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Abstract

These are preliminary lecture notes for the set of 4 lectures in
“B Physics” at the SERC school held in IIT Bombay in Feb 2008.
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1 Introduction

Some of the earlier lectures in this SERC school have dealt with Higgs and
supersymmetry (SUSY). While we have not observed the Higgs (we do have
strong reasons to think that it exists) or any of the superpartners of the stan-
dard model particles, more than 10° B mesons have already been observed
at the collider experiments like CDF/DO0, and at the “B factories” BaBar
and Belle. The soon-to-be-operational LHC hosts a dedicated B physics ex-
periment, LHCb, and copious amounts of B mesons will also be produced
and examined at two other LHC experiments, ATLAS and CMS.

The area of B physics forms a part of the more general field of flavor
physics, which deals with the six flavors of quarks: the origin of their masses,
their electroweak interactions, mixing between them, and phenomena like
charge-parity (C'P) violation that are observed through their decays. Flavor
physics has now entered the era of precision measurements, and B decays in
particular are going to be instrumental in indirect searches of physics beyond
the standard model.

The notes are only expected to serve as a reminder of the logical pro-
gression in the lectures. It is hoped that the students, through their own
class notes and the references given at the end [1, 2, 3, 4, 5], are able to
reconstruct the arguments given in the lectures. I have cited some “classic”
papers for their historical significance, but the references have been chosen
more for their padagogical value rather than their claim on original results.



1.1 A historical review

The standard model (SM) consists of three families of quarks and leptons.
The quark content may be written as

(a)(2)- () »

where the quarks in the upper row (“up-type”) have electric charge +2/3
and those in the lower row (“down-type”) have electric charge —1/3 in the
units of proton charge. The lepton content of the SM is

(2)(2) ()

The particles in the first family are enough to account for most of the
objects we observe: atoms and their nuclei do not require anything in the
higher families for their description. Indeed, in 1937, when the muon was
discovered, a mere copy of an electron with a larger mass did not seem to
serve any purpose. The question asked was “who ordered muon ?” The
second family of the particles was thus completely unexpected when it was
discovered.

The third family, on the other hand, was predicted long before any parti-
cle from this family was discovered, by the requirement that the C'P violation
observed is through the Cabibbo-Kobayashi-Maskawa mechanism (which we
shall study in detail in this set of lectures). Let us see this historical develop-
ment in some detail, as it will offer us insight into the development of flavor
physics in general.

1.1.1 Cabibbo angle and GIM mechanism

In 1970, three quarks (u,d,s) and four leptons (e, and their associated
neutrinos) were known. The idea of quarks and leptons behaving similarly
had not taken root yet. An important observation by Cabibbo was that the
coupling constants of the following three flavor-changing decay modes were
related:

e (i) muon decay u~ — v e . coupling constant g,

e (ii) neutron decay n — pe~ 1, (d — ue 1,): coupling constant g,q4, and
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e (ii) kaon decay K~ — 7'e" 1, (s — ue 1,): coupling constant gys.

Measurements of the decay rates were consistent with |ge,|* = |gual® + |Gus|”
which gave rise to the idea of “universality” that there is only one coupling
constant g = g¢.,, and the u quark simply couples to one particular combi-
nation of d and s, given by d' = cosf, -d+sinf,. -s. The angle 6, here is the
Cabibbo angle [6], which was the first quark mixing angle to be measured.

Cabibbo angle was not enough to account for the suppression of K —
ptp~ as compared to KT — pty,: indeed, it predicted a decay rate that
was orders of magnitude above the measured upper bound. This suppression
of flavor-changing neutral current (FCNC) could be explained if another “c”
quark with charge +2/3 were postulated, which couples to the combination
s’ = —sinf,.-d+ cosb,-s. The s — u — d contribution to the s — d am-
plitude would be cancelled by the s — ¢ — d contribution, thus causing the
FCNC suppression. This was termed the Glashow-Iliopoulos-Maiani (GIM)
mechanism [7], which predicted the existence of the “charmed” quark. The
observation of J/1(c¢) in 1974 vindicated the mechanism.

9

Problem 1. If the ¢ quark were absent, calculate the ratio of rates of K, —
prp~ and Kt — ptv,. Compare this with the measured value this ratio
from the Review of Particle Physics [5].

1.1.2 (C'P violation and “prediction” of third generation

Cronin et al. discovered the C'P violation in the kaon system in 1964 [8].
Several attempts were made to explain it, including the postulation of extra
“superweak” interaction. However, the one that turned out to be the most
promising was the mechanism proposed by Kobayashi and Maskawa [9] in
1972, which showed that with three generations of quarks, a complex quark
mixing matrix arises naturally. In a sense, this was the “prediction” of third
generation, which was confirmed by the discovery of 7 in 1976, Y (bb) in 1977,
top quark in 1993, and v, in 2001.

The era of B physics thus began about 30 years ago. Since B mesons
(those including a b quark) are much heavier than the earlier K (with an
s quark) and D (with a ¢ quark), they can decay through more number
of channels. This allows one to have more consistency checks as well as
more control over theoretical uncertainties, since one can now take ratios of
quantities that are relatively more immune to these uncertainties. Moreover,
the large mass (= 5 GeV) of b quark makes the quantity Agcp/my small, so
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that a systematic expansion in this quantity can be carried out which goes
under the name of Heavy Quark Effective Theory (HQET).

1.2 Recent results and current excitement in B physics

The study of B decays has led to a much better understanding of the flavor
sector of the SM, and of the phenomenon of C'P violation in particular. Some
of the recent important results obtained are the following:

e The measurement of time dependent asymmetry in By — J/¢Kg
demonstrated cleanly that the C'P violation in the SM is large. This
implied that C'P is not an approximate symmetry of the SM.

e The asymmetry in B9 — K*7T demonstrated the “direct” C'P viola-
tion (more appropriately called “C'P violation through decay”).

e The asymmetries measured in various decay channels (e.g. K™K~ Kg,
D***D*~ W Kgs, foKs, pt7T) have overconstrained the quark mixing
matrix.

e Measurements of radiative B decays (b — sv) as well as limits on the
rates of super-rare leptonic decays (B — pu* ™) have constrained new
physics models like SUSY, leptoquarks, etc.

e The measurements of mass differences in the B-B system have led to
the right prediction of the top quark mass.

One expects that future experiments in B decays will lead us to a better
understanding of flavor physics in the SM, and perhaps even give an indirect
signal for physics beyond SM.

2 Mixing between two neutral mesons

In this section, we shall develop a general formalism to deal with mixing of
two neutral pseudoscalar mesons P and P. This formalism will be applicable
to K-K, D-D as well as B-B system. We shall derive results that can be

used later to express our ideas compactly.
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Figure 1: The mixing between P(pq) and P(pq). Here ¢ is the quark whose
charge differs by 1 from the charge of p and ¢q. These are the “box” diagrams
that give rise to M5 and I'ys.

2.1 Hamiltonian, eigenvalues and eigenstates

Let us work in the basis (P, P), i.e. any superposition state aP + bP may be
represented as the column vector (a b)T. In this basis, the effective Hamil-
tonian is a 2 x 2 matrix. Since the P and P mesons decay, the evolution is
not unitary, and hence the Hamiltonian H is not Hermitian. Indeed, it can
be written as the sum of a Hermitian part M and an anti-Hermitian part,
conventionally written as —i['/2 where I is a Hermitian matrix.

) M11 M12 l Fll 1—‘12
H=M--T= - = 3
2 < My My ) 2 < o Ty ) )

The Hermiticity of H and I' imply

My, = My, and Iy =17, (4)
In addition, the C'PT theorem gives two more constraints:

My = My, and 'y =Ty . (5)

ﬁote that M, and I'y5, the components of the Hamiltonian thit mix P and
P, are essentially the dispersive and absorptive parts of the P—P mixing box

diagrams. The box diagrams for the P(pg)—P(pq) system is shown in Fig. 1.
Using (4) and (5), one gets the eigenvalues of the Hamiltonian H to be

1 1 1
pg = My — Iy + 5 (Am - —AP) )

2 2
S VAL S NN (6)
= — = — = m— —
1239 11 5 11 5 5 ;



where Am and AL are the solutions of
AT\?
@mp = (5) = el - raf,
The labels H and L stand for “heavy” and “light” respectively, by convention.
Eq. (6) implies that Am > 0 by definition. The sign of AI' depends on the

dynamics.
The normalized eigenstates of the Hamiltonian turn out to be

|PL) = p|P)+q|P),
|Py) = p|lP)—q|P), (8)

where

) 4
My, — i1
pPlgf=1 ana (1) - RERE )
p My — 5T
Problem 2. Derive the above results about eigenvalues and eigenstates.
What problems would one face if the CPT conditions did not hold ¢

2.2 Phase invariant quantities

We would like to study processes where P or P decay to a final state f or
its CP-conjugate state f. The phases of P, P as well as f, f are arbitrary, so
that the CP-conjugation relations can be written in the most general form
as

CP|P) = ¢e*"|P) , CP|P) = ¢ “r|P) , (10)
CP|f) =eYf), CP|f) =ef). (11)
We represent the decay rates for the relevant processes by
A= (lHIPY,  Ap={f|HIP), (12)
Az = (f|H|P), A7 = (J|H[P) . (13)

The phases (p and ( are unphysical, so that the observable quantities should
be independent of these phases. Three such quantities that can be con-
structed will be relevant for C'P violation:

Af

— =-—. 14
yy : f (14)

‘ q
’ P




Interchanging f and f can give more phase invariant quantities, but that is
just a matter of redefinition of f and f.

2.3 Time Evolution

Let us study the time evolution of an initial flavor eigenstate |P). Since the
eigenstates |Py) and |Pp) evolve independently without mixing, it is easier
to write the evolution in terms of these states. At ¢t =0,

1P(O)) = 55(1P0) + 1P (15)
At time t, one gets
PO) = gole ™I py) e
= g.(t)|P) - §g<t>|ﬁ> , (16)
where we have defined
gs = % (emimut=Lut/2 1 gmimit=Tut/2) (17)

for convenience. In terms of g, the evolution of an initial |P) can be written
simply as

[P(t)) = g+(t)|P) — gg @e) - (18)

Now we are ready to calculate the rate of P/P to f/f as a function of
time. One obtains, after a straightforward algebra,

alPO I ) cosh(AT2) + (1 = (3P cos(mt)
e Tt Ny| Ay
+2Re(Af) sinh(AT't/2) + 2Im(Af) sin(Amt) , (19)
= (4 A1) cosh(ATY/2) — (1~ A2 cos(Ami)

e Ny ApPp/qf?
+2Re(Af) sinh(A't/2) — 2Im(A ) sin(Amt) . (20)

where I' = (I'y +1'1) /2 and Ny is a common normalization factor. Note that
all the observables have been written in terms of phase invariant quantities
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given in (14). Terms in (19) and (20) that do not involve A\; are the ones

that occur without any PP oscillations, those involving Ay are associated
with decays following an effective oscillation.
In literature one often finds the parameters x and y, defined such that

am =

= —. 21

Problem 3. Calculate % [P(t) — f] and %[P(t) — [, especially keeping

track of the signs of various terms.

T

2.3.1 Tagged and untagged decays

Since there are many states that both P and P can decay to, it is often
not possible to deduce if the decaying particle was a P or a P. One can
get around this obstacle partly if one looks at P and P that are produced
coherently from the decay of a resonance (e.g. ¢ — KK, Y(4s) — BB). In
such a case, if one of these particles decays through a flavor-specific mode
(i.e. mode which allows us to identify a P or a P) at time ¢, one knows the
identity of the other particle at that time ¢, and its time evolution can then
be studied. This process is called “tagging”.

More generally, one may consider the “double time evolution” of the
coherently produced P and P that decay to the final state f;f,. One gets

e_FlAthflfQ

(Ja 2+ la_ ) cosh(ATt/2)(Ja,  — |a_ ) cos(Amt)
— 2Re(a’a_)sinh(AT't/2) + 2Im(a’a_)sin(Amt) , (22)
where
a, = ZflAfQ —AfIZfQ

p d— —

_AflAfQ - _AflAfQ (23)
q p

Problem 4. Prove the above “double probability distribution”. Show that in
the limits {Ap, = 0, Ay, =1} and {Ap, =0, Ay, = 1}, it reduces to the time
evolution in (19) and (20).

a_

Problem 5. Untagged decays are those where the identity of the decay-
ing particle, P or P, is unknown. Calculate the untagged time evolution,

L (Z[P) = f1+ %E[P(t) — f1), when [p| = |q].



2.4 Types of C'P violation

The three phase invariant quantities given in (14) can be used to classify C'P
violation into three types.

2.4.1 (P violation in decay only

In charged meson decays, no mixing is involved. In that case, CP is violated
iff
| A7/ Al # 1. (24)

In such a situation, an observable C'P violating quantity is

D(P~ = [7)=T(P" = f*) Ay /AP -1

Apse = = — . 25
BT = )+ 0P = 5 (A, AL +1 )
A nonvanishing A= is often termed “direct” C'P violation.
2.4.2 (P violation in mixing only
Even when |Zy| = |Ay|, it is possible to have observable C'P violation in
neutral P decays if
la/p| # 1. (26)

An example of such a process would be semileptonic decays, where P — tX
and P — (7 X have the same amplitude, while the amplitudes of P — ¢~ X
and P — (*X vanish. If one observes the “wrong sign” leptons, one can
measure the C'P asymmetry

GP[H) = X)) = G(PH) — X))  1—]q/p*

ASL(t) = dt

Pty — (+X) + L(P(t) — -X)  1+]g/p|*’

(27)

Note that, although this asymmetry is defined as a function of time, it turns
out to be a constant.

2.4.3 (P violation through mixing-decay interference

This is the C'P violation that is governed by the complex quantity A;. Con-
sider a final state fop that both P and P decay to. One can then define a
C'P violating observable

(P(t) — fer)
(P(t) = fer)

Aoty = BO = Jor) - | .
dt

(P(t) — fep) +

SEAE
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If we neglect the lifetime difference AT', and also take |¢/p| = 1 to start with
(both of which are good approximations for the By system), egs. (19) and
(20) give

AfCP (t) = SfCP Sin(Amt) + CfCP COS(Amt) ) (29)
where Im(h,) A2
2Im f 1-— f
Stop = —ES =_— < 30
fep 1+|)‘fcp‘2 fep 1+|)‘fcp‘2 (30)
Even when |As..| = 1, so that there is no C'P violation in decay alone

(JAop| = |Asop]), neither is there CP violation in mixing alone (|g| = |p|),
there can still be CP violation through their interference, as long as

Im(Ar,) #0. (31)

We shall return to specific examples of processes involving the above three
types of C'P violation after we introduce the Cabibbo-Kobayashi-Maskawa
mechanism in the next section.

3 The CKM paradigm

An extension of the Cabibbo mechanism discussed in Sec. 1.1.1, the Kobayashi-
Maskawa mechanism not only parametrizes the quark mixing in three gen-
erations, it also shows that C'P violation in three generations is a natural
consequence of quark mixing. Furthermore, it goes on to predict that all the
observed C'P violation can be explained by a single source. This prediction
has been borne out by all the experiments till now, and is a major success of

the SM.

3.1 Origin of the CKM matrix

Let U' = (u c t)T repesent the column vector consisting of three up-type
quarks, and D’ = (d s b)T, the column vector consisting of the three down-
type quarks. The charged current part of the SM Lagrangian, in the basis of
flavor eigenstates, is

9

V2

‘CCC’ = U_i’)/MD/LW: + h.c. s (32)
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where the subscript L represents left chiral component of the quark spinors.
Note that the charged current interactions are diagonal in the flavor basis by
definition.
The part of the Lagrangian giving mass to the quarks is, in the flavor
basis,
Lunass = U, M[;Up + Dy M, Dy + H.c. (33)

where the mass matrices M|, and M}, are 3 x 3 matrices that need not be
diagonal (and indeed, are not) in this flavor basis. Let the mass eigenstate
basis, where the mass matrices become diagonal, be given by Uy, Dy, Ugr, Dg
such that

Ui = VULUL s D/L - VDLDL )
Up = VurUrg , Dy = VprDxg . (34)

Here, Vi1, Vor, Vur, Vpr are unitary matrices. In the mass eigenstate basis,
the mass part of the Lagrangian becomes

Liass = ULV M VyrUg + DLV, M VprDyr + Hee.
U ME9U, + DoME*“Dg + Hec. |

(35)
where
A m, 0 0
ME = Vi MVyr=1| 0 m. 0 |,
0 0 my
A mq 0 0
MEY = V) MpVpr=| 0 m, 0 | . (36)
0 0 my

The elements of MY and M&*, which are the quark masses m,, are in
general complex numbers.
The charged current Lagrangian in the mass basis is

9

C pu—
cc \/5

9

U_LVJL’}/MVDLDLW: + H.c. = \/5

U_L’}/M(VJLVDL)DLW:— + He. .
(37)
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Thus in the mass basis, the up-type quarks Uj, couple to (VJLVDL)DL with
the standard weak coupling strength g/v/2. Therefore, the coupling between
the mass eigenstates Uy, and Dy, is given by (g/v/2)Veoxas, where

Vern = Vi Vor - (38)

Ver o is the Cabibbo-Kobayashi-Maskawa (CKM) matrix which character-
izes mixing in the quark sector. This is a unitary matrix, since it is formed
by a multiplication of two unitary matrices. Note that Vi and Vpgr do not
play any role here.

The elements of the CKM matrix are named in terms of the quarks which
they connect:

Vud Vus Vub
Vervr = | Vea Ves Va - (39)
Vie Vis Vi

3.1.1 Parameter counting

The CKM matrix is a complex matrix, so in general it can be paramerized by
9 real and 9 imaginary quantities. The unitarity of the matrix (V(E kM VorM =
1) provides constraints on 6 real and 3 imaginary quantities, leaving us with
3 real and 6 imaginary ones. We still have the freedom of changing the phase
of each of the six quarks individually, however a common phase change for
all quarks will not affect Vogps. The remaining 5 phases that affect Vo,
should be unphysical, so that only 1 imaginary and 3 real quantities are
required to describe the complete physics incorporated in Vg .

Recall that any rotation in 3 dimesions may be described in terms of
three real parameters, the three Euler angles. The rotation required in the 3
dimensional flavor space here thus involves an additional complex component
which is parametrized by the imaginary “phase”. This is the single complex
phase that is responsible for all the C'P violation, according to the CKM
mechanism.

Problem 6. For n generations of quarks, calculate the number of real and
imaginary quantities required to determine the physics of the quark mixing
matriz. Hence, show that 3 is the minimum number of generations for which
a complex mixing matrix may be obtained.

13



3.2 Parametrization of CKM elements

The general expression for the CKM matrix, showing the complete depen-
dence on the three angles 015, #53, 613 and one phase d;3 may be written as

C12€13 512€13 s13€ 013
_ 1613 513
V = —512C23 — C12523513€" C12C23 — S12523513€" $23C13 )
i613 i613
512523 — C12C23513€" —C12523 — S12C23513€" C23C13

(40)
where s;; = sin6;; and ¢;; = cos;;. Although this form in principle would
suffice for all the analysis, a more convenient parametrization is obtained
when we use the experimental observation that the angle 6,5, which is ap-
proximately the same as the Cabibbo angle, is small:

A=sinf, ~0.2. (41)

All the CKM elements may then be written as an expansion in powers of A.

3.2.1 The parameters A\, A, p,n

The magnitudes of some of the CKM elements may be determined through
simple tree-level decay modes.

e |V,4|: This may be obtained through neutron decay, which is essentially
d— ul~v.

o |V,s|: This is determined through semileptonic kaon decay, e.g. K —
mlv. Cabibbo angle is defined through tants = |V,s/Vya|. The pa-
rameter \ is then defined as sin 6.

o |V.s|: The “strange” decays of “charmed” mesons, D — K/{v, lead to
the measurement of | V|, which is found to be very close to |V,4|. From
(40), this leads us to conclude that sp3513 is extremely small.

o |V.4]: The decays D — wlv yield this quantity, which is found to be
extremely close to |Vs|. Since sg3513 is small, we get Vg = — V.

Since s93513 is extremely small, the 2 x 2 submatrix consisting of the above
four elements is almost unitary. In terms of A, this submatrix is

1—)\2/2 A
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The phase convention is chosen so as to make V4, V,,s and V_, real and pos-
itive. The realness of V., is the consequence of “almost unitarity” of this
submatrix. The matrix in (42) is identical to the mixing matrix proposed by
Glashow-Iliopoulos-Maiani that had only Cabibbo angle.

The semileptonic decays of B mesons lead us to the measurements of the
next two magnitudes:

o |Vy|: The decay B — D/{v determines |V;|. The phase convention is
chosen to make V,;, real and positive, and its magnitude is defined to
be AN?. Experiments imply A ~ 0.8-1.0 ~ O(1), justifying the use of
quadratic power of A\. The definition of the parameter A is thus

A= [Vl /A2 (43)

e |V,p|: This is obtained through the decay B — (7/p)fv. This is a dif-
ficult mode to measure experimentally, since removing the background
coming from B — D/v is a daunting task. We shall not go into the
details of the measurement. From (40), V,; has to be a complex quan-
tity, and needs two more parameters for its complete description. We
define the parameters p and n through

Viy = AN (p — i) . (44)

The observed value of |V,,,| = AN*/p? + n? is consistent with the third
power of A used in the definition, so that p,n ~ O(1).

Problem 7. Calculate the maximum energy that an electron can have, when
it is a product of (i) b — ce~v , and (ii) b — ue v. Arque how the difference
in these energies can be used to identify a pure sample of b — u decays.

3.2.2 The Wolfenstein parametrization and beyond

The definitions of A, A, p,n through equations (41,43,44), and the unitarity
condition, are enough to parametrize the CKM matrix completely as

1—)%/2 A AN (p —in)
V= - 1—22/2 AN? + O\ (45)
AN(1—p—in) —AN 1

This is called the Wolfenstein parametrization, and is the common one in
use.
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Some of the earlier results can now be cast in terms of this parametriza-
tion. Comparison of (40) and (45) gives

Sie =N\, su3=AN, si3=AN\p2+n?, (46)

and the complex-ness of the matrix is represented by the nonvanishing value
of n.

The original Wolfenstein parametrization is accurate to O(A*). A more
precise version is sometimes needed, and is given by

— A2 - %)\4 A AX3(p —in)

Vo= A+ LAV =2(p+in)]  1—3A— A (1 +44%) AN?
AN[(1 = (1= M) (p+in)] —AN + A1 —2(p+in)] 1— AN

+0O(\%) .

Note that the freedom to choose the 5 relative phases has been used to
make the elements V4, Vs, Vs, Vi, and Vj,, real and positive. The constraints
quoted on the elements of the CKM matix are often in terms of p and 7,
where

P=pl- X)), A=u(l-X). (48)

3.3 Unitarity triangles

The unitarity of the CKM matrix implies the relation VTV = 1. This can be
viewed as conditions on combinations of CKM elements in a complex plane.
For example,

ViViee=0 = ViV + ViV +ViVia=0. (49)

This relation may be represented as a triangle in the complex plane, whose
sides are the three complex quantities V), Vi,q, V3 Vea and V3 V. This triangle
is shown in Fig. 2.

The CKM matrix satisfies three distinct relations of the form [V1V]; =0
(1 # j). These give rise to three different unitarity triangles. The Wolfenstein
parametrization (45) can be used to determine some of the features of these
triangles.

e The [VTV]3 = 0 triangle V% Vi + Vi Ves + Vi Vi = 0:
All sides of this triangle are O(\?), hence of comparable lengths, and

16
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b—= ufpr B—+n xn
B—nfv B9 8° mixing
B—plv : B —+py
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B—»aw Kn “; o B—u¢Kg
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B DcpK
Bg — pKg B—+cély

Figure 2: The unitarity triangle obtained from [V1V]s, = 0. The B decay
modes useful for determining its sides and angles have also been indicated.
The figure has been taken from [10].

all the angles are O(1). This is the “standard” unitarity triangle, whose
angles are defined as

ViaVi; VeaVi ViV
a = Arg (—ﬁ) , [B=Arg (—#) . v=Arg (_ VjVu*b) :
ud Vb th ca’ch

(50)
These angles, shown in Fig. 2, are probed mainly via By By mixing.
Note that tana - tan 5 - tany = —1, implying that a« + § 4+ v = 7 (in
radians). This is just an identity. In literature, the angles «, 3,~ have
also been referred to as ¢o, ¢1, @3 respectively.

e The [V1V]3y = 0 triangle VAV, + ViV + Vi Vis = O:
Two of the sides of this triangle are O()\?), and one is O(A*). This
triangle is thus much flatter than the previous one. The smallest angle

of this triangle,
VesV
. = Ar —M) , 51
’ g( ViV o

is relevant in B,—B, mixing.

17



e The [VTV]p = 0 triangle V., Voo + Vi Vo + Vi Vi = 0:
This triangle is the flattest of them all, two of its sides being O()) and
the third one O()\°). The smallest angle is relevant for K—K mixing,

and is defined as Vo
= Arg [ -4 . 52
e = e (74 (52
The smallness of C'P violation observed in K system [O(1073] as com-

pared to that in the By system (O(1)) can be traced to fx < .

There are also three unitarity triangles corresponding to the relations
(VVT]s = 0,[VVTi]s, = 0 and [VVT]y, = 0. However, they can be derived
from the thee [VV];; = 0 relations, and do not offer any extra insight.

Problem 8. Prove the “unitarity relation” between the angles of two of the
unitarity triangles:

“sin 3 sin(y + )
sin( + )

Problem 9. Determine the angles 35 and By to leading power in .

Vus
Vud

[1+00Y)]. (53)

sin 3y =

3.3.1 Areas of unitarity triangles

The area of a triangle in the complex plane, two of whose sides are represented
by the comples numbers x and y, is given by

1 1
Area = §|f Xy = élm(x*y) (54)
Using this result, it is clear, for example, that the area of the triangle in
Fig. 2 is [Im(V; Ve, Vi Vi)l /2.
Using only the unitarity of CKM matrix, it can be shown that the quantity
J = [Im(V}; Ve Vi Vi) )| (55)

is the same for all sets of a # 3 and i # j. This quantity, called the Jarlskog
invariant [11], is twice the area of the corresponding unitarity triangle. Thus,
we have the result that all the unitarity triangles have the same area. In terms
of the CKM parametrizations we have discussed, the Jarlskog invariant is

J = 812823813012C23C%3 sin 0 ~ A2)\6?7 . (56)
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The Jarlskog invariant is also a “rephase invariant”, i.e. it does not depend
on the 5 relative phases chosen for the quarks [12].

The area of the unitarity triangles can vanish only if all the CKM matrix
elements are real, which corresponds to CP conservation. This area, as will
be seen later, is in fact proportional to the C'P violation in the corresponding
process. The area of the triangles, or the Jarlskog invariant, is thus the single
quantity that is responsible for all the C'P violation that can be described
by the CKM paradigm.

Problem 10. Prove that J is indeed independent of i, j, a, 3, as long asi # j
and o # 3, using only the unitarity relations [V1V]; =0 and [VV1];; = 0.

4 (CP violation and the CKM matrix

In this section, we shall employ the CKM formalism developed so far to
explicitly calculate C'P violation in various processes, leading to an overde-
termination of the CKM matrix elements. This will help us measure them
to a good accuracy, at the same time allowing us to test the mechanism.

Let us start with some explicit examples of CP violation through decay,
mixing, and their interference.

4.1 (P violation through decay only

Consider the CP-conjugate decays B* — K*7° with amplitudes Ay. If the
only channel through which this decay occurs were the one shown in Fig. 3,
then we would have

Ay =VaVisAr, Ao =VV A, (57)

where A; includes all the hadronic factors as well as phase space factors,
which are identical for these two processes. Then, even though the amplitudes
A, and A_ are different, the net decay rates I'1 are identical, and hence no
observable CP violation will be present. Indeed, this is always the case for
the “decay only” CP violation when there is only one CKM combination
involved.

The actual situation for B¥ — K* 70 is different, since this decay can also
proceed through the “penguin” diagram shown in Fig. 4. The amplitudes
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Figure 3: Tree diagrams for B¥ — K*7° The relevant CKM elements are
also shown.

u u

L T

Figure 4: Penguin diagrams for B — K*7° mediated by the top quark.
The relevant CKM elements are also shown. The uw pair may be produced
by a gluon, Z boson or a photon.

A, are then a sum of two contributions each:

A+ - VJqusAl + ‘/tz‘/tsAZ P (58)
AJr - VubV;sAl —|— ‘/;gb‘/tj;Az y (59)

where A, includs the hadronic as well as phase space factors for the penguin
diagram. Note that we have only taken the penguin diagram mediated by
the top quark, since this happens to dominate over the ones with interme-
diate charmed or up quark. The decay rates for these processes will now be
different:

F-i- -I'. = 4Im( :bvus‘/tbv;;) Im(AlA;) : (60)

Thus, observable C'P violation requires that the terms (V5 V.V Vi) as
well as (A1 AS) are not completely real. This result is sometimes also stated
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as “there must be a weak (CKM) phase difference as well as a strong phase
difference”. Note that the CKM contribution to the C'P violation is indeed
proportional to the Jarlskog invariant .J.

Problem 11. Find the leading power of A present in the “direct” C'P asym-
metry Agr = (I'y =T_)/(Ty = T2), for (i) K — nm, (ii)) D — K, (iii)
B — Dm. Argue why B decays should typically show more asymmetry than
D or K.

4.2 (P violation through mixing only

For this type of C'P violation, we should look for |¢/p| # 1. The experimental
measurements give [13]

lq/pla = 1.0002 £ 0.0028 , |¢/pls = 1.0015 = 0.0051 (61)

for the B; and B, system respectively. We are thus far from a nonzero
measurement of “CP violation through mixing only” in the B meson systems.
This may be understood theoretically from the expression

2 * i Tk
<g) _ My — ?Fu . (62)
P My — 5T

Calculation of the dispersive and absorptive parts of the box diagram (see
Fig. 5) yields I'y1s < Mjs in both, By as well as B systems. As a result,
lg/p| = 1, and C'P violation through mixing only is not observed in B decays.
Indeed, the semileptonic asymmetry defined in (27) is found to be

AL, = —0.0005+0.0056 and A%, = —0.0030 £0.0101  (63)

in By and B, systems respectively

Problem 12. In the kaon system, where Am = 3.5 x 1072 MeV and 1, =
0.9 x 10719 sec, estimate |q/p| and Asr. Compare with the measured value.
Is any more information needed ¢

4.3 (P violation through decay-mixing interference

Let us consider the “golden channel” By/By — J/1Kg, which has given us
a rather clean measurement of 3, one of the angles of the unitarity triangle.
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Figure 5: The By By mixing box diagram intermediated by the top quark.
The relevant CKM elements are also shown.

As mentioned in the previous section, 'y < My in the By system, so
from (62), we get

q/p = exp[—i Arg(Mi,)] . (64)
Let us use the phase convention where C'P|B,;) = |By). In this convention,
from the box diagram in Fig. 5,

Arg(Mig) = Arg(VigViaVipVia) = =20 . (65)

As a result, ¢/p ~ *5.

The dominant contribution to Ay and Ay is from the tree diagram shown
in Fig. 6. ' This tree amplitude is proportional to the CKM combination
VoV (V3 Ves) for By (Ba) decay.

Thus we get o
A VaVz
— <~ 66
EPRR VAT o)
Consequently;,
A .
A= 80— i (67)

pAy
In the By system, the lifetime difference AT is expected to be extremely
small: in the SM, AI'/T" ~ 0.5%. Then we can use (19) and (20) to get the

'The penguin contribution is suppressed since it involves the production of a c¢ pair.
Moreover, even among the penguin processes, the one intermediated by the top quark
dominates, and the CKM phase it provides is almost identical to the tree diagram CKM
phase, since from the Wolfenstein parametrization, it can be seen that Vi, Vi = Vo, V5 +
O(\h).
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Figure 6: Feynman diagrams for A; = A(By — J/¥Ks) and Ay = A(By —
J/YKs)

asymmetry

A _ G (Balt) = J/YKs) — G (Balt) — J/VKs)
RS =R () — J)PKs) + C(Ba(t) — J/$Ks)

~ sin 23 sin(Amt) .

(68)
The observation of this asymmetry thus gives a direct measurement of the
phase 3, which testifies to the presence of C'P violation through the interfer-
ence of decay and mixing.

Problem 13. Determine the time dependent CP asymmetry in By/By —
J[0g.

4.4 Constraining the unitarity triangle

The bulk of the tests carried out so far have can be expressed in terms of
the standard unitarity triangle. When all sides of this triangle are divided
by AN3, it becomes a triangle all of whose sides are O(1). Its vertices are at
the points (0,0), (1,0), (p,7).

Various experiments constrain different combinations of p and 7:

o |Vip/Vi|? gives p? + 7%, as shown in Sec. 3.2.

e In the ratio of mass differences in B; and B, systems, many common
factors (like QCD corrections, dependence on top quark mass, etc.)
cancel out, and one obtains

2

Amd o MBd BBdf%d (69)

Amyg B MBS BBS]‘%S

Via
Vs
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Figure 7: Constraints on the unitarity triangle in the p — n plane [14]

where fp, are the decay constants and B B, take care of nonperturbative
corrections. These quantities can be reasonably well calculated using
lattice methods, and hence the measurement of the ratio (69) gives
information on |V;q/Vis|?, or equivalently, on (1 — p)? + 2.

e Asseen in Sec. 4.3, the time dependent asymmetry observed in B;/By —
J/1 K yields the angle 3, equivalently the combination tan 3 = 7/(1—

D).

e In addition, the measurements of € parameter in the kaon system, var-
ious measurements of the unitarity angles «,y, all conspire to overcon-
strain the values of p and 7. (For details, see [14]).

It is remarkable that, even with rather accurate measurements of some
of the above quantities, all the current constraints overlap in a small region
in the p — 77 plane (see Fig. 7). This is a strong evidence that the CKM
paradigm is working well and perhaps its strong claim to a single source of
C'P violation in the quark sector is valid.
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5 Concluding remarks

Since the CKM mechanism makes such strong predictions about C'P violation
observed in the quark sector, it lends itself amenable to testing from various
angles. The fact that it has passed all the tests so far indicates that the
sources of C'P violation apart from the CKM matrix are likely to be small.
However, with more and more accurate data expected from the B factories
and the LHC, perhaps the limits of the CKM mechanism will be reached and
we shall obtain perhaps the first evidence for physics beyond the SM in the
quark sector.
Crucial in this context are two kinds of processes.

e Those that can be predicted very accurately within the SM, so that
a deviation from this prediction is a robust signature of new physics.
These include the consistency checks of the CKM matrix elements, as
well as channels like the radiative decay b — sy which has already
constrained new physics to a great degree.

e Processes that lead to quantities that vanish or are extremely small in
the SM, but can be enhanced by orders of magnitude by new physics.
These mainly involve loops in which new particles propagate, but the
enhancement can also be obtained from new couplings. Some examples
of such processes are (i) C'P violation in the B,~B, system, (ii) lifetime
difference in the By By system, (iii) branching ratio and polarization
asymmetry in By/By — ptu~, (iv) forward-backward asymmetry in
By — Kutu .

These lectures have not dwelt much on the calculation of actual decay
rates of processes, which is often a daunting task involving subleading QCD
corrections and estimations of hadronic matrix elements that are often non-
perturbative quantities. One tries to get around this by using symmetry
arguments like flavor SU(3) to relate the amplitudes of different decays.
Techniques like the QCD-improved factorization or Soft Collinear Effective
Theory are also being developed.

This short course was aimed towards those who were being exposed to B
physics, as well as to ideas about C'P violation, for the first time. It is hoped
that these lectures will give them a basic understanding of these topics and
motivation to pursue them.
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