NEUTRINO CROSS-SECTION MEASUREMENT

Moon Moon Devi.

INO.

Plan of The Talk:

- > Motivation.
- > Neutrino interactions and cross sections.
- Different Experiments to measure neutrino cross sections
 - Descriptions.
 - Results.
- > Conclusion.

Motivation:

- To study nucleon structure.
- To predict rates of signal and background events for neutrino oscillation searches.

Neutrino Interactions :

- > Neutrino interacts only by weak interaction, by exchange of a gauge boson.
- Weak interactions are less probable to take place compared to other interactions, as the masses of W and Z bosons are large.(W~80GeV, Z~91GeV).
- These interactions are of two types: charged current interaction(CC) and neutral current interaction(NC).
- CC interaction is mediated by a W boson. A neutrino interacting with a nucleon exchange charge with the nucleon and turn into charged leptons.
- > NC interaction is mediated by a Z boson.
- For both the interactions, several processes exist like elastic, pion production, deep inelastic scattering, coherent, resonant and diffractive.

Neutrino-electron interaction :

For electron neutrinos the elastic scattering with electrons can be mediated by charged and neutral weak bosons (W and Z)

$$V_e + e^- \rightarrow V_e + e^- \qquad \qquad V_e \qquad e^- \qquad V_e \qquad V_$$

>The elastic scattering of muon and tau neutrinos from electrons is mediated only by the neutral boson.

The inelastic scattering processes are caused only by the charged currents.

The cross section formulae for purely leptonic interactions:

Elastic scattering	Inelastic scattering
$\sigma_{\nu_e e^- \to \nu_e e^-} = \frac{G_F^2 s}{\pi} \left[\left(\frac{1}{2} + \xi \right)^2 + \frac{1}{3} \xi^2 \right]$	$\sigma_{ u_{\mu}e^- ightarrow u_e\mu^-} ~=~ {G_F^2s\over\pi}$
$\approx 9.5 \cdot 10^{-49} \text{ m}^2 \left(\frac{E_{\nu}}{1 \text{ MeV}}\right)$	$\approx 17 \cdot 10^{-49} \text{ m}^2 \left(\frac{E_{\nu}}{1 \text{ MeV}}\right)$
$\sigma_{\overline{\nu}_e e^- \to \overline{\nu}_e e^-} = \frac{G_F^2 s}{\pi} \left[\frac{1}{3} \left(\frac{1}{2} + \xi \right)^2 + \xi^2 \right]$	$\sigma_{\rho_{\mu}e^- \to \rho_e \mu^-} = \frac{G_F^2 s}{3\pi}$
$\approx 4.0 \cdot 10^{-49} \text{ m}^2 \left(\frac{E_{\nu}}{1 \text{ MeV}}\right)$	$\approx 5.7 \cdot 10^{-49} \mathrm{m}^2 \left(\frac{E_{\nu}}{1 \mathrm{MeV}} \right)$
$\sigma_{\nu_{\mu}e^{-} \to \nu_{\mu}e^{-}} = \frac{G_{F}^{2}s}{\pi} \left[\left(\frac{1}{2} - \xi \right)^{2} + \frac{1}{3}\xi^{2} \right]$	Explanation methods a by $(z = -2)^2/z$
$\approx 1.6 \cdot 10^{-49} \text{ m}^2 \left(\frac{E_{\nu}}{1 \text{ MeV}}\right)$	For low energies, replace s by $(s - m_{\mu})/s$.
$\label{eq:sigma_phi} \boxed{\sigma_{p_{\mu}e^- \rightarrow p_{\mu}e^-} = \frac{G_F^2 s}{\pi} \left[\frac{1}{3} \left(\frac{1}{2} - \xi \right)^2 + \xi^2 \right]}$	
$\approx 1.3 \cdot 10^{-49} \text{ m}^2 \left(\frac{E_{\nu}}{1 \text{ MeV}}\right)$	
$\xi = \sin^2 \theta_W \approx 0.23$	

The cross section formulae for tau neutrinos are the same as for muon neutrinos.

Ref. http://cupp.oulu.fi/neutrino/nd-cross.html

Neutrino-nucleon quasi-elastic scattering:

$$v_{\mu} + n \rightarrow \mu^{-} + p \qquad \overline{v}_{\mu} + p \rightarrow \mu^{+} + n \qquad \stackrel{(-)}{v_{\mu}} + p \rightarrow v_{\mu} + p \rightarrow v_{\mu}$$

- Form factors introduced since proton, neutron not elementary.
- Depend on vector and axial weak charges of the proton and neutron.

Deep Inelastic neutrino-nucleon scattering:

- $\succ \quad \nu_{\ell} + \mathbf{N} \rightarrow \ell + \mathbf{X}$
- Parton model is used to make predictions for deep inelastic neutrino-nucleon scattering.
- Neutrino beams from pion and kaon decays, dominated by muon neutrinos are used to study this process.

$$\nu_{\mu} + N \rightarrow \mu^{-} + X$$
 $\nu_{\mu} + N \rightarrow \mu^{+} + X$

- Since parity is not conserved in weak interactions, there are more structure functions for weak processes, like neutrino scattering, than for electromagnetic processes, like electron scattering.
- Seneral form for the neutrino-nucleon deep inelastic scattering cross-section, neglecting lepton masses and corrections of the order of M/E:

$$\frac{d\sigma_{v,\bar{v}}}{dxdy} = \frac{G_F^2 M E}{\pi} \left[(1-y) F_2^{v,\bar{v}} + y^2 x F_1^{v,\bar{v}} \mp \left(y - \frac{y^2}{2} \right) x F_3^{v,\bar{v}} \right]$$

> The functions F_1 , F_2 and F_3 are the functions of Q^2 and ν . In the scaling limit they are the functions of x only.

Single pion production:

ΝC1π⁰

Neutrino-nucleon inelastic cross sections formulae:

For energies < 1 GeV:

Neutrino-nucleon	Antineutrino-nucleon
$\sigma_{ u_e n o e^- p} \;\; = \;\; rac{G_F^2 E_ u^2 (\hbar c)^2}{\pi} (g_V^2 + 3 g_A^2) \left(1 + rac{Q}{E_ u} ight)$	$\label{eq:sigma_p_ep_density} \boxed{ \sigma_{p_ep \to e^+n} \ = \ \frac{G_F^2 E_\nu^2 (\hbar c)^2}{\pi} (g_V^2 + 3g_A^2) \left(1 - \frac{Q}{E_\nu}\right) }$
$\sqrt{1 + 2\frac{Q}{E_{\nu}} + \frac{Q^2 - m_e^2}{E_{\nu}^2}}$	$\sqrt{1-2rac{Q}{E_{ u}}+rac{Q^2-m_e^2}{E_ u^2}}\; heta(E-Q)$
The vector and axial-vector coefficients have values $g_V = 1$ and $g_A = 1.23$.	
Hence the multiplier in the equations has the value	
$\frac{G_F^2 E_{\nu}^2 (\hbar c)^2}{\pi} (g_V^2 + 3g_A^2) = 9.3 \cdot 10^{-48} \text{ m}^2 \left(\frac{E_{\nu}}{1 \text{ MeV}}\right)^2$	

For very high energies (50 GeV < E < 250 GeV):

Neutrino-nucleon	Antineutrino-nucleon
$\sigma_{\nu_e N \to e^- X} \approx 6.7 \cdot 10^{-43} \left(\frac{E}{\text{GeV}}\right) \text{m}^2$	$\sigma_{\nu_e N \to e^+ X} \approx 3.4 \cdot 10^{-43} \left(\frac{E}{\text{GeV}}\right) \text{m}^2$

Neutrino-nucleon elastic total cross sections formulae:

$$\begin{array}{rcl} \hline & \mbox{Neutrino-nucleon elastic c.s.} \\ \hline \sigma_{\nu n \to \nu n}(E) &=& \frac{G_F^2 E_{\nu}^2 (\hbar c)^2}{\pi} \left(1 + 3g_A^2\right) \\ &\approx& 9.3 \cdot 10^{-48} \ {\rm m}^2 \left(\frac{E_{\nu}}{1 \ {\rm MeV}}\right)^2. \\ \hline \sigma_{\nu p \to \nu p}(E) &=& \frac{G_F^2 E_{\nu}^2 (\hbar c)^2}{4\pi} \left((16\xi^2 - 8\xi + 1)(1 + 3g_A^2)\right) \\ &\approx& 6.0 \cdot 10^{-50} \ {\rm m}^2 \left(\frac{E_{\nu}}{1 \ {\rm MeV}}\right)^2. \end{array}$$

Ref. http://cupp.oulu.fi/neutrino/nd-cross.html

v Cross Sections Picture :

NuTev (Neutrinos at the Tevatron):

- It is a fixed target deep inelastic neutrino scattering experiment at Fermilab(1996-97).
- Sign selected beamline.
- SSQT to produce a high purity neutrino or antineutrino beam.
- Decay pipe.
- Shield.
- Beam is almost pure v or \overline{v} . (v in \overline{v} mode 3×10⁻⁴, v in \overline{v} mode 4×10⁻³).
- Beam only has ~1.6% electron neutrinos.
- Uses a continuous calibration beam running concurrently with data taking.

NuTeV Detectors:

Target/Calorimeter:

- ➢ 168 Fe plates (3m×3m×5.1cm)
- > 84 liquid scintillation counters

(triggers the detector & measures visible energy, neutrino interaction point, event length.)

- > 42 drift chambers.
- > Solid Fe magnet \rightarrow measures μ momentum/charge.
- Continuous Test Beam simultaneous with v runs
 - Hadron, muon, electron beams
 - Toroid and calorimeter response are mapped.

The differential cross section per nucleon as a function of x, the Bjorken scaling variable, and y, the inelasticity, can be expressed in terms of the relative flux as function of energy and differential number of events as,

$$\frac{d^2 \sigma^{\nu(\bar{\nu})}(E)}{dxdy} = \frac{1}{\Phi(E)} \frac{d^2 N^{\nu(\bar{\nu})}(E)}{dxdy}$$

► Data selection criteria :

a good muon track for accurate momentum measurement,

minimum energy requirements :

 E_{Had} >10 GeV, E_{μ} >15 GeV, E_{ν} > 30 GeV. ➤ Neutrino Relative flux determined from a sample at low hadronic energy (< 20GeV) .As $y = \frac{E_{Had}}{E_{\nu}} \rightarrow 0$, the integrated number of events are proportional to the flux. ➤ Detector simulation is used.

Differential cross sections for neutrinos and anti neutrinos at $E_v = 85 \text{GeV}$ (for different x).

Measurement of Winberg angle:

• Also, this experiment measured the value of the Winberg angle utilising the Paschos-Wolfenstein Relation $R^{-} = \frac{\sigma_{\rm NC}^{\nu} - \sigma_{\rm NC}^{\bar{\nu}}}{\sigma_{\rm CC}^{\nu} - \sigma_{\rm CC}^{\bar{\nu}}} = \rho^{2} \left(\frac{1}{2} - \sin^{2}\theta_{\rm W}\right)$

K2K:

- Super-K as the far detector →to confirm atmospheric neutrino oscillations.
- ➢ Near detectors → to observe un-oscillated neutrinos and to measure neutrino cross sections.
- ➤ The K2K near detector ensemble →
 1 kton water cerenkov detector.
 A scintillating fiber water target tracker (SciFi).
 A solid scintillator tracker (SciBar).
 A muon range detector (MRD).
- ► 12 GeV protons on Al target at KEK \rightarrow a v_{μ} beam (97% purity) of peak energy 1.3 GeV.
- The first to publish updated neutrino cross section measurements in the 1 GeV range.

Results:

> Neutrino interactions on both carbon and oxygen-based targets was studied.

>1 kt Water Cherenkov \rightarrow Water target \rightarrow The first measurement of NC π production in water.

> The ratio of neutral current single π^0

> production and the total CC cross section is calculated to be > $\sigma_{NC1\pi0}/\sigma_{CC} = 0.063 \pm 0.001(stat) \pm 0.006(syst).$

This value agrees with the monte Carlo expectation of 0.064.

- > SciFi \rightarrow Water target \rightarrow The first measurement of axial mass M_A
- ➢ in QE interactions in water.
- 8814 events from the K2K-I run and 5967 events from the K2k-IIa run.
- > Data above Q²>0.2 GeV² are fitted to obtain M_A as, $M_A = 1.18 \pm 0.03(stat) \pm 0.12(syst)$.
- > 20% higher than previously measured.

Results:

SciBar detector data \rightarrow Carbon target \rightarrow First search for CC coherent π^+ production at low energy.

Events with two reconstructed tracks are selected.

>MC predicts excess events at low Q^{2} .

>But fitting Q^2 distribution yields 7.6±50.4 events Expected 470 events.

≻No evidence for coherent production.

SciBooNE (SciBar+Booster Neutrino Detector):

>Uses Booster Neutrino Beam (BNB) at FNAL (on axis-100 m from Be target).
> The energy peak of the v beam is 0.7 GeV.
> The detectors:
SciBar , Electromagnetic calorimeter , Muon range detector.

440 m

>8 GeV protons from Booster with the rate being 4 X 10¹² protons/1.6µs hit Be target (length 71 cm , diameter 1cm).
> and produces mesons, i.e, pions and kaons.

The target is surrounded by magnetic focusing horn such that the polarity can be changed to get v and anti-v.

≻This experiment collected both neutrino and antineutrino data in a period from June 2007 to August 2008.

Result:

- > 32000 v_{μ} CCQE events .
- ▶ Lower statistics than MiniBooNE, but better Q² resolution
- > Higher statistics than K2K SciBar, and lower $\mathbf{E}_{\mathbf{v}}$.
- Higher event purity less resonant contamination
- Confirm M_A measurement with low energy neutrinos and low-A target.
- > NC1 π^0 detection.
- > Same detector used to measure NC1 π^0 in two beams.
- $\succ v_{\mu}^{v}$ bar CC1 π Coherent process

Neutrino event

Anti neutrino event

MINERvA-Main Injector Neutrino Experiment v-A:

- It is a dedicated neutrino cross section experiment planned to run in the NUMI (Neutrinos at the Main Injector) beamline at Fermilab.
- The detector will be placed upstream of the MINOS Near Detector in the NuMI beam line.
- It will measure neutrino interactions across a wide range of neutrino energies (1-20GeV) as provided by the NuMI beam.
- The detector is being placed upstream of the MINOS Near Detector in the NuMI beam line.
- It will be the first detector to house a wide spectrum of nuclear targets (C to Pb) starting with three target materials C, Fe and Pb.
- > Seeks to measure low energy neutrino interactions.

MINERvA Detector details:

- Downstream Calorimeters:
 20 modules, 2% active, sheets of lead (Electromagnetic Calorimetry) or steel (Hadronic calorimetry) between scintillator planes.
- Side Calorimeters:

2 thin lead "rings" for side Electromagnetic Calorimetry, 4 layers of instrumented steel

MINERvA Expects:

CCQE :

- Expect ~800,000 events
- > Precision measurement of $\sigma(Ev)$ and $d\sigma/dQ$ over a wide dynamic range
- > Precision determination of axial vector form factor (F_A), particularly at high Q²
- Study of A-dependence (C, Fe and Pb targets)

Coherent π :

> Different nuclear targets will allow the first measurement of the A-dependence of σ_{coh} across a wide A range.

NC1p⁰ :

- Clean identification of π^0 's.
- Extremely good π momentum reconstruction.
- Running in >1 GeV energy mode would allow understanding of NC1 π^0 background.

CC1*π*:

Expect ~ 1.6M total resonant, 1.2M 1π .

- > Precision measurement of σ and $d\sigma/dQ$ for individual channels.
- Detailed comparison with dynamic models, comparison of electro- & photo production.
- Study of the resonance-DIS transition region.
- Study of nuclear effects and Adependence.

MINERvA Challenges:

- Experiments using magnetic horns suffer from *wrong sign* (WS) backgrounds
 ν_μ in ν_μ mode.
- For the Booster Neutrino Beam, WS backgrounds comprise ~35% of the total event rate.
- These must be removed from event samples for accurate antineutrino cross section measurements.
- Difficult for detectors without magnetic fields.

MIPP: Main Injector Particle Production Experiment:

- A fixed-target particle production experiment.
- TPC,
- Beam Chamber,
- RICh (Ring Imaging Cerenkov Counter).
- Caloriemeter.
- Primary proton beam of momentum120 GeV/c, secondary p,k and π beams of momentum 5-80 GeV/c from NUMI.
- Multiple targets including liquid Hydrogen, and Uranium etc.)
- It permits detailed cross section measurements.

Conclusion :

- We had a overview of different neutrino interactions and cross sections.
- We went through the details of different experiments like NuTeV,K2k,SciBooNE,MINERvA,MIPP.
- We had a view of the results both obtained and expected from the experiments.

References:

- Neutrino Physics by Kai Zuber.
- Massive neutrinos in Physics and Astrophysics by R. N. Mohapatra and P. B. Pal.
- Physics of neutrinos and application to astrophysics by M. Fukugita and T. Yanagida.
- Quarks and Leptons by F. Halzen and A. D.Martin.
- Neutrino Cross section and scattering physics, Fleming.B.
- Low energy cross sections from K2K, MiniBooNE, SciBooNE and MINERvA, By Zeller G. P.
- arXiv: hep-ex/0408006v1.
- <u>http://www-e815.fnal.gov/</u>
- http://www-sciboone.fnal.gov/
- Naples. D. et al, NUTEV cross section and structure function measurements.
- Neutrino Cross Section Experiments, by, Wascko M.
- hep-ex/0110059, Kato I.
- <u>http://minerva.fnal.gov/</u>
- The Fermilab MIPP experiment, Solomey N.

