Neutrino Physics: Assignment 1

(Given 16/02/2009, To be submitted 02/03/2009)

1. Show that the Hamiltonian $H=\alpha_{i} p_{i}+\beta m$ corresponds to a spin- $1 / 2$ particle. (You may use the Dirac-Pauli representation, but try without using it, use only the commutation relations among α_{i} and β.)
2. Find the solutions of the Dirac equation in the Weyl representation. Determine the quantum numbers that distinguish them from one another.
3. Show the following properties of γ matrices (if possible, without using the Dirac-Pauli representation)

- $\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 g^{\mu \nu}$
- $\left\{\gamma^{\mu}, \gamma^{5}\right\}=0$
- $\left(1 \pm \gamma^{5}\right) / 2$ are orthogonal projection operators

4. Show that under Lorentz transformations, $\bar{\psi} \gamma^{5} \psi$ transforms as a pseudoscalar, $\bar{\psi} \gamma^{\mu} \psi$ trasforms as a vector, and $\bar{\psi} \gamma^{\mu} \gamma^{5} \psi$ as an axial vector.
5. Calculate the lifetime of muon, by computing the rate of $\mu^{-} \rightarrow e^{-} \bar{\nu}_{e} \nu_{\mu}$ from first principles. (Follow a procedure similar to the nuclear beta decay calculation).
6. The mass of ν_{μ} can in principle be determined by measuring the momentum of muon (in the rest frame of pion) produced in the decay $\pi^{+} \rightarrow \mu^{+} \nu_{\mu}$. To what accuracy should the momentum of muon be measured, if the mass of ν_{μ} is to be measured to an accuracy of 1 eV ? Assume that the masses of π^{+}and μ^{+}are known to infinite precision.
