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Abstract

These are preliminary lecture notes for the set of 4 lectures in
“B Physics” at the SERC school held in IIT Bombay in Feb 2008.
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1 Introduction

Some of the earlier lectures in this SERC school have dealt with Higgs and
supersymmetry (SUSY). While we have not observed the Higgs (we do have
strong reasons to think that it exists) or any of the superpartners of the stan-
dard model particles, more than 109 B mesons have already been observed
at the collider experiments like CDF/D0, and at the “B factories” BaBar
and Belle. The soon-to-be-operational LHC hosts a dedicated B physics ex-
periment, LHCb, and copious amounts of B mesons will also be produced
and examined at two other LHC experiments, ATLAS and CMS.

The area of B physics forms a part of the more general field of flavor
physics, which deals with the six flavors of quarks: the origin of their masses,
their electroweak interactions, mixing between them, and phenomena like
charge-parity (CP ) violation that are observed through their decays. Flavor
physics has now entered the era of precision measurements, and B decays in
particular are going to be instrumental in indirect searches of physics beyond
the standard model.

The notes are only expected to serve as a reminder of the logical pro-
gression in the lectures. It is hoped that the students, through their own
class notes and the references given at the end [1, 2, 3, 4, 5], are able to
reconstruct the arguments given in the lectures. I have cited some “classic”
papers for their historical significance, but the references have been chosen
more for their padagogical value rather than their claim on original results.

2



1.1 A historical review

The standard model (SM) consists of three families of quarks and leptons.
The quark content may be written as

(

u
d

)

,

(

c
s

)

,

(

t
b

)

, (1)

where the quarks in the upper row (“up-type”) have electric charge +2/3
and those in the lower row (“down-type”) have electric charge −1/3 in the
units of proton charge. The lepton content of the SM is

(

νe
e−

)

,

(

νµ
µ−

)

,

(

ντ
τ−

)

. (2)

The particles in the first family are enough to account for most of the
objects we observe: atoms and their nuclei do not require anything in the
higher families for their description. Indeed, in 1937, when the muon was
discovered, a mere copy of an electron with a larger mass did not seem to
serve any purpose. The question asked was “who ordered muon ?” The
second family of the particles was thus completely unexpected when it was
discovered.

The third family, on the other hand, was predicted long before any parti-
cle from this family was discovered, by the requirement that the CP violation
observed is through the Cabibbo-Kobayashi-Maskawa mechanism (which we
shall study in detail in this set of lectures). Let us see this historical develop-
ment in some detail, as it will offer us insight into the development of flavor
physics in general.

1.1.1 Cabibbo angle and GIM mechanism

In 1970, three quarks (u, d, s) and four leptons (e, µ and their associated
neutrinos) were known. The idea of quarks and leptons behaving similarly
had not taken root yet. An important observation by Cabibbo was that the
coupling constants of the following three flavor-changing decay modes were
related:

• (i) muon decay µ− → νµe
−ν̄e: coupling constant geµ,

• (ii) neutron decay n→ pe−ν̄e (d→ ue−ν̄e): coupling constant gud, and
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• (ii) kaon decay K− → π0e−ν̄e (s→ ue−ν̄e): coupling constant gus.

Measurements of the decay rates were consistent with |geµ|2 = |gud|2 + |gus|2,
which gave rise to the idea of “universality” that there is only one coupling
constant g ≡ geµ, and the u quark simply couples to one particular combi-
nation of d and s, given by d′ ≡ cos θc · d+ sin θc · s. The angle θc here is the
Cabibbo angle [6], which was the first quark mixing angle to be measured.

Cabibbo angle was not enough to account for the suppression of KL →
µ+µ− as compared to K+ → µ+νµ: indeed, it predicted a decay rate that
was orders of magnitude above the measured upper bound. This suppression
of flavor-changing neutral current (FCNC) could be explained if another “c”
quark with charge +2/3 were postulated, which couples to the combination
s′ ≡ − sin θc · d + cos θc · s. The s → u → d contribution to the s → d am-
plitude would be cancelled by the s → c→ d contribution, thus causing the
FCNC suppression. This was termed the Glashow-Iliopoulos-Maiani (GIM)
mechanism [7], which predicted the existence of the “charmed” quark. The
observation of J/ψ(cc̄) in 1974 vindicated the mechanism.

Problem 1. If the c quark were absent, calculate the ratio of rates of KL →
µ+µ− and K+ → µ+νµ. Compare this with the measured value this ratio
from the Review of Particle Physics [5].

1.1.2 CP violation and “prediction” of third generation

Cronin et al. discovered the CP violation in the kaon system in 1964 [8].
Several attempts were made to explain it, including the postulation of extra
“superweak” interaction. However, the one that turned out to be the most
promising was the mechanism proposed by Kobayashi and Maskawa [9] in
1972, which showed that with three generations of quarks, a complex quark
mixing matrix arises naturally. In a sense, this was the “prediction” of third
generation, which was confirmed by the discovery of τ in 1976, Υ(bb̄) in 1977,
top quark in 1993, and ντ in 2001.

The era of B physics thus began about 30 years ago. Since B mesons
(those including a b quark) are much heavier than the earlier K (with an
s quark) and D (with a c quark), they can decay through more number
of channels. This allows one to have more consistency checks as well as
more control over theoretical uncertainties, since one can now take ratios of
quantities that are relatively more immune to these uncertainties. Moreover,
the large mass (≈ 5 GeV) of b quark makes the quantity ΛQCD/mb small, so
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that a systematic expansion in this quantity can be carried out which goes
under the name of Heavy Quark Effective Theory (HQET).

1.2 Recent results and current excitement in B physics

The study of B decays has led to a much better understanding of the flavor
sector of the SM, and of the phenomenon of CP violation in particular. Some
of the recent important results obtained are the following:

• The measurement of time dependent asymmetry in Bd → J/ψKS

demonstrated cleanly that the CP violation in the SM is large. This
implied that CP is not an approximate symmetry of the SM.

• The asymmetry in B0 → K±π∓ demonstrated the “direct” CP viola-
tion (more appropriately called “CP violation through decay”).

• The asymmetries measured in various decay channels (e.g. K+K−KS,
D∗+D∗−, η′KS, f0KS, ρ

±π∓) have overconstrained the quark mixing
matrix.

• Measurements of radiative B decays (b → sγ) as well as limits on the
rates of super-rare leptonic decays (B → µ+µ−) have constrained new
physics models like SUSY, leptoquarks, etc.

• The measurements of mass differences in the B–B system have led to
the right prediction of the top quark mass.

One expects that future experiments in B decays will lead us to a better
understanding of flavor physics in the SM, and perhaps even give an indirect
signal for physics beyond SM.

2 Mixing between two neutral mesons

In this section, we shall develop a general formalism to deal with mixing of
two neutral pseudoscalar mesons P and P . This formalism will be applicable
to K–K, D–D as well as B–B system. We shall derive results that can be
used later to express our ideas compactly.
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Figure 1: The mixing between P (pq) and P (pq). Here q′ is the quark whose
charge differs by 1 from the charge of p and q. These are the “box” diagrams
that give rise to M12 and Γ12.

2.1 Hamiltonian, eigenvalues and eigenstates

Let us work in the basis (P, P ), i.e. any superposition state aP + bP may be
represented as the column vector (a b)T . In this basis, the effective Hamil-
tonian is a 2 × 2 matrix. Since the P and P mesons decay, the evolution is
not unitary, and hence the Hamiltonian H is not Hermitian. Indeed, it can
be written as the sum of a Hermitian part M and an anti-Hermitian part,
conventionally written as −iΓ/2 where Γ is a Hermitian matrix.

H = M − i

2
Γ =

(

M11 M12

M21 M22

)

− i

2

(

Γ11 Γ12

Γ21 Γ22

)

(3)

The Hermiticity of H and Γ imply

M21 = M∗
12 and Γ21 = Γ∗

12 . (4)

In addition, the CPT theorem gives two more constraints:

M11 = M22 and Γ11 = Γ22 . (5)

Note that M12 and Γ12, the components of the Hamiltonian that mix P and
P , are essentially the dispersive and absorptive parts of the P–P mixing box
diagrams. The box diagrams for the P (pq)–P (pq) system is shown in Fig. 1.

Using (4) and (5), one gets the eigenvalues of the Hamiltonian H to be

µH = M11 −
i

2
Γ11 +

1

2

(

∆m− i

2
∆Γ

)

,

µL = M11 −
i

2
Γ11 −

1

2

(

∆m− i

2
∆Γ

)

, (6)
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where ∆m and ∆Γ are the solutions of

(∆m)2 −
(

∆Γ

2

)2

= 4|M12|2 − |Γ12|2 ,

∆m · ∆Γ = 4Re(M12Γ
∗
12) . (7)

The labelsH and L stand for “heavy” and “light” respectively, by convention.
Eq. (6) implies that ∆m > 0 by definition. The sign of ∆Γ depends on the
dynamics.

The normalized eigenstates of the Hamiltonian turn out to be

|PL〉 = p|P 〉 + q|P 〉 ,
|PH〉 = p|P 〉 − q|P 〉 , (8)

where

|p|2 + |q|2 = 1 and

(

q

p

)2

=
M∗

12 − i
2
Γ∗

12

M12 − i
2
Γ12

. (9)

Problem 2. Derive the above results about eigenvalues and eigenstates.
What problems would one face if the CPT conditions did not hold ?

2.2 Phase invariant quantities

We would like to study processes where P or P decay to a final state f or
its CP-conjugate state f . The phases of P, P as well as f, f are arbitrary, so
that the CP-conjugation relations can be written in the most general form
as

CP |P 〉 = eiζP |P 〉 , CP |P 〉 = e−iζP |P 〉 , (10)

CP |f〉 = eiζf |f〉 , CP |f〉 = e−iζf |f〉 . (11)

We represent the decay rates for the relevant processes by

Af ≡ 〈f |H|P 〉 , Af ≡ 〈f |H|P 〉 , (12)

Af ≡ 〈f |H|P 〉 , Af ≡ 〈f |H|P 〉 . (13)

The phases ζP and ζf are unphysical, so that the observable quantities should
be independent of these phases. Three such quantities that can be con-
structed will be relevant for CP violation:

∣

∣

∣

∣

∣

Af
Af

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

q

p

∣

∣

∣

∣

, λf ≡
q

p

Af
Af

. (14)
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Interchanging f and f can give more phase invariant quantities, but that is
just a matter of redefinition of f and f .

2.3 Time Evolution

Let us study the time evolution of an initial flavor eigenstate |P 〉. Since the
eigenstates |PH〉 and |PL〉 evolve independently without mixing, it is easier
to write the evolution in terms of these states. At t = 0,

|P (0)〉 =
1

2p
(|PL〉 + |PH〉) . (15)

At time t, one gets

|P (t)〉 =
1

2p
(e−imLt−ΓLt/2|PL〉 + e−imH t−ΓH t/2|PH〉

= g+(t)|P 〉 − q

p
g−(t)|P 〉 , (16)

where we have defined

g± ≡ 1

2

(

e−imH t−ΓH t/2 ± e−imLt−ΓLt/2
)

(17)

for convenience. In terms of g±, the evolution of an initial |P 〉 can be written
simply as

|P (t)〉 = g+(t)|P 〉 − p

q
g−(t)|P 〉 . (18)

Now we are ready to calculate the rate of P/P to f/f as a function of
time. One obtains, after a straightforward algebra,

dΓ
dt

[P (t) → f ]

e−ΓtNf |Af |2
= (1 + |λf |2) cosh(∆Γt/2) + (1 − |λf |2) cos(∆mt)

+2Re(λf) sinh(∆Γt/2) + 2Im(λf) sin(∆mt) , (19)
dΓ
dt

[P (t) → f ]

e−ΓtNf |Af |2|p/q|2
= (1 + |λf |2) cosh(∆Γt/2) − (1 − |λf |2) cos(∆mt)

+2Re(λf) sinh(∆Γt/2) − 2Im(λf) sin(∆mt) . (20)

where Γ ≡ (ΓH +ΓL)/2 and Nf is a common normalization factor. Note that
all the observables have been written in terms of phase invariant quantities
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given in (14). Terms in (19) and (20) that do not involve λf are the ones
that occur without any P–P oscillations, those involving λf are associated
with decays following an effective oscillation.

In literature one often finds the parameters x and y, defined such that

x ≡ ∆m

Γ
, y ≡ ∆Γ

2Γ
. (21)

Problem 3. Calculate dΓ
dt

[P (t) → f ] and dΓ
dt

[P (t) → f ], especially keeping
track of the signs of various terms.

2.3.1 Tagged and untagged decays

Since there are many states that both P and P can decay to, it is often
not possible to deduce if the decaying particle was a P or a P . One can
get around this obstacle partly if one looks at P and P that are produced
coherently from the decay of a resonance (e.g. φ → KK,Υ(4s) → BB). In
such a case, if one of these particles decays through a flavor-specific mode
(i.e. mode which allows us to identify a P or a P ) at time t, one knows the
identity of the other particle at that time t, and its time evolution can then
be studied. This process is called “tagging”.

More generally, one may consider the “double time evolution” of the
coherently produced P and P that decay to the final state f1f2. One gets

dΓ
dt

(PP → f1f2)

e−Γ|∆t|Nf1f2

= (|a+|2 + |a−|2) cosh(∆Γt/2)(|a+|2 − |a−|2) cos(∆mt)

− 2Re(a∗+a−) sinh(∆Γt/2) + 2Im(a∗+a−) sin(∆mt) , (22)

where

a+ ≡ Af1Af2 − Af1Af2

a− ≡ p

q
Af1Af2 −

q

p
Af1Af2 (23)

Problem 4. Prove the above “double probability distribution”. Show that in
the limits {Af1 = 0, Af1 = 1} and {Af1 = 0, Af1 = 1}, it reduces to the time
evolution in (19) and (20).

Problem 5. Untagged decays are those where the identity of the decay-
ing particle, P or P , is unknown. Calculate the untagged time evolution,
1
2

(

dΓ
dt

[P (t) → f ] + dΓ
dt

[P (t) → f ]
)

, when |p| = |q|.
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2.4 Types of CP violation

The three phase invariant quantities given in (14) can be used to classify CP
violation into three types.

2.4.1 CP violation in decay only

In charged meson decays, no mixing is involved. In that case, CP is violated
iff

|Af/Af | 6= 1 . (24)

In such a situation, an observable CP violating quantity is

Af± ≡ Γ(P− → f−) − Γ(P+ → f+)

Γ(P− → f−) + Γ(P+ → f+)
=

|Af−/Af+|2 − 1

|Af−/Af+|2 + 1
. (25)

A nonvanishing Af± is often termed “direct” CP violation.

2.4.2 CP violation in mixing only

Even when |Af | = |Af |, it is possible to have observable CP violation in
neutral P decays if

|q/p| 6= 1 . (26)

An example of such a process would be semileptonic decays, where P → ℓ+X
and P → ℓ−X have the same amplitude, while the amplitudes of P → ℓ−X
and P → ℓ+X vanish. If one observes the “wrong sign” leptons, one can
measure the CP asymmetry

ASL(t) ≡
dΓ
dt

(P (t) → ℓ+X) − dΓ
dt

(P (t) → ℓ−X)
dΓ
dt

(P (t) → ℓ+X) + dΓ
dt

(P (t) → ℓ−X)
=

1 − |q/p|4
1 + |q/p|4 . (27)

Note that, although this asymmetry is defined as a function of time, it turns
out to be a constant.

2.4.3 CP violation through mixing-decay interference

This is the CP violation that is governed by the complex quantity λf . Con-
sider a final state fCP that both P and P decay to. One can then define a
CP violating observable

AfCP
(t) ≡

dΓ
dt

(P (t) → fCP ) − dΓ
dt

(P (t) → fCP )
dΓ
dt

(P (t) → fCP ) + dΓ
dt

(P (t) → fCP )
. (28)
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If we neglect the lifetime difference ∆Γ, and also take |q/p| = 1 to start with
(both of which are good approximations for the Bd system), eqs. (19) and
(20) give

AfCP
(t) = SfCP

sin(∆mt) + CfCP
cos(∆mt) , (29)

where

SfCP
≡ 2Im(λfCP

)

1 + |λfCP
|2 , CfCP

≡ 1 − |λfCP
|2

1 + |λfCP
|2 . (30)

Even when |λfCP
| = 1, so that there is no CP violation in decay alone

(|AfCP
| = |AfCP

|), neither is there CP violation in mixing alone (|q| = |p|),
there can still be CP violation through their interference, as long as

Im(λfCP
) 6= 0 . (31)

We shall return to specific examples of processes involving the above three
types of CP violation after we introduce the Cabibbo-Kobayashi-Maskawa
mechanism in the next section.

3 The CKM paradigm

An extension of the Cabibbo mechanism discussed in Sec. 1.1.1, the Kobayashi-
Maskawa mechanism not only parametrizes the quark mixing in three gen-
erations, it also shows that CP violation in three generations is a natural
consequence of quark mixing. Furthermore, it goes on to predict that all the
observed CP violation can be explained by a single source. This prediction
has been borne out by all the experiments till now, and is a major success of
the SM.

3.1 Origin of the CKM matrix

Let U ′ ≡ (u c t)T repesent the column vector consisting of three up-type
quarks, and D′ ≡ (d s b)T , the column vector consisting of the three down-
type quarks. The charged current part of the SM Lagrangian, in the basis of
flavor eigenstates, is

LCC =
g√
2
U ′
Lγ

µD′
LW

+
µ + h.c. , (32)
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where the subscript L represents left chiral component of the quark spinors.
Note that the charged current interactions are diagonal in the flavor basis by
definition.

The part of the Lagrangian giving mass to the quarks is, in the flavor
basis,

Lmass = U ′
LM

′
UU

′
R +D′

LM
′
DD

′
R +H.c. , (33)

where the mass matrices M ′
U and M ′

D are 3 × 3 matrices that need not be
diagonal (and indeed, are not) in this flavor basis. Let the mass eigenstate
basis, where the mass matrices become diagonal, be given by UL, DL, UR, DR

such that

U ′
L = VULUL , D′

L = VDLDL ,

U ′
R = VURUR , D′

R = VDRDR . (34)

Here, VUL, VDL, VUR, VDR are unitary matrices. In the mass eigenstate basis,
the mass part of the Lagrangian becomes

Lmass = ULV
†
ULM

′
UVURUR +DLV

†
DLM

′
DVDRDR +H.c. ,

= ULM
diag
U UR +DLM

diag
D DR +H.c. ,

(35)

where

Mdiag
U ≡ V †

ULM
′
UVUR =





mu 0 0
0 mc 0
0 0 mt



 ,

Mdiag
D ≡ V †

DLM
′
DVDR =





md 0 0
0 ms 0
0 0 mb



 . (36)

The elements of Mdiag
U and Mdiag

D , which are the quark masses mq, are in
general complex numbers.

The charged current Lagrangian in the mass basis is

LCC =
g√
2
ULV

†
ULγ

µVDLDLW
+
µ +H.c. =

g√
2
ULγ

µ(V †
ULVDL)DLW

+
µ +H.c. .

(37)
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Thus in the mass basis, the up-type quarks UL couple to (V †
ULVDL)DL with

the standard weak coupling strength g/
√

2. Therefore, the coupling between
the mass eigenstates UL and DL is given by (g/

√
2)VCKM , where

VCKM ≡ V †
ULVDL . (38)

VCKM is the Cabibbo-Kobayashi-Maskawa (CKM) matrix which character-
izes mixing in the quark sector. This is a unitary matrix, since it is formed
by a multiplication of two unitary matrices. Note that VUR and VDR do not
play any role here.

The elements of the CKM matrix are named in terms of the quarks which
they connect:

VCKM =





Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb



 . (39)

3.1.1 Parameter counting

The CKM matrix is a complex matrix, so in general it can be paramerized by
9 real and 9 imaginary quantities. The unitarity of the matrix (V †

CKMVCKM =
1) provides constraints on 6 real and 3 imaginary quantities, leaving us with
3 real and 6 imaginary ones. We still have the freedom of changing the phase
of each of the six quarks individually, however a common phase change for
all quarks will not affect VCKM . The remaining 5 phases that affect VCKM
should be unphysical, so that only 1 imaginary and 3 real quantities are
required to describe the complete physics incorporated in VCKM .

Recall that any rotation in 3 dimesions may be described in terms of
three real parameters, the three Euler angles. The rotation required in the 3
dimensional flavor space here thus involves an additional complex component
which is parametrized by the imaginary “phase”. This is the single complex
phase that is responsible for all the CP violation, according to the CKM
mechanism.

Problem 6. For n generations of quarks, calculate the number of real and
imaginary quantities required to determine the physics of the quark mixing
matrix. Hence, show that 3 is the minimum number of generations for which
a complex mixing matrix may be obtained.
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3.2 Parametrization of CKM elements

The general expression for the CKM matrix, showing the complete depen-
dence on the three angles θ12, θ23, θ13 and one phase δ13 may be written as

V =





c12c13 s12c13 s13e
−iδ13

−s12c23 − c12s23s13e
iδ13 c12c23 − s12s23s13e

iδ13 s23c13
s12s23 − c12c23s13e

iδ13 −c12s23 − s12c23s13e
iδ13 c23c13



 ,

(40)
where sij ≡ sin θij and cij ≡ cos θij . Although this form in principle would
suffice for all the analysis, a more convenient parametrization is obtained
when we use the experimental observation that the angle θ12, which is ap-
proximately the same as the Cabibbo angle, is small:

λ ≡ sin θ12 ≈ 0.2 . (41)

All the CKM elements may then be written as an expansion in powers of λ.

3.2.1 The parameters λ,A, ρ, η

The magnitudes of some of the CKM elements may be determined through
simple tree-level decay modes.

• |Vud|: This may be obtained through neutron decay, which is essentially
d→ uℓ−ν̄.

• |Vus|: This is determined through semileptonic kaon decay, e.g. K →
πℓν. Cabibbo angle is defined through tan θ12 = |Vus/Vud|. The pa-
rameter λ is then defined as sin θ12.

• |Vcs|: The “strange” decays of “charmed” mesons, D → Kℓν, lead to
the measurement of |Vcs|, which is found to be very close to |Vud|. From
(40), this leads us to conclude that s23s13 is extremely small.

• |Vcd|: The decays D → πℓν yield this quantity, which is found to be
extremely close to |Vus|. Since s23s13 is small, we get Vcd = −Vus.

Since s23s13 is extremely small, the 2×2 submatrix consisting of the above
four elements is almost unitary. In terms of λ, this submatrix is

VCKM(2×2) =

(

1 − λ2/2 λ
−λ 1 − λ2/2

)

+ O(λ4) . (42)
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The phase convention is chosen so as to make Vud, Vus and Vcs real and pos-
itive. The realness of Vcs is the consequence of “almost unitarity” of this
submatrix. The matrix in (42) is identical to the mixing matrix proposed by
Glashow-Iliopoulos-Maiani that had only Cabibbo angle.

The semileptonic decays of B mesons lead us to the measurements of the
next two magnitudes:

• |Vcb|: The decay B → Dℓν determines |Vcb|. The phase convention is
chosen to make Vcb real and positive, and its magnitude is defined to
be Aλ2. Experiments imply A ≈ 0.8–1.0 ∼ O(1), justifying the use of
quadratic power of λ. The definition of the parameter A is thus

A ≡ |Vcb|/λ2 . (43)

• |Vub|: This is obtained through the decay B → (π/ρ)ℓν. This is a dif-
ficult mode to measure experimentally, since removing the background
coming from B → Dℓν is a daunting task. We shall not go into the
details of the measurement. From (40), Vub has to be a complex quan-
tity, and needs two more parameters for its complete description. We
define the parameters ρ and η through

Vub ≡ Aλ3(ρ− iη) . (44)

The observed value of |Vub| = Aλ3
√

ρ2 + η2 is consistent with the third
power of λ used in the definition, so that ρ, η ∼ O(1).

Problem 7. Calculate the maximum energy that an electron can have, when
it is a product of (i) b→ ce−ν , and (ii) b → ue−ν. Argue how the difference
in these energies can be used to identify a pure sample of b→ u decays.

3.2.2 The Wolfenstein parametrization and beyond

The definitions of λ,A, ρ, η through equations (41,43,44), and the unitarity
condition, are enough to parametrize the CKM matrix completely as

V =





1 − λ2/2 λ Aλ3(ρ− iη)
−λ 1 − λ2/2 Aλ2

Aλ3(1 − ρ− iη) −Aλ2 1



 + O(λ4) . (45)

This is called the Wolfenstein parametrization, and is the common one in
use.
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Some of the earlier results can now be cast in terms of this parametriza-
tion. Comparison of (40) and (45) gives

s12 = λ , s23 = Aλ2 , s13 = Aλ3
√

ρ2 + η2 , (46)

and the complex-ness of the matrix is represented by the nonvanishing value
of η.

The original Wolfenstein parametrization is accurate to O(λ4). A more
precise version is sometimes needed, and is given by

V =





1 − 1
2
λ2 − 1

8
λ4 λ Aλ3(ρ− iη)

−λ+ 1
2
A2λ5[1 − 2(ρ+ iη)] 1 − 1

2
λ2 − 1

8
λ4(1 + 4A2) Aλ2

Aλ3[(1 − (1 − 1
2
λ2)(ρ+ iη)] −Aλ2 + 1

2
Aλ4[1 − 2(ρ+ iη)] 1 − 1

2
A2λ4





+O(λ6) . (47)

Note that the freedom to choose the 5 relative phases has been used to
make the elements Vud, Vus, Vcs, Vcb and Vtb real and positive. The constraints
quoted on the elements of the CKM matix are often in terms of ρ and η,
where

ρ ≡ ρ(1 − 1

2
λ2) , η ≡ η(1 − 1

2
λ2) . (48)

3.3 Unitarity triangles

The unitarity of the CKM matrix implies the relation V †V = 1. This can be
viewed as conditions on combinations of CKM elements in a complex plane.
For example,

[V †V ]32 = 0 ⇒ V ∗
ubVud + V ∗

cbVcd + V ∗
tbVtd = 0 . (49)

This relation may be represented as a triangle in the complex plane, whose
sides are the three complex quantities V ∗

ubVud, V
∗
cbVcd and V ∗

tbVtd. This triangle
is shown in Fig. 2.

The CKM matrix satisfies three distinct relations of the form [V †V ]ij = 0
(i 6= j). These give rise to three different unitarity triangles. The Wolfenstein
parametrization (45) can be used to determine some of the features of these
triangles.

• The [V †V ]31 = 0 triangle V ∗
ubVus + V ∗

cbVcs + V ∗
tbVts = 0:

All sides of this triangle are O(λ3), hence of comparable lengths, and

16



Figure 2: The unitarity triangle obtained from [V †V ]32 = 0. The B decay
modes useful for determining its sides and angles have also been indicated.
The figure has been taken from [10].

all the angles are O(1). This is the “standard” unitarity triangle, whose
angles are defined as

α ≡ Arg

(

− VtdV
∗
tb

VudV ∗
ub

)

, β ≡ Arg

(

−VcdV
∗
cb

VtdV ∗
tb

)

, γ ≡ Arg

(

−VudV
∗
ub

VcdV ∗
cb

)

.

(50)
These angles, shown in Fig. 2, are probed mainly via Bd–Bd mixing.

Note that tanα · tan β · tan γ = −1, implying that α + β + γ = π (in
radians). This is just an identity. In literature, the angles α, β, γ have
also been referred to as φ2, φ1, φ3 respectively.

• The [V †V ]32 = 0 triangle V ∗
ubVus + V ∗

cbVcs + V ∗
tbVts = 0:

Two of the sides of this triangle are O(λ2), and one is O(λ4). This
triangle is thus much flatter than the previous one. The smallest angle
of this triangle,

βs ≡ Arg

(

−VcsV
∗
cb

VtsV
∗
tb

)

, (51)

is relevant in Bs–Bs mixing.
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• The [V †V ]12 = 0 triangle V ∗
udVus + V ∗

cdVcs + V ∗
tdVts = 0:

This triangle is the flattest of them all, two of its sides being O(λ) and
the third one O(λ5). The smallest angle is relevant for K–K mixing,
and is defined as

βK ≡ Arg

(

−VcsV
∗
cd

VtsV ∗
td

)

. (52)

The smallness of CP violation observed in K system [O(10−3] as com-
pared to that in the Bd system (O(1)) can be traced to βK ≪ β.

There are also three unitarity triangles corresponding to the relations
[V V †]31 = 0, [V V †]32 = 0 and [V V †]21 = 0. However, they can be derived
from the thee [V †V ]ij = 0 relations, and do not offer any extra insight.

Problem 8. Prove the “unitarity relation” between the angles of two of the
unitarity triangles:

sin βs =

∣

∣

∣

∣

Vus
Vud

∣

∣

∣

∣

2
sin β sin(γ + βs)

sin(β + γ)
[1 + O(λ4)] . (53)

Problem 9. Determine the angles βs and βK to leading power in λ.

3.3.1 Areas of unitarity triangles

The area of a triangle in the complex plane, two of whose sides are represented
by the comples numbers x and y, is given by

Area =
1

2
|~x× ~y| =

1

2
Im(x∗y) (54)

Using this result, it is clear, for example, that the area of the triangle in
Fig. 2 is |Im(V ∗

cbVcsVtbV
∗
ts)|/2.

Using only the unitarity of CKM matrix, it can be shown that the quantity

J ≡ |Im(V ∗
αiVαjVβiV

∗
βj)| (55)

is the same for all sets of α 6= β and i 6= j. This quantity, called the Jarlskog
invariant [11], is twice the area of the corresponding unitarity triangle. Thus,
we have the result that all the unitarity triangles have the same area. In terms
of the CKM parametrizations we have discussed, the Jarlskog invariant is

J = s12s23s13c12c23c
2
13 sin δ ≈ A2λ6η . (56)
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The Jarlskog invariant is also a “rephase invariant”, i.e. it does not depend
on the 5 relative phases chosen for the quarks [12].

The area of the unitarity triangles can vanish only if all the CKM matrix
elements are real, which corresponds to CP conservation. This area, as will
be seen later, is in fact proportional to the CP violation in the corresponding
process. The area of the triangles, or the Jarlskog invariant, is thus the single
quantity that is responsible for all the CP violation that can be described
by the CKM paradigm.

Problem 10. Prove that J is indeed independent of i, j, α, β, as long as i 6= j
and α 6= β, using only the unitarity relations [V †V ]ij = 0 and [V V †]ij = 0.

4 CP violation and the CKM matrix

In this section, we shall employ the CKM formalism developed so far to
explicitly calculate CP violation in various processes, leading to an overde-
termination of the CKM matrix elements. This will help us measure them
to a good accuracy, at the same time allowing us to test the mechanism.

Let us start with some explicit examples of CP violation through decay,
mixing, and their interference.

4.1 CP violation through decay only

Consider the CP-conjugate decays B± → K±π0 with amplitudes A±. If the
only channel through which this decay occurs were the one shown in Fig. 3,
then we would have

A+ = V ∗
ubVusA1 , A− = VubV

∗
usA1 , (57)

where A1 includes all the hadronic factors as well as phase space factors,
which are identical for these two processes. Then, even though the amplitudes
A+ and A− are different, the net decay rates Γ± are identical, and hence no
observable CP violation will be present. Indeed, this is always the case for
the “decay only” CP violation when there is only one CKM combination
involved.

The actual situation for B± → K±π0 is different, since this decay can also
proceed through the “penguin” diagram shown in Fig. 4. The amplitudes
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Figure 3: Tree diagrams for B± → K±π0. The relevant CKM elements are
also shown.
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Figure 4: Penguin diagrams for B± → K±π0, mediated by the top quark.
The relevant CKM elements are also shown. The uu pair may be produced
by a gluon, Z boson or a photon.

A± are then a sum of two contributions each:

A+ = V ∗
ubVusA1 + V ∗

tbVtsA2 , (58)

A+ = VubV
∗
usA1 + VtbV

∗
tsA2 , (59)

where A2 includs the hadronic as well as phase space factors for the penguin
diagram. Note that we have only taken the penguin diagram mediated by
the top quark, since this happens to dominate over the ones with interme-
diate charmed or up quark. The decay rates for these processes will now be
different:

Γ+ − Γ− = 4 Im(V ∗
ubVusVtbV

∗
ts) Im(A1A

∗
2) . (60)

Thus, observable CP violation requires that the terms (V ∗
ubVusVtbV

∗
ts) as

well as (A1A
∗
2) are not completely real. This result is sometimes also stated
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as “there must be a weak (CKM) phase difference as well as a strong phase
difference”. Note that the CKM contribution to the CP violation is indeed
proportional to the Jarlskog invariant J .

Problem 11. Find the leading power of λ present in the “direct” CP asym-
metry Adir = (Γ+ − Γ−)/(Γ+ − Γ−), for (i) K → ππ, (ii) D → Kπ, (iii)
B → Dπ. Argue why B decays should typically show more asymmetry than
D or K.

4.2 CP violation through mixing only

For this type of CP violation, we should look for |q/p| 6= 1. The experimental
measurements give [13]

|q/p|d = 1.0002 ± 0.0028 , |q/p|s = 1.0015 ± 0.0051 (61)

for the Bd and Bs system respectively. We are thus far from a nonzero
measurement of “CP violation through mixing only” in the B meson systems.

This may be understood theoretically from the expression

(

q

p

)2

=
M∗

12 − i
2
Γ∗

12

M12 − i
2
Γ12

. (62)

Calculation of the dispersive and absorptive parts of the box diagram (see
Fig. 5) yields Γ12 ≪ M12 in both, Bd as well as Bs systems. As a result,
|q/p| ≈ 1, and CP violation through mixing only is not observed in B decays.
Indeed, the semileptonic asymmetry defined in (27) is found to be

Ad
SL = −0.0005 ± 0.0056 and As

SL = −0.0030 ± 0.0101 (63)

in Bd and Bs systems respectively

Problem 12. In the kaon system, where ∆m = 3.5× 10−12 MeV and τKS
=

0.9 × 10−10 sec, estimate |q/p| and ASL. Compare with the measured value.
Is any more information needed ?

4.3 CP violation through decay-mixing interference

Let us consider the “golden channel” Bd/Bd → J/ψKS, which has given us
a rather clean measurement of β, one of the angles of the unitarity triangle.
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Figure 5: The Bd–Bd mixing box diagram intermediated by the top quark.
The relevant CKM elements are also shown.

As mentioned in the previous section, Γ12 ≪ M12 in the Bd system, so
from (62), we get

q/p = exp[−iArg(M12)] . (64)

Let us use the phase convention where CP |Bd〉 = |Bd〉. In this convention,
from the box diagram in Fig. 5,

Arg(M12) = Arg(V ∗
tbVtdV

∗
tbVtd) ≈ −2β . (65)

As a result, q/p ≈ e2iβ .
The dominant contribution to Af and Af is from the tree diagram shown

in Fig. 6. 1 This tree amplitude is proportional to the CKM combination
VcbV

∗
cs (V ∗

cbVcs) for Bd (Bd) decay.
Thus we get

Af
Af

≈ VcbV
∗
cs

V ∗
cbVcs)

≈ 1 . (66)

Consequently,

λf =
q

p

Af
Af

= e2iβ . (67)

In the Bd system, the lifetime difference ∆Γ is expected to be extremely
small: in the SM, ∆Γ/Γ ≈ 0.5%. Then we can use (19) and (20) to get the

1The penguin contribution is suppressed since it involves the production of a cc̄ pair.
Moreover, even among the penguin processes, the one intermediated by the top quark
dominates, and the CKM phase it provides is almost identical to the tree diagram CKM
phase, since from the Wolfenstein parametrization, it can be seen that VtbV

∗

ts
= VcbV

∗

cs
+

O(λ4).
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asymmetry

AJ/ψKS
≡

dΓ
dt

(Bd(t) → J/ψKS) − dΓ
dt

(Bd(t) → J/ψKS)
dΓ
dt

(Bd(t) → J/ψKS) + dΓ
dt

(Bd(t) → J/ψKS)
≈ sin 2β sin(∆mt) .

(68)
The observation of this asymmetry thus gives a direct measurement of the
phase β, which testifies to the presence of CP violation through the interfer-
ence of decay and mixing.

Problem 13. Determine the time dependent CP asymmetry in Bs/Bs →
J/ψφ.

4.4 Constraining the unitarity triangle

The bulk of the tests carried out so far have can be expressed in terms of
the standard unitarity triangle. When all sides of this triangle are divided
by Aλ3, it becomes a triangle all of whose sides are O(1). Its vertices are at
the points (0, 0), (1, 0), (ρ, η).

Various experiments constrain different combinations of ρ and η:

• |Vub/Vcb|2 gives ρ2 + η2, as shown in Sec. 3.2.

• In the ratio of mass differences in Bd and Bs systems, many common
factors (like QCD corrections, dependence on top quark mass, etc.)
cancel out, and one obtains

∆md

∆ms

=
MBd

MBs

B̂Bd
f 2
Bd

B̂Bs
f 2
Bs

∣

∣

∣

∣

Vtd
Vts

∣

∣

∣

∣

2

, (69)
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Figure 7: Constraints on the unitarity triangle in the ρ− η plane [14]

where fBq
are the decay constants and B̂Bq

take care of nonperturbative
corrections. These quantities can be reasonably well calculated using
lattice methods, and hence the measurement of the ratio (69) gives
information on |Vtd/Vts|2, or equivalently, on (1 − ρ)2 + η2.

• As seen in Sec. 4.3, the time dependent asymmetry observed inBd/Bd →
J/ψKS yields the angle β, equivalently the combination tanβ = η/(1−
ρ).

• In addition, the measurements of ǫ parameter in the kaon system, var-
ious measurements of the unitarity angles α, γ, all conspire to overcon-
strain the values of ρ and η. (For details, see [14]).

It is remarkable that, even with rather accurate measurements of some
of the above quantities, all the current constraints overlap in a small region
in the ρ − η plane (see Fig. 7). This is a strong evidence that the CKM
paradigm is working well and perhaps its strong claim to a single source of
CP violation in the quark sector is valid.
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5 Concluding remarks

Since the CKM mechanism makes such strong predictions about CP violation
observed in the quark sector, it lends itself amenable to testing from various
angles. The fact that it has passed all the tests so far indicates that the
sources of CP violation apart from the CKM matrix are likely to be small.
However, with more and more accurate data expected from the B factories
and the LHC, perhaps the limits of the CKM mechanism will be reached and
we shall obtain perhaps the first evidence for physics beyond the SM in the
quark sector.

Crucial in this context are two kinds of processes.

• Those that can be predicted very accurately within the SM, so that
a deviation from this prediction is a robust signature of new physics.
These include the consistency checks of the CKM matrix elements, as
well as channels like the radiative decay b → sγ which has already
constrained new physics to a great degree.

• Processes that lead to quantities that vanish or are extremely small in
the SM, but can be enhanced by orders of magnitude by new physics.
These mainly involve loops in which new particles propagate, but the
enhancement can also be obtained from new couplings. Some examples
of such processes are (i) CP violation in the Bs–Bs system, (ii) lifetime
difference in the Bd–Bd system, (iii) branching ratio and polarization
asymmetry in Bd/Bs → µ+µ−, (iv) forward-backward asymmetry in
Bd → Kµ+µ−.

These lectures have not dwelt much on the calculation of actual decay
rates of processes, which is often a daunting task involving subleading QCD
corrections and estimations of hadronic matrix elements that are often non-
perturbative quantities. One tries to get around this by using symmetry
arguments like flavor SU(3) to relate the amplitudes of different decays.
Techniques like the QCD-improved factorization or Soft Collinear Effective
Theory are also being developed.

This short course was aimed towards those who were being exposed to B
physics, as well as to ideas about CP violation, for the first time. It is hoped
that these lectures will give them a basic understanding of these topics and
motivation to pursue them.
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