives
- Track the shock wave through neutrinos while it is still inside the mantle (Not possible with light)

Inverse supernova neutrino problem

Observe the neutrino spectra, deduce neutrino mixing parameters, primary neutrino spectra, shock wave propagation

What supernova neutrinos can tell us

On neutrino physics

- Identify neutrino mass ordering: normal or inverted

On supernova astrophysics

- Locate a supernova hours before the light arrives
- Track the shock wave through neutrinos while it is still inside the mantle (Not possible with light)

Inverse supernova neutrino problem

Observe the neutrino spectra, deduce neutrino mixing parameters, primary neutrino spectra, shock wave propagation

What supernova neutrinos can tell us

On neutrino physics

- Identify neutrino mass ordering: normal or inverted

On supernova astrophysics

- Locate a supernova hours before the light arrives
- Track the shock wave through neutrinos while it is still inside the mantle (Not possible with light)

Inverse supernova neutrino problem

Observe the neutrino spectra, deduce neutrino mixing parameters, primary neutrino spectra, shock wave propagation