Physics with India-based Neutrino Observatory (INO)

Amol Dighe

Tata Institute of Fundamental Research, Mumbai, India
(For INO Collaboration)

All documents regarding INO are available at
http://www.imsc.res.in/~ino

ICHEP 06, Moscow, July 2006
A proposed underground facility at **PUSHEP** in the Nilagiri Mountains in the Southern part of India, about 240 Km south of Bangalore.
India-based Neutrino Observatory: INO

- A proposed underground facility at PUSHEP in the Nilagiri Mountains in the Southern part of India, about 240 Km south of Bangalore.

- A cavern of dimensions $150m \times 22m \times 30m$ will be constructed at the end of a 2.1 km long tunnel.
India-based Neutrino Observatory: INO

- A proposed underground facility at PUSHEP in the Nilagiri Mountains in the Southern part of India, about 240 Km south of Bangalore.
- A cavern of dimensions $150m \times 22\,m \times 30m$ will be constructed at the end of a 2.1 km long tunnel.
- At least 1 km of rock overburden in all directions (similar to Gran Sasso).
A proposed underground facility at PUSHEP in the Nilagiri Mountains in the Southern part of India, about 240 Km south of Bangalore.

A cavern of dimensions $150 \times 22 \times 30$ m will be constructed at the end of a 2.1 km long tunnel.

At least 1 km of rock overburden in all directions (similar to Gran Sasso).

INO will house 50 kiloton Iron CALorimeter (ICAL) capable of detecting atmospheric $\nu_\mu/\bar{\nu}_\mu$ interactions.
A proposed underground facility at PUSHEP in the Nilagiri Mountains in the Southern part of India, about 240 Km south of Bangalore.

A cavern of dimensions $150 \text{m} \times 22 \text{m} \times 30\text{m}$ will be constructed at the end of a 2.1 km long tunnel.

At least 1 km of rock overburden in all directions (similar to Gran Sasso).

INO will house 50 kiloton Iron CALorimeter (ICAL) capable of detecting atmospheric $\nu_\mu/\bar{\nu}_\mu$ interactions.

May also host some smaller experiments (such as neutrinoless double beta decay searches) which require low cosmic ray background environments.
Location of PUSHEP
A view of PUSHEP

PUSHEP in the Nilagiris, near Ooty (Masinagudi)
Underground Cavern

Layout of the Underground Cavern

Size of the experimental hall
150 m X 22 m X 30 m
Magnetized Iron Calorimeter: ICAL

- Total mass of 50 kilotons.
Magnetized Iron Calorimeter: ICAL

- Total mass of 50 kilotons.
- 6 cm thick iron plates interspersed with 2.5 cm gaps, which house Glass Resistive Plate Chambers (RPCs).
Magnetized Iron Calorimeter: ICAL

- Total mass of **50 kilotons**.
- **6 cm** thick iron plates interspersed with **2.5 cm gaps**, which house **Glass Resistive Plate Chambers (RPCs)**.
- **140 layers** of iron plates and RPCs.
Magnetized Iron Calorimeter: ICAL

- Total mass of 50 kilotons.
- 6 cm thick iron plates interspersed with 2.5 cm gaps, which house Glass Resistive Plate Chambers (RPCs).
- 140 layers of iron plates and RPCs.
- Three modules, each of the size $16m \times 16m \times 12m$.

Physics with India-based Neutrino Observatory (INO) – p.6/32
Magnetized Iron Calorimeter: ICAL

- Total mass of 50 kilotons.
- 6 cm thick iron plates interspersed with 2.5 cm gaps, which house Glass Resistive Plate Chambers (RPCs).
- 140 layers of iron plates and RPCs.
- Three modules, each of the size $16m \times 16m \times 12m$.
- The cavern envisaged is big enough to accommodate one more replica of the above detector so that, if needed, a 100 Kton mass detector can be constructed.
Magnetized Iron Calorimeter: ICAL

- Total mass of 50 kilotons.
- 6 cm thick iron plates interspersed with 2.5 cm gaps, which house Glass Resistive Plate Chambers (RPCs).
- 140 layers of iron plates and RPCs.
- Three modules, each of the size 16 m × 16 m × 12 m.
- The cavern envisaged is big enough to accommodate one more replica of the above detector so that, if needed, a 100 Kton mass detector can be constructed.
- Magnetic field (1.3 T) allows determination of muon charge so that ν_μ and $\bar{\nu}_\mu$ can be studied separately.
Magnetized Iron Calorimeter: ICAL

- Total mass of 50 kilotons.
- 6 cm thick iron plates interspersed with 2.5 cm gaps, which house Glass Resistive Plate Chambers (RPCs).
- 140 layers of iron plates and RPCs.
- Three modules, each of the size 16m × 16 m × 12m.
- The cavern envisaged is big enough to accommodate one more replica of the above detector so that, if needed, a 100 Kton mass detector can be constructed.
- Magnetic field (1.3 T) allows determination of muon charge so that ν_μ and $\bar{\nu}_\mu$ can be studied separately.
- Similar to the earlier Monolith proposal.
INO Detector Concept
Two possible magnet designs
Resistive Plate Chamber: RPC

- A pair of 2mm thick glass plates of area 2m × 2m separated by 2mm spacer.
Resistive Plate Chamber: RPC

- A pair of 2mm thick glass plates of area 2m × 2m separated by 2mm spacer.
- Operated at a high voltage of about 9.5 KV in streamer mode.
Resistive Plate Chamber: RPC

- A pair of **2mm thick glass** plates of area $2m \times 2m$ separated by **2mm spacer**.
- Operated at a high voltage of about **9.5 KV in streamer mode**.
- Close to **90% efficiency**, **time resolution of 1 ns**.
Resistive Plate Chamber: RPC

- A pair of 2mm thick glass plates of area 2m × 2m separated by 2mm spacer.
- Operated at a high voltage of about 9.5 KV in streamer mode.
- Close to 90% efficiency, time resolution of 1 ns.
- Pick-up strips, 3 cm wide, above and below each RPC for the determination of x and y coordinates of the passage of charged particle.
Resistive Plate Chamber: RPC

- A pair of 2mm thick glass plates of area 2m × 2m separated by 2mm spacer.
- Operated at a high voltage of about 9.5 KV in streamer mode.
- Close to 90% efficiency, time resolution of 1 ns.
- Pick-up strips, 3 cm wide, above and below each RPC for the determination of x and y coordinates of the passage of charged particle.
- The z coordinate is provided by the location of RPC itself.
Resistive Plate Chamber: RPC

- A pair of 2mm thick glass plates of area 2m × 2m separated by 2mm spacer.
- Operated at a high voltage of about 9.5 KV in streamer mode.
- Close to 90% efficiency, time resolution of 1 ns.
- Pick-up strips, 3 cm wide, above and below each RPC for the determination of x and y coordinates of the passage of charged particle.
- The z coordinate is provided by the location of RPC itself.
- Good reconstruction of energy and direction of charged particles.
Total number of RPC units: 27000
Number of electronic readout channels: 3.6 million
Physics Motivations

- Reconfirm the first oscillation dip as a function of L/E in atmospheric neutrinos (to a greater significance level)
- Measure $|\Delta_{31}|$ and $\sin^2 2\theta_{23}$ precisely
- Determine neutrino mass hierarchy (normal/inverted)
- Resolve the θ_{23} octant ambiguity
- Distinguish between $\nu_\mu \leftrightarrow \nu_\tau$ and $\nu_\mu \leftrightarrow \nu_s$
- Search for CPT violation
Physics Motivations

- Reconfirm the **first oscillation dip** as a function of L/E in atmospheric neutrinos (to a greater significance level)
- Measure $|\Delta_{31}|$ and $\sin^2 2\theta_{23}$ precisely
- Determine neutrino mass hierarchy (normal/inverted)
- Resolve the θ_{23} octant ambiguity
- Distinguish between $\nu_\mu \leftrightarrow \nu_\tau$ and $\nu_\mu \leftrightarrow \nu_s$
- Search for CPT violation

All results are generated assuming 15% resolution in L as well as E, unless specified otherwise.
L/E distribution of muon events

$\Delta m^2 = 2 \times 10^{-3}$ eV2

$\Delta m^2 = 3 \times 10^{-3}$ eV2

red: down-going, blue: up-going

Exposure 250 kt-years, $\theta_{23} = \pi/4$, $E_\mu > 5$ GeV
Up/Down ratio of muon events

Position of the dip $\Rightarrow \Delta m^2_{\text{atm}}$

Up/Down ratio at the dip $\Rightarrow \sin^2 2\theta_{23}$
Precision for $|\Delta_{31}|$ and $\sin^2 \theta_{23}$

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Δ_{31}</th>
<th>$\sin^2 \theta_{23}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current data</td>
<td>88%</td>
<td>79%</td>
</tr>
<tr>
<td>MINOS + CNGS</td>
<td>26%</td>
<td>78%</td>
</tr>
<tr>
<td>T2K (SK, 0.75 MW, 5 years)</td>
<td>12%</td>
<td>46%</td>
</tr>
<tr>
<td>NOνA (30 Kton, 0.6 MW, 5 years)</td>
<td>25%</td>
<td>86%</td>
</tr>
<tr>
<td>ICAL (50 Kton, atm ν, 5 years)</td>
<td>20%</td>
<td>60%</td>
</tr>
</tbody>
</table>

- **Input values:** $|\Delta_{31}| = 0.002 \text{ eV}^2$ and $\theta_{23} = \pi/4$.
- **Table adapted from P. Huber et al., hep-ph/0412133,** with the information of ICAL added.
The relative error on $|\Delta_{31}|$ and $\sin^2 \theta_{23}$

Error as a function of the input value of $|\Delta_{31}|$ at 2 σ.
Mass hierarchy (normal/inverted)

- At resonance energies and long pathlengths, matter effects modify ν_μ survival probability significantly.

 R. Gandhi et al., PRL 94, 051801 (2005)
 PRD 73, 053001 (2006)

- Situation reversed for antineutrinos
Up-down ratios for ν and $\bar{\nu}$

The difference in the up/down ratio for ν_μ and $\bar{\nu}_\mu$:
$A \equiv U/D - \bar{U}/\bar{D}$ as a function of L/E

is very sensitive to the sign of Δ_{31}.

R: energy/time resolution included

blue: normal hierarchy
red: inverted hierarchy

D. Indumathi and M.V.N. Murthy,
PRD 71, 013001 (2005)
INO Project Report,
May 2006

Higher E_{min} \Rightarrow more asymmetry but less events
\[\Delta A \equiv A_{\text{norm}} - A_{\text{inv}} \]

<table>
<thead>
<tr>
<th>Exposure (kt-years)</th>
<th>(\theta_{13})</th>
<th>(\Delta A)</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>480</td>
<td>7°</td>
<td>0.167 ± 0.230</td>
<td>0.7(\sigma), 51.6%</td>
</tr>
<tr>
<td>1120</td>
<td>7°</td>
<td>0.167 ± 0.151</td>
<td>1.1(\sigma), 72.9%</td>
</tr>
<tr>
<td>480</td>
<td>11°</td>
<td>0.415 ± 0.230</td>
<td>1.8(\sigma), 92.8%</td>
</tr>
<tr>
<td>1120</td>
<td>11°</td>
<td>0.415 ± 0.150</td>
<td>2.8(\sigma), 99.6%</td>
</tr>
<tr>
<td>480</td>
<td>7°</td>
<td>0.232 ± 0.220</td>
<td>1.1(\sigma), 72.9%</td>
</tr>
<tr>
<td>1120</td>
<td>7°</td>
<td>0.232 ± 0.144</td>
<td>1.6(\sigma), 89.0%</td>
</tr>
<tr>
<td>480</td>
<td>11°</td>
<td>0.565 ± 0.220</td>
<td>2.6(\sigma), 99.1%</td>
</tr>
<tr>
<td>1120</td>
<td>11°</td>
<td>0.565 ± 0.144</td>
<td>3.9(\sigma), 99.99%</td>
</tr>
</tbody>
</table>

- \(E \) and \(L \) resolutions of 15\% (upper) and 10\% (lower).
- Exposure time 480 kt-year \(\longrightarrow \) 1120 kt-year has the same effect as resolution 15\% \(\longrightarrow \) 10\%.
- Importance of \(L \) and \(E \) resolution highlighted in S. Petcov and T. Schwetz, NPB 740, 1 (2006).
Octant ambiguity of θ_{23}

(Is θ_{23} greater or less than $\pi/4$?)

- One of the matter dependent terms in $P_{\mu\mu}$ goes as $\sin^4 \theta_{23}$. By appropriate cuts on E and L this term can be isolated and to determine if θ_{23} is greater or less than $\pi/4$.

 D. Indumathi et al., hep-ph/0603032

- At present $|D \equiv 0.5 - \sin^2 \theta_{23}|$ is constrained to be about 0.16 at 3σ. If $\sin^2 \theta_{13} = 0.02$ then 1000 kt-year exposure can:
 - measure a non-zero value for $|D| > 0.09$ at 3σ.
 - Determine the sign of D for $|D| > 0.1$ at 3σ.
$P_{\mu\mu}$ as a function of θ_{23}

For intermediate E, even the sign of D discernible
Distinguishing $\nu_\mu \leftrightarrow \nu_\tau$ from $\nu_\mu \leftrightarrow \nu_s$

Muonless events are produced by DIS neutral current (NC) interactions of all active neutrino flavours.
Distinguishing $\nu_\mu \leftrightarrow \nu_\tau$ from $\nu_\mu \leftrightarrow \nu_s$

- **Muonless events** are produced by DIS neutral current (NC) interactions of all active neutrino flavours.

- ν_τ CC events (above 4 GeV) produce a τ, whose decays are muonless 80% of the time.

D. Choudhury and A. Datta, hep-ph/0606100

MINOS is also capable of doing this.
Muonless events are produced by DIS neutral current (NC) interactions of all active neutrino flavours.

CC events (above 4 GeV) produce a τ, whose decays are muonless 80% of the time.

Oscillations produce an excess of upward going muonless events.
Distinguishing $\nu_\mu \leftrightarrow \nu_\tau$ from $\nu_\mu \leftrightarrow \nu_s$

- Muonless events are produced by DIS neutral current (NC) interactions of all active neutrino flavours.
- ν_τ CC events (above 4 GeV) produce a τ, whose decays are muonless 80% of the time.
- $\nu_\mu \rightarrow \nu_\tau$ oscillations produce an excess of upward going muonless events.
- $\nu_\mu \rightarrow \nu_s$ oscillations produce a deficit of upward going NC events.
Distinguishing $\nu_\mu \leftrightarrow \nu_\tau$ from $\nu_\mu \leftrightarrow \nu_s$

- Muonless events are produced by DIS neutral current (NC) interactions of all active neutrino flavours.

- ν_τ CC events (above 4 GeV) produce a τ, whose decays are muonless 80% of the time.

- $\nu_\mu \rightarrow \nu_\tau$ oscillations produce an excess of upward going muonless events.

- $\nu_\mu \rightarrow \nu_s$ oscillations produce a deficit of upward going NC events.

- Possible to determine directly (rather than by global fits) what fraction of ν_μ are oscillating into sterile neutrinos.

D. Choudhury and A. Datta, hep-ph/0606100
Distinguishing $\nu_\mu \leftrightarrow \nu_\tau$ from $\nu_\mu \leftrightarrow \nu_s$

- Muonless events are produced by DIS neutral current (NC) interactions of all active neutrino flavours.
- ν_τ CC events (above 4 GeV) produce a τ, whose decays are muonless 80% of the time.
- $\nu_\mu \to \nu_\tau$ oscillations produce an excess of upward going muonless events.
- $\nu_\mu \to \nu_s$ oscillations produce a deficit of upward going NC events.
- Possible to determine directly (rather than by global fits) what fraction of ν_μ are oscillating into sterile neutrinos.

D. Choudhury and A. Datta, hep-ph/0606100

- MINOS is also capable of doing this.
Up-down asymmetry for muonless events

Asymmetry vs. E for different Δ_{31} values for $\nu_\mu \rightarrow \nu_\tau$ and $\nu_\mu \rightarrow \nu_s$

$\sin^2 2\theta = 1.$
CPT violation

- Charge determination \Rightarrow
 both $P_{\mu\mu}$ and $P_{\bar{\mu}\bar{\mu}}$ measurable independently.
- Possibility of searching for CPT violation.
- CPT violation Parametrized as: $\mathcal{L}_{\text{CPT}} = \bar{\nu}_L^\alpha b_\alpha^\mu \gamma_\mu \nu_L^\beta$
 V. Barger et al., PRL 85, 5055 (2000)
- Energy operator becomes $H = m^2/2E + b^0$
- Measurable CPT violating parameter: δb, the difference in the eigenvalues of the b^0 matrix
Sensitivity to CPT violation

L/E distribution can detect $\delta b \gtrsim 10^{-23}$ GeV

To be compared to $\Delta m^2/2E \sim 10^{-21}$ GeV
Determination of δb

For $\delta b > 10^{-22}$ GeV, distribution in L is sensitive to the value of δb.
Concluding Remarks

A detector with good L and E resolution can exploit the wide L and E range of the atmospheric neutrinos.
Concluding Remarks

A detector with good L and E resolution can exploit the wide L and E range of the atmospheric neutrinos.

The basic design for a 50 kt magnetized Iron Calorimeter (ICAL) is finalized.
Concluding Remarks

- A detector with good L and E resolution can exploit the wide L and E range of the atmospheric neutrinos.
- The basic design for a 50 kt magnetized Iron Calorimeter (ICAL) is finalized.
- A site (PUSHEP) to house the detector is identified.
Concluding Remarks

- A detector with good L and E resolution can exploit the wide L and E range of the atmospheric neutrinos.
- The basic design for a 50 kt magnetized Iron Calorimeter (ICAL) is finalized.
- A site (PUSHEP) to house the detector is identified.
- The INO Project Report finalized in May 2006 and is under review currently.
Concluding Remarks

- A detector with good L and E resolution can exploit the wide L and E range of the atmospheric neutrinos.
- The basic design for a 50 kt magnetized Iron Calorimeter (ICAL) is finalized.
- A site (PUSHEP) to house the detector is identified.
- The INO Project Report finalized in May 2006 and is under review currently.
- Feasibility studies and optimization in progress, lots of things to be done.
Concluding Remarks

- A detector with good L and E resolution can exploit the wide L and E range of the atmospheric neutrinos.
- The basic design for a 50 kt magnetized Iron Calorimeter (ICAL) is finalized.
- A site (PUSHEP) to house the detector is identified.
- The INO Project Report finalized in May 2006 and is under review currently.
- Feasibility studies and optimization in progress, lots of things to be done.
- ICAL can be the end detector for neutrinos from muon storage rings: distance from JPARC/CERN ~ 7000 km (magic baseline)
Concluding Remarks

- A detector with good L and E resolution can exploit the wide L and E range of the atmospheric neutrinos.
- The basic design for a 50 kt magnetized Iron Calorimeter (ICAL) is finalized.
- A site (PUSHEP) to house the detector is identified.
- The INO Project Report finalized in May 2006 and is under review currently.
- Feasibility studies and optimization in progress, lots of things to be done.
- ICAL can be the end detector for neutrinos from muon storage rings: distance from JPARC/CERN ~ 7000 km (magic baseline).
- We welcome more International participation.
That’s all, folks!

http://www.imsc.res.in/~ino
\(P_{\mu\mu} \) in vacuum and matter

Muon neutrino survival probability in vacuum:

\[
P_{\mu\mu}(\text{vac}) = 1 - \sin^2 2\theta_{23} \cos^2 \theta_{13} \sin^2 (1.27 \Delta_{31} L/E) - \sin^4 \theta_{23} \sin^2 2\theta_{13} \sin^2 (1.27 \Delta_{31} L/E)
\]

Muon neutrino survival probability in matter:

\[
P_{\mu\mu}(\text{mat}) = 1 - \sin^2 2\theta_{23} \cos^2 \theta_{13}^m \sin^2 [1.27(\Delta_{31} + A + \Delta_{31}^m)L/2E] - \sin^2 2\theta_{23} \sin^2 \theta_{13}^m \sin^2 [1.27(\Delta_{31} + A - \Delta_{31}^m)L/2E] - \sin^4 \theta_{23} \sin^2 2\theta_{13}^m \sin^2 (1.27\Delta_{31}^m L/E)
\]

\[
A = 2\sqrt{2}G_F N_e E
\]
\(P_{\mu\mu} \) for both hierarchies, \(L = 9700 \text{ km} \)

\[
\begin{align*}
E (\text{GeV}) & \quad P_{\mu\mu} \\
2 & \quad \Delta_{31} > 0 \\
4 & \quad \text{vacuum} \\
6 & \quad \Delta_{31} < 0 \\
8 & \\
10 & \\
12 & \\
14 & \\
16 & \\
18 & \\
20 & \\
\end{align*}
\]
$P_{\mu\mu}$ vs. θ_{23} for $L = 9700$ km
If we parametrize CPT violation as
\[\Delta = \Delta_{\text{GUT}} + \Delta_{\text{CPT}} \text{ and } \bar{\Delta} = \Delta_{\text{GUT}} - \Delta_{\text{CPT}}, \]
INO is sensitive to \[\frac{\Delta_{\text{CPT}}}{\Delta_{\text{GUT}}} \sim 1\% \]