Quantum Mechanics 2, Spring 2016

Assignment #3, Due 22/04/2016

[You will need to use numerical and plotting software like Mathematica to solve many of these problems.]

1. Consider an α particle with E > 0 in a nucleus, under the influence of a short-distance attractive potential of magnitude V_0 , and the Coulomb repulsion:

 $V(x) = -V_0 \Theta(R-x) + Z_1 Z_2 e^2 / x$. Calculate the probability for it to tunnel out as a function of its energy in the limit $E \ll Z_1 Z_2 e^2 / R$.

The mean lifetime for α decay is $\tau = (2R/v_i)|T(E)|^{-2}$ where T(E) is the tunnelling amplitude and $v \sim 10^9$ cm/s is the typical speed of the particle inside the nucleus. Use $R \sim 10^{-12}$ cm and estimate the lifetime (in years) of a $Z_1 = 90$ nucleus that decays with $E_{\alpha} = 5$ MeV. (An order of magnitude estimation is fine.)

- 2. Using the trial function $|\alpha\rangle = e^{-ar^2}$, find an upper bound on the ground state energy of
 - (a) a simple Harmonic oscillator in one dimension
 - (b) an electron in an Hydrogen atom

In both the cases, estimate how close the ground state wavefunction has been guessed by computing a lower bound on $|\langle \tilde{\alpha} | 0 \rangle|^2$ (where $| \tilde{\alpha} \rangle$ is normalized $| \alpha \rangle$). (You may use the knowledge of the exact energy spectra, but do not use the actual forms of $| 0 \rangle$ even if you know it).

- 3. Consider one-dimensional potentials of the form $V = ax^n$. Using WKB approximation, find the density of states dN/dE as a function of energy E. Find n such that the levels are equispaced.
- 4. Consider an anharmonic oscilator corresponding to the Hamiltonian

$$H = \frac{p^2}{2m} + \frac{1}{2}kx^2 + bx^4 \; .$$

- (a) To first order in perturbation theory, calculate the energy shift of the n^{th} level of the corresponding harmonic oscillator.
- (b) Calculate the first order corrections to the ground sate and the first excited state.
- (c) Plot the unperturbed wavefunction for the ground state, and the first-order-improved wavefunction. Choose appropriate values of parameters such the perturbation theory is valid and the features of first-order corrections are clearly visible.
- (d) Comment on the features of the plots.

- 5. Calculate the effect of a finite nuclear size on the energy of H atom states with n = 1 and n = 2:
 - (a) Take the H nucleus to be a sphere of radius 1 fm with uniform charge density, and calculate $\Delta E/E$ numerically for all the states.
 - (b) Plot the unperturbed radial wavefunctions for these states, and the first-order-improved wavefunctions.
 - (c) Comment on the features of the plots.
- 6. (a) Estimate the ranges of magnetic field (numerically, in gauss) for which the L · S term, the (L + 2S) · B term and the |B|² term respectively (from the Hamiltonian for an electron in a Hydrogen atom) dominate over the others.
 - (b) Consider the 3d levels of an electron in the Hydrogen atom. Show the energy level diagrams (energy eigenstates as functions of |B|) in the limits of weak and strong magnetic field (strong magnetic field still not strong enough to take into account the $|B|^2$ term). Indicate the values of all level splittings in terms of

$$a \equiv \frac{e\hbar|B|}{2mc}$$
 and $b_j \equiv \frac{1}{2m^2c^2} \left\langle \frac{1}{r} \frac{dV}{dr} \right\rangle_j$

- 7. An Hydrogen atom in n = 2 state is kept in mutually perpendicular constant electric and magnetic fields. For strong fields (so that the spin-orbit interaction may be neglected), determine the energy level splittings. Draw the energy level diagram.
- 8. For a H_2 molecule, let the interatomic interactions be taken as perturbations, so that the unperturbed ground state is $U_0 = U_{100}(\vec{r_1})U_{100}(\vec{r_2})$. (See Fig. 5.3 in Sakurai). The perturbation may be expanded in powers of r_i/r to get

$$V = \frac{e^2}{r^3}(x_1x_2 + y_1y_2 - 2z_1z_2) + \mathcal{O}\left(\frac{1}{r^4}\right)$$

(You may try to derive this, but no need to show it here.)

- (a) Calculate the lowest order correction to the ground state energy. (Assume that the $\mathcal{O}(1/r^4)$ terms above give no first order contribution). The answer may be in the form of a summation. Find a lower bound on this summation, and hence on the ground state energy.
- (b) Choose the trial function $|\alpha\rangle = U_{100}(\vec{r_1})U_{100}(\vec{r_2})(1+aV)$ to determine an upper bound on the ground state energy.

Recommended:

Problems 1 - 21 from Sakurai chapter 5. An extremely good collection.