The Elusive Neutrino

Amol Dighe

Department of Theoretical Physics
Tata Institute of Fundamental Research, Mumbai

CBS Colloquium, Mumbai, Apr 9, 2008
1. What are neutrinos
 - Aspects of neutrinos
 - A brief history of neutrinos

2. Recent discoveries in neutrinos
 - Atmospheric neutrino puzzle
 - Solar neutrino puzzle

3. The future of neutrino physics
 - What we know about neutrinos
 - What we do not know about neutrinos
 - What we are doing about it
Outline

1. What are neutrinos
 - Aspects of neutrinos
 - A brief history of neutrinos

2. Recent discoveries in neutrinos
 - Atmospheric neutrino puzzle
 - Solar neutrino puzzle

3. The future of neutrino physics
 - What we know about neutrinos
 - What we do not know about neutrinos
 - What we are doing about it
What are neutrinos

- Particles that accompany radioactive β decay
 - Byproducts of nuclear reactions
 - The most abundant particles
 - The most weakly interacting particles
 - The lightest massive particles
 - Particles that break left-right (mirror) symmetry maximally
 - Particles that may be their own antiparticles
 - Particles that may have created the matter-antimatter asymmetry
 - Particles that have always sprung surprises
What are neutrinos

- Particles that accompany radioactive β decay
- Byproducts of nuclear reactions
 - The most abundant particles
 - The most weakly interacting particles
 - The lightest massive particles
 - Particles that break left-right (mirror) symmetry maximally
 - Particles that may be their own antiparticles
 - Particles that may have created the matter-antimatter asymmetry
- Particles that have always sprung surprises
What are neutrinos

- Particles that accompany radioactive β decay
- Byproducts of nuclear reactions
- **The most abundant particles**
 - The most weakly interacting particles
 - The lightest massive particles
 - Particles that break left-right (mirror) symmetry maximally
 - Particles that may be their own antiparticles
 - Particles that may have created the matter-antimatter asymmetry
- Particles that have always sprung surprises
What are neutrinos

- Particles that accompany radioactive β decay
- Byproducts of nuclear reactions
- The most abundant particles
- The most weakly interacting particles
- The lightest massive particles
- Particles that break left-right (mirror) symmetry maximally
- Particles that may be their own antiparticles
- Particles that may have created the matter-antimatter asymmetry
- Particles that have always sprung surprises
What are neutrinos

- Particles that accompany radioactive β decay
- Byproducts of nuclear reactions
- The most abundant particles
- The most weakly interacting particles
- The lightest massive particles
- Particles that break left-right (mirror) symmetry maximally
- Particles that may be their own antiparticles
- Particles that may have created the matter-antimatter asymmetry
- Particles that have always sprung surprises
What are neutrinos

- Particles that accompany radioactive β decay
- Byproducts of nuclear reactions
- The most abundant particles
- The most weakly interacting particles
- The lightest massive particles
- Particles that break left-right (mirror) symmetry maximally
- Particles that may be their own antiparticles
- Particles that may have created the matter-antimatter asymmetry
- Particles that have always sprung surprises
What are neutrinos

- Particles that accompany radioactive β decay
- Byproducts of nuclear reactions
- The most abundant particles
- The most weakly interacting particles
- The lightest massive particles
- Particles that break left-right (mirror) symmetry maximally
- Particles that may be their own antiparticles
- Particles that may have created the matter-antimatter asymmetry
- Particles that have always sprung surprises
What are neutrinos

- Particles that accompany radioactive β decay
- Byproducts of nuclear reactions
- The most abundant particles
- The most weakly interacting particles
- The lightest massive particles
- Particles that break left-right (mirror) symmetry maximally
- Particles that may be their own antiparticles
- Particles that may have created the matter-antimatter asymmetry
- Particles that have always sprung surprises
What are neutrinos

- Particles that accompany radioactive β decay
- Byproducts of nuclear reactions
- The most abundant particles
- The most weakly interacting particles
- The lightest massive particles
- Particles that break left-right (mirror) symmetry maximally
- Particles that may be their own antiparticles
- Particles that may have created the matter-antimatter asymmetry
- Particles that have always sprung surprises
The Standard Model of Particle Physics

- 3 neutrinos: ν_e, ν_μ, ν_τ
- chargeless
- spin 1/2
- almost massless
Outline

1. What are neutrinos
 - Aspects of neutrinos
 - A brief history of neutrinos

2. Recent discoveries in neutrinos
 - Atmospheric neutrino puzzle
 - Solar neutrino puzzle

3. The future of neutrino physics
 - What we know about neutrinos
 - What we do not know about neutrinos
 - What we are doing about it
Neutrinos postulated but unobserved: 1932 – 1956

- Beta decay: $^{A}_{Z}N \rightarrow ^{A}_{Z+1}N + e^{-}$

- In any two-body decay, energy of final products is fixed.

- \Rightarrow Electron should have a fixed energy

- Energy-momentum conservation in grave danger!!

- A reluctant solution (Pauli): postulate a new particle
Neutrinos postulated but unobserved: 1932 – 1956

- Beta decay: $\frac{A}{Z}N \rightarrow \frac{A}{Z+1} N + e^-$

- In any two-body decay, energy of final products is fixed.
- \Rightarrow Electron should have a fixed energy
- Energy-momentum conservation in grave danger !!
- A reluctant solution (Pauli): postulate a new particle
Discoveries of neutrinos

- **Electron neutrino ν_e: 1956**
 - Reines-Cowan: Nobel prize 1995
 - Reactor neutrinos: $\bar{\nu}_e + p \rightarrow n + e^+$
 - $e^+ + e^- \rightarrow \gamma + \gamma$ (0.5 MeV each)
 - $n + ^{108}\text{Cd} \rightarrow ^{109}\text{Cd}^* \rightarrow ^{109}\text{Cd} + \gamma$ (delayed)

- **Muon neutrino ν_μ: 1962**
 - Steinberger-Schwartz-Lederman: Nobel prize 1988
 - Neutrinos from pion decay: $\pi^- \rightarrow \mu^- + \nu(\mu)$
 - $\nu(\mu) + N \rightarrow N' + \mu^-$
 - Always a muon, never an electron/positron

- **Tau neutrino ν_τ: 2000 (Fermilab)**
Discoveries of neutrinos

Electron neutrino ν_e: 1956
Reines-Cowan: Nobel prize 1995
- Reactor neutrinos: $\bar{\nu}_e + p \rightarrow n + e^+$
- $e^+ + e^- \rightarrow \gamma + \gamma$ (0.5 MeV each)
- $n + ^{108}\text{Cd} \rightarrow ^{109}\text{Cd}^* \rightarrow ^{109}\text{Cd} + \gamma$ (delayed)

Muon neutrino ν_μ: 1962
Steinberger-Schwartz-Lederman: Nobel prize 1988
- Neutrinos from pion decay: $\pi^- \rightarrow \mu^- + \nu_\mu$
- $\nu_\mu + N \rightarrow N' + \mu^-$
 - Always a muon, never an electron/positron

Tau neutrino ν_τ: 2000 (Fermilab)
Discoveries of neutrinos

- **Electron neutrino** ν_e: 1956
 - Reines-Cowan: Nobel prize 1995
 - Reactor neutrinos: $\bar{\nu}_e + p \rightarrow n + e^+$
 - $e^+ + e^- \rightarrow \gamma + \gamma$ (0.5 MeV each)
 - $n +^{108} \text{Cd} \rightarrow^{109} \text{Cd}^* \rightarrow^{109} \text{Cd} + \gamma$ (delayed)

- **Muon neutrino** ν_μ: 1962
 - Steinberger-Schwartz-Lederman: Nobel prize 1988
 - Neutrinos from pion decay: $\pi^- \rightarrow \mu^- + \nu(\mu)$
 - $\nu(\mu) + N \rightarrow N' + \mu^-$
 - Always a muon, never an electron/positron

- **Tau neutrino** ν_τ: 2000 (Fermilab)
Outline

1. What are neutrinos
 - Aspects of neutrinos
 - A brief history of neutrinos

2. Recent discoveries in neutrinos
 - Atmospheric neutrino puzzle
 - Solar neutrino puzzle

3. The future of neutrino physics
 - What we know about neutrinos
 - What we do not know about neutrinos
 - What we are doing about it
Neutrinos from cosmic rays

- $\pi^+ \rightarrow \mu^+ + \nu_\mu$
- $\mu^+ \rightarrow e^+ + \nu_e + \bar{\nu}_\mu$
- “ν_μ” flux = $2 \times$ “ν_e” flux
- Flux should be isotropic
Neutrinos from cosmic rays

$\pi^+ \rightarrow \mu^+ + \nu_\mu$

$\mu^+ \rightarrow e^+ + \nu_e + \bar{\nu}_\mu$

"ν_μ" flux = 2× "ν_e" flux

Flux should be isotropic
Zenith angle dependence

Sub-GeV e-like

Sub-GeV μ-like

Multi-GeV e-like

Multi-GeV μ-like + PC
Atmospheric neutrino “oscillations”

\[P(\nu_\mu \rightarrow \nu_\tau) = \sin^2 2\theta \sin^2 \left(\frac{\Delta m^2 L}{4E} \right) \]

(\(\Delta m^2 \equiv m^2_{\nu_1} - m^2_{\nu_2}\))

- Wavelength \(\sim\) Earth diameter
- \(\nu_e\) do not take part in the oscillations
Atmospheric neutrino “oscillations”

\[P(\nu_\mu \rightarrow \nu_\tau) = \sin^2 2\Phi \sin^2 \left(\frac{\Delta m^2 L}{4E} \right) \]

\(\Delta m^2 \equiv m_{\nu_1}^2 - m_{\nu_2}^2 \)

- Wavelength \sim \text{Earth diameter}
- \(\nu_e \) do not take part in the oscillations
Outline

1. What are neutrinos
 - Aspects of neutrinos
 - A brief history of neutrinos

2. Recent discoveries in neutrinos
 - Atmospheric neutrino puzzle
 - Solar neutrino puzzle

3. The future of neutrino physics
 - What we know about neutrinos
 - What we do not know about neutrinos
 - What we are doing about it
How does the Sun shine

- Nuclear fusion reactions: mainly \(^1_4 H \rightarrow ^2_4 He + 2e^+ + 2\nu_e \)
- Light cannot be produced unless neutrinos are produced !!
- Davis-Koshiba Nobel prize 2002
Mystery of missing solar neutrinos

Where did the missing neutrinos go?
Solar ν_e convert to ν_μ and ν_τ
Outline

1. What are neutrinos
 - Aspects of neutrinos
 - A brief history of neutrinos

2. Recent discoveries in neutrinos
 - Atmospheric neutrino puzzle
 - Solar neutrino puzzle

3. The future of neutrino physics
 - What we know about neutrinos
 - What we do not know about neutrinos
 - What we are doing about it
Our current knowledge about neutrinos

- ν_e, ν_μ, ν_τ mix among each other
- Atmospheric neutrinos:
 $\Delta m^2_{\text{atm}} \approx 2 \times 10^{-3} \text{ eV}^2$, $\theta_{\text{atm}} \approx 45^\circ$
- Solar neutrinos:
 $\Delta m^2_{\odot} \approx 8 \times 10^{-5} \text{ eV}^2$, $\theta_{\odot} \approx 32^\circ$
- Reactor neutrinos:
 the “third” angle: very small ($\theta_{13} < 12^\circ$, may even be zero).
Our current knowledge about neutrinos

- ν_e, ν_μ, ν_τ mix among each other
- **Atmospheric neutrinos:**
 $$\Delta m^2_{\text{atm}} \approx 2 \times 10^{-3} \text{ eV}^2, \; \theta_{\text{atm}} \approx 45^\circ$$
- **Solar neutrinos:**
 $$\Delta m^2_{\odot} \approx 8 \times 10^{-5} \text{ eV}^2, \; \theta_{\odot} \approx 32^\circ$$
- **Reactor neutrinos:**
 the “third” angle: very small ($\theta_{13} < 12^\circ$, may even be zero).
Our current knowledge about neutrinos

- ν_e, ν_μ, ν_τ mix among each other

- Atmospheric neutrinos:
 $\Delta m_{\text{atm}}^2 \approx 2 \times 10^{-3} \text{ eV}^2$, $\theta_{\text{atm}} \approx 45^\circ$

- Solar neutrinos:
 $\Delta m_\odot^2 \approx 8 \times 10^{-5} \text{ eV}^2$, $\theta_\odot \approx 32^\circ$

- Reactor neutrinos:
 the “third” angle: very small ($\theta_{13} < 12^\circ$, may even be zero).
Our current knowledge about neutrinos

- ν_e, ν_μ, ν_τ mix among each other
- **Atmospheric neutrinos:**
 \[\Delta m^2_{\text{atm}} \approx 2 \times 10^{-3} \text{ eV}^2, \theta_{\text{atm}} \approx 45^\circ \]
- **Solar neutrinos:**
 \[\Delta m^2_{\odot} \approx 8 \times 10^{-5} \text{ eV}^2, \theta_{\odot} \approx 32^\circ \]
- **Reactor neutrinos:**
 the “third” angle: very small ($\theta_{13} < 12^\circ$, may even be zero).
Outline

1. What are neutrinos
 - Aspects of neutrinos
 - A brief history of neutrinos

2. Recent discoveries in neutrinos
 - Atmospheric neutrino puzzle
 - Solar neutrino puzzle

3. The future of neutrino physics
 - What we know about neutrinos
 - What we do not know about neutrinos
 - What we are doing about it
Open questions in neutrino physics

- Mass hierarchy: Normal or Inverted? (red ν_e, green ν_μ, blue ν_τ)

- Absolute neutrino masses
- Are there more than 3 neutrinos?
- CP violation? Own antiparticles? ...
Open questions in neutrino physics

- Mass hierarchy: Normal or Inverted?
 (red ν_e, green ν_μ, blue ν_τ)

- Absolute neutrino masses
 - Are there more than 3 neutrinos?
 - CP violation? own antiparticles? ...
Open questions in neutrino physics

- **Mass hierarchy**: Normal or Inverted?
 (red ν_e, green ν_μ, blue ν_τ)

- Absolute neutrino masses
- Are there more than 3 neutrinos?
- CP violation? Own antiparticles? ...
Open questions in neutrino physics

- Mass hierarchy: Normal or Inverted?
 (red ν_e, green ν_μ, blue ν_τ)

- Absolute neutrino masses
- Are there more than 3 neutrinos?
- CP violation? own antiparticles? ...
Outline

1. What are neutrinos
 - Aspects of neutrinos
 - A brief history of neutrinos

2. Recent discoveries in neutrinos
 - Atmospheric neutrino puzzle
 - Solar neutrino puzzle

3. The future of neutrino physics
 - What we know about neutrinos
 - What we do not know about neutrinos
 - What we are doing about it
Ongoing activities in neutrino physics

- **Solar experiments**: measuring the energy of the sun in neutrinos
- **Reactor / short baseline experiments**: Measuring the small mixing angle θ_{13}, confirming atmospheric oscillations with known ν fluxes
- **“Neutrino factories”**: Long baseline experiments that span the Earth
- **Neutrino telescopes**: Looking for extremely energetic neutrinos from the cosmic rays
- **Supernova Neutrinos**: Core collapse and explosion of a massive star
- **India-based Neutrino Observatory (INO)**: Atmospheric and long baseline experiments
Ongoing activities in neutrino physics

- Solar experiments: measuring the energy of the sun in neutrinos
- Reactor / short baseline experiments: Measuring the small mixing angle θ_{13}, confirming atmospheric oscillations with known ν fluxes
- “Neutrino factories”: Long baseline experiments that span the Earth
- Neutrino telescopes: Looking for extremely energetic neutrinos from the cosmic rays
- Supernova Neutrinos: Core collapse and explosion of a massive star
- India-based Neutrino Observatory (INO): Atmospheric and long baseline experiments
Ongoing activities in neutrino physics

- **Solar experiments:** measuring the energy of the sun in neutrinos
- **Reactor / short baseline experiments:**
 Measuring the small mixing angle θ_{13}, confirming atmospheric oscillations with known ν fluxes
- **“Neutrino factories”:**
 Long baseline experiments that span the Earth
- **Neutrino telescopes:** Looking for extremely energetic neutrinos from the cosmic rays
- **Supernova Neutrinos:**
 Core collapse and explosion of a massive star
- **India-based Neutrino Observatory (INO):**
 Atmospheric and long baseline experiments
Ongoing activities in neutrino physics

- **Solar experiments:** measuring the energy of the sun in neutrinos
- **Reactor / short baseline experiments:** Measuring the small mixing angle θ_{13}, confirming atmospheric oscillations with known ν fluxes
- **“Neutrino factories”:** Long baseline experiments that span the Earth
- **Neutrino telescopes:** Looking for extremely energetic neutrinos from the cosmic rays
- **Supernova Neutrinos:** Core collapse and explosion of a massive star
- **India-based Neutrino Observatory (INO):** Atmospheric and long baseline experiments
Ongoing activities in neutrino physics

- **Solar experiments:**
 Measuring the energy of the sun in neutrinos

- **Reactor / short baseline experiments:**
 Measuring the small mixing angle θ_{13}, confirming atmospheric oscillations with known ν fluxes

- **“Neutrino factories”:**
 Long baseline experiments that span the Earth

- **Neutrino telescopes:**
 Looking for extremely energetic neutrinos from the cosmic rays

- **Supernova Neutrinos:**
 Core collapse and explosion of a massive star

- **India-based Neutrino Observatory (INO):**
 Atmospheric and long baseline experiments
Ongoing activities in neutrino physics

- **Solar experiments:**
 measuring the energy of the sun in neutrinos

- **Reactor / short baseline experiments:**
 Measuring the small mixing angle θ_{13}, confirming atmospheric oscillations with known ν fluxes

- **“Neutrino factories”:**
 Long baseline experiments that span the Earth

- **Neutrino telescopes:**
 Looking for extremely energetic neutrinos from the cosmic rays

- **Supernova Neutrinos:**
 Core collapse and explosion of a massive star

- **India-based Neutrino Observatory (INO):**
 Atmospheric and long baseline experiments