CONVENTIONAL NEUTRINO BEAMS & SUPERBEAMS

Kolahal Bhattacharya

DHEP

Plan of Talk

- A short animation film
- Neutrino Beam-a little analysis
- Classification and characteristics
- Super beams
- > Experiments
- References

NEUTRINO BEAM PRODUCTION

CERN neutrinos to Gran Sasso (LBL expt.):

CERN-MOVIE-2005-004-0753-kbps-480x360-25-fps-audio-64-kbps-44-kHz-stereo (1).flv

- Beam of protons + a target material = mesons (π , K)
- Mesons decay into the neutrino beam seen by a detector
 - K⁺ / $\pi^+ \rightarrow \mu^+ + \nu_{\mu}$
 - $\mu^+ \rightarrow e^+ + \nu_{\mu} + \nu_e$
 - $K^+ \rightarrow \pi^0 + e^+ + \nu_e$; $K^- \rightarrow \pi^0 + e^- + anti-\nu_e$
 - Create neutrinos via meson <u>Decay at Rest</u>, <u>Decay in Flight</u>

The Process

- A proton synchrotron impinges bunches of high energy protons on fixed target.
- Secondary mesons (π,K) generated.
- Mesons selected by focusing devices are channeled through decay tunnel.
- Within decay tunnel: $M^+ = \mu^+ \nu_{\mu}$
- Survived mesons and 'μ's are absorbed. The collimated v beam aims at the experiment.

Narrow Band Beam (NBB)

- Momentum selected (π ,K)s enter decay tunnel parallel.
- E_v is related to r & L as $\theta_v = r/L$.
- v beam shows dichroism.
- Flat v_{μ} spectrum.
- Small intensity.
- Less v_e contamination & NC background.

Wide Band Spectrum(WBB)

- Focusing device is a horn-like conductor pulsed with high current.
- Concentric circular magnetic field focuses particles to the beam axis.
- Calculation of $\phi(E_v)$ and E_v cannot be done analytically and is simulated.
- Higher intensity and more v_e contamination.

Beam of v_{τ}

- Necessary for DONUT experiment in FNAL.
- Produced by stopping 800 GeV proton beam completely by Tungsten target.
- > N-p interaction produces <u>charm</u>ed heavy D_s meson which decay as $D_s \rightarrow \tau \bar{\nu}_{\tau}$ and $\tau N \rightarrow \nu_{\tau} X$
- > The goal: to detect ν_{τ} CC reaction: $\nu_{\tau} N \rightarrow \tau^{-} X$

SUPER BEAMS

- <u>So far</u>: ν_µ disappearance(K2K/MINOS) or ν_τ appearance(OPERA) measurements with conventional beams.
- Idea: reduce v_e component!
- <u>Proposal</u>: low energy, high intensity neutrino beams; this requires high power (2-5 MW)proton accelerator delivering more intense beam of protons on target.

T2K(Tohai to Kamioka)

- Aims to determine $v_{\mu} \rightarrow v_{e}$ oscillation (appearance experiment).
- JHF: J-PARK proton synchrotron (working @ 0.75 MW) delivers 50 GeV protons on target.
- The v beam illuminates Super Kamiokande detector at a baseline L~295 km.
- Off-axis angle can be varied (2⁰-3⁰) to maximum sensitivity to θ_{13} .
- Upgraded version: T2HK (4 MW proton accelerator) and Hyper Kamiokande (1 Mton detector) may also give information about Dirac phase δ.

SPL(Super conducting Proton Linac) CERN

- 2.2 GeV intense proton beam on Hg target.
- Intense v beam (ϕ ~10¹¹ v_µ/yr/m²) with energy E_v=0.27 GeV.
- Detector at Modane lab in Frejus (L~130km).
- v_e contamination from kaons suppressed to ~0.4%.
- Future Upgrade: increasing SPL energy to 3.5 GeV, ϕ_v can be increased three-fold (more efficient focusing of secondary mesons).

NOvA (Fermilab)

- Aims at appearance of v_e from v_μ through oscillation.
- 6.5x10²⁰ pot/yr with (120 MeV/c momentum) on NuMI target.
- NuMI off-axis beam with E_v =2 GeV and v_e contamination < 0.5%.
- Near and Far end Liquid Scintillation detector.
- Baseline L=810 km with detector sited 12 km off-axis (14 mrad).
- Will achieve sensitivity to sin²θ₁₃ comparable to that by T2K.

Physics with Superbeams

- Reconstructing interesting physics from type and number of neutrino interaction; E and L.
- 1st oscillation maximum exhibits a difference between neutrino-antineutrino oscillation probabilities due to matter effects, even when CP is conserved (fake CP violation).
- The 2nd oscillation maximum exhibits difference in neutrino antineutrino oscillation probabilities only when CP is violated(matter effects do not play a significant role).
- Study of 2nd maximum gives information about Dirac phase δ and mass hierarchy.

NUMI OFF-AXIS NBB

- Black dotted line: neutrino
- Red dotted line: anti-neutrino

References

- Neutrino Physics by Kai Zuber
- An Off-axis Neutrino beam-Kirt Mcdonald
- Future Possibilities with Fermilab Neutrino Beams-Niki Saoulidou
- Neutrino Factory and Super beam Facility-ISS Physics working group.