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Neutrino astronomy

» A promising branch of astronomy which will help us to probe
the otherwise unobservable regions of the universe.

» Main aim : the discovery and understanding of the sites of
acceleration of high energy particles in the universe.

» Study of sources such as :
* Supernova remnants (SNR)
* Active galactic nuclei (AGN)
* Microquasars (MQ)
* Gamma ray bursts (GRB)




Why neutrino astronomy?

» Neutrinos interact weakly and have small cross sections.

» So can penetrate large thickness of matter with negligible
attenuation.

» Enables their escape from the large matter density at the site of
production and can point back to the source when detected.

» At 100GeV, neutrino interaction length =10° times that of
photon.
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1 parsec (pc) ~ 3 light years ~ 30.000 billions km




Examples for the regions of high matter density
which the neutrinos can penetrate:

» Dust clouds in the galactic plane.

» Dense accretion disks of matter around massive central sources

such as black holes.
» Centers of stars and planets including the Sun and the Earth.




Neutrino production in space occurs where high enerygy
particles or gamma rays interact with matter.

» Extremely energetic astronomical sources : high energy
neutrinos are emitted as secondary pdts in interactions of
charged cosmic rays, where they are accelerated in the shock,
processes inside the sources. They are the interactions of:

» 1) high energy protons with nucleons in the interstellar matter

» 2) high energy protons with photons from the local radiation
freld.

» Decay of the charged pions produced in these hadronic
interactions give neutrinos.
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At the sources, the neutrino and gamma fluxes are almost equal,
provided they come from hadronic interactions.

y &9 for pp interaction
y @, A9 for P interaction (due to dominance of A
resonance)
» v carries only 10% of the primary proton eneryy.
Relative fractions of neutrino flavours produced at the source :
voiv ocvo~1:2:107
e i T
After propagating ~ Kpc distances to the Earth,

r v v =~=1:1:1
e 7 T

due to VM <« VTosci[[ation



The v, signature comes from the regeneration

T

effect deriving from the T decayin v, .

v+ N — 74

T — UV _
-

» [Double bang expected due to 1% and 2" tau neutrinos. |

» The neutrinos observed from the Sun and SN1987a, in the
Large Magellenic Cloud are of MeV energies.

» Neutrino telescopes search for TeV to PeV neutrinos form pp
and proton gamma interactions.




Why massive detectors?

» Highly penetrating, so need massive detectors, even for very
intense sources.

» o, — L uptoafew TelV
» o — E™  at higher energies
y o, =10""em® gt 100 TeV

» With this crosssection, a neutrino of 100TeV energy has 63%
probability to interact while crossing the Earth's diameter.

» Target material for neutrino telescopes ~ 1 Gigatonne




Above 10°TeV, Earth becomes opaque to upgoing neutrinos. So neutrino detection
depends mostly on horizontal directions.

» Event rate for different sources :

Source type Neutrino events /Rm2 /year
Supernovae 50-100

Plerions 1-10

Shell SNR, 40-100

Pulsars + Clouds 1-30

Binary systems A few

Microquasars 1-300




» Rm? aperture or kK’ volume to detect these fluxes

» Most suitable detection technigue at this scale: underwater
(deep sea, deep lakes)/under ice (deep glacier) detection of
relativistic muons by means of CerenRov radiation with the
help of a matrix of light detectors (PMs) in glass spheres,
optical modules hung on strings near sea bed or deep inside the
ice glacier.




Detection technique

» Neutrino telescopes are sensitive to all the three neutrino
flavours, but detection efficiency of each mode varies
depending on the detection technique.

Neutrino detection via 2° particles produced in interactions
with matter, either inside or around the detector.

Two types of interactions :
1) Charged current interactions and

2) Neutral current interactions




Charged current : Formation of leptons corresponding to the flavour of the
interacting neutrino. (Dominating mode)

v N —e X
v N —p X (dominating mode due to long range of
> v N — 71 X muon)

)
where N=nucleon and X=hadrons resulting from nucleon recoil
Neutral current : Inelastic scattering of neutrinos
VN — X
Lepton > Main role in detection efficiency .
Hadrons=> No contribution at all.




Astronomy with a Ne




ANTARES : Mediterranian sea,near La, Seyne,
France

» Area ~ 0.1kRm2; active height ~ 350m

» ~12 vertical strings each of 350m height , and 70m distant from
one another ,with an OM which has a PMT, and other
electronics enclosed in a pressure resistant glass sphere.

25 storeys; spacing 14.5m.

» OM arranged at an angle of 45° below the horizontal. So high
detection efficiency in the lower hemisphere.

» LCM for each storey and SCM for each string.




Trigger logic in sea:

» 1% [evel trigger : coincidence between any two OMs in a storey.

» 2" [evel trigger : combinations of 1 level triggers. Full
detector will be read out following this.

v 3% level trigger : more refined, imposing tighter time
coincidences over large no:of optical modules, will be made in a
farm of processots on shote .

Expected read out rate: Several RHz
Data recording rate <100 events per second




Different neutrino interactions in ANTARES

» Charged current v, interactions:

- electromagnetic and hadronic showers with
longitudinal dimensions < a few meters (. radiation length
and nuclear interaction length of water < 1m)

- point like events on ANTARES scale

- enerygy resolution of these events > that for muons, at
E>100GeV ( all energy deposited in the detector volume)

- poor angular resolution , due to point [ike chgracter of
shower

- contamination by neutral current int of both V.V, |V

T



#NCint =1/3 #CCint
NC : neutrino type unidentified, poor energy resolution (final state v missing), poor
angular resolution : point like character
» CC v interactions producing p~ and a point like shower.
. . :|:
< .
Estimation of v jfrom measured .~ eneryy

> I/ﬂd — [ U {nteractions : Eﬂ :gEV#

y VU wd interactions: b= iEZ

» Muon energy can be determined from the range for
E<100GeV or from dE/dx for E>11eV.

» Hadronic shower gives additional information of v eneryy.

» ANTARES design — to detect the CC 1/“ interactions.




CC vV, interactions produce 1= electronic, muonic and
hadronic decay modes.

» The v_ interaction vertex and the T~ decay vextex can't be
separated for E<1007eV.

» The electronic and hadronic modes will look like V', CC or NC

interactions.

» Though the muonic decays v — vy are visible with a
branching ratio 17%, they can’t be distinguished from 1/,

interactions.




CerenRov light emission : occurs when a particle
with a velocity > velocity of light in the medium
passes through the medium.

» Angle of emission of Cerenkov
photons:

VAN
y 0, =cos™ [_] ,where,

Bn
(V)

» B = — =1 for ultra relativistic
c

particles , n=refractive index. of
the medium.

Sl s ~  For sea watet, n=1.35
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Expected performance

» Pointing accuracy

» Effective areas for muon and neutrino

» Detector response to various spectral indices
» Enerygy response

a)Pointing accuracy: Llr response of detector wrt incoming v
direction .

Determining factors:
- Lle btw v and y in the v interaction
- Deviation of muon drn due to multiple scattering

- Llr resolution of detector wrt to the muon




The mean angle between muon
and neutrino decreases with
energy like E°, with a
pointing accuracy of about one

degree at1 TeV.
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Fig: Angular resolution Vs neutrino energy in

GeV (log10 scale)

Bottom curve: Lle difference btw
reconstructed muon and simulated
muon . Difference < 0.5

Top curve: Llr error between
reconstructed muon and simulated

neutrino.

Below 1TeV, Rinematics dominates

this error, above 17eV, muon is emitted
in the drn of parent neutrino.

>107eV, Llr resolution is better than
0.3°. So very good background

rejection in search of point like sources.




Effective area: area which the detector surface has, L-lr to the incident particle beam if the
detection efficiency is 100%.

» EA= Rate of detected events (s-1)/Incident flux (cm-2s-1)
» Incident muon flux at detector: EA for muon
» Incident v flux at Earth’s surface: EA for v




First 2curves : for reconstructed
muons matching the neutrino
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Neutrino effective area: V , effective area < muon effective area since it takes into
account the probability for a muon neutrino to interact and give a muon that can be seen

by the detector.

Neutrino Effective Area
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» For 0-30°, blue curve and above
100 TeV, the Earth becomes
opaque to neutrinos : larger
cross section of v ;early
interaction so muon can’t reach
the detector.

» For larger angles and higher

energies, detector is very

efficient.




Detector response to various spectral indices : differential event rates as a function of the
simulated neutrino energy for three incoming neutrino spectra, obeying the power law

AFE™" , where y =2, 2.2,3.7, represent cosmic accelerator and the atmospheric
neutrino spectra resp. Enables separation of events.
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Enerygy response : Determining fators :- energy fraction transferred to muon in neutrino
int, energy lost by the muon outside the detector, energy resolution of detector.

»  Below 100 GeV, the muons are close to minimum-ionizing ; energy of contained
events, with start and end points measured inside the detector, can be determined
accurately from the range.

Above100 GeV, the range measurement not possible = limited size of the detector, but
the visible range determines a minimum energy usable for the analysis of partially-

v

contained events: starting events in which the vertex point is measured inside the
detector, and stopping events in which the endpoint is measured.

v

Above 1 TeV, stochastic processes are dominant, muon energy loss o eneryy.
Increase of detection efficiency due to additional energy loss.

v

Above 1PeV, Earth becomes opaque to upward going vertical neutrinos. Higher

energies are available close to horizon. Very high energy v_ are observable since

++  produced in v, interactions decay before getting absorbed, producing v, of

lower energies travelling along the original v, flight path , with decreasing interaction
probability, resulting in an accumulation of events at the highest detectable energies.

v



ICECUBE -
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» Possible backgrounds atmospheric muons and neutrinos produced by
decay of mesons generated from cosmic ray (CR) interactions in
atmosphere. Identified by down going tracks inside ice.

» Spectrum of ‘UHE astrophysical neutrinos is assumed to follow E

law , which is much harder than that of the background atmospheric
neutrino spectrum 7~>7 . So atms v bckgnd can be reduced by applying
a channel multiplicity cut.

Atmospheric muon background can be reduced by a factor of 10°.

» Effective area for upward moving neutrino-induced UHE muons= 1.2
km2 at 1 PeV.

» Pointing resolution :better than 1.0°.




» Basis of discrimination of the astrophysical neutrino signals from the

background :

- geometrical parameters obtained by the various reconstruction
algorithms

- the reduced likelthood of the reconstruction
-number of PMT channels receiving an unscattered Cherenkov photon
-track length

Sensitivity to astrophysical muon neutrino : Detection of

E? dn, — 1x10 %em 25 'sr'GeV in S years of observation.

" dE

v




Observable sky

» ANTARES: 43° North latitude , can observe upward-going
neutrinos from most of the sky about 3.5z sr. Declinations
below -47° are always visible, while those above +47° are never
visible. Declinations between -47° and +47 °are visible for part

of the sidereal day .

» Most of the Galactic plane is visible, Galactic centre is visible
most of the sidereal day.

» AMANDA /ICECUBE:South pole sensitive to positive
declinations, the two detectors will have a reasonable area in
common for cross-checks ~ 1.5 sr.
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