Neutrino detectors and the physics they teach us

Amol Dighe

Tata Institute of Fundamental Research Mumbai, India

SYMPHY 2014, IITB, April 13th, 2014

Omnipresent neutrinos

Energy spectra of neutrino sources

Detection: motivations and problems

Motivations for neutrino detection

- Understanding nuclear reactions inside the Sun
- Monitoring nuclear reactors and radioactivity of the Earth
- Observing astrophysical phenomena
- Standard Models of particle physics and cosmology

Problem with neutrino detection

- They interact extremely weakly!
- SuperKamiokande detector: 50,000,000 lit water
 - Number of neutrinos passing every day: $\sim 10^{25}$
 - \bullet Number of neutrinos detected every day: ~ 10
- Need LARGE detectors running for a loooong time

Detection: motivations and problems

Motivations for neutrino detection

- Understanding nuclear reactions inside the Sun
- Monitoring nuclear reactors and radioactivity of the Earth
- Observing astrophysical phenomena
- Standard Models of particle physics and cosmology

Problem with neutrino detection

- They interact extremely weakly!
- SuperKamiokande detector: 50,000,000 lit water
 - Number of neutrinos passing every day: ~ 10²⁵
 - Number of neutrinos detected every day: \sim 10
- Need LARGE detectors running for a loooong time

Neutrino detectors

- Discoverers
- 2 Sun-seekers
- Searth-watchers
- Sky-gazers
- New ideas...

Neutrino detectors

- Discoverers
- 2 Sun-seekers
- Earth-watchers
- Sky-gazers
- New ideas...

The long-awaited discovery of electron (anti)neutrino

Reines and Cowan 1956: Scintillator

The million-dollar particle

- Reactor neutrinos: $\bar{\nu}_e + p \rightarrow n + e^+$
- $e^+ + e^- \rightarrow \gamma + \gamma$ (0.5 MeV each)
- $n + {}^{108} \text{ Cd} \rightarrow {}^{109} \text{ Cd}^* \rightarrow {}^{109} \text{ Cd} + \gamma \text{ (delayed)}$

The serendipitous discovery of the muon neutrino

Steinberger-Schwartz-Lederman 1966: Spark chamber

Muon neutrino: an unexpected discovery

- Neutrinos from pion decay: $\pi^- \to \mu^- + \bar{\nu}$
- Expected: $\bar{\nu} + N \rightarrow N' + e^+$??
- Observed: always a muon, never an electron/positron
- This must be a new particle, not $\bar{\nu}_e$, but $\bar{\nu}_u$

The expected discovery of the tau neutrino

DONUT@Fermilab, 2000: emulsion+calorimeter

Combination of many detectors needed

- $\nu_{\tau} \rightarrow \tau$, whose decays need to be observed
- Emulsion + Drift chamber + Calorimeter + Muon chamber

Neutrino detectors

- Discoverers
- 2 Sun-seekers
- 3 Earth-watchers
- Sky-gazers
- 5 New ideas...

Neutrinos from the Sun

Spectrum of solar neutrinos

Neutrinos from the Sun: Homestake experiment

Chlorine radiochemical

- $\nu_e + \text{Cl} \rightarrow \text{Ar} + e^-$
- Individual Ar atoms counted every few weeks
- No energy measurement
- First detection of solar ν_e Davis: Nobel prize 2002

Even lower energy threshold: Gallex experiment

Gallium radiochemical

- $\nu_e + \text{Ga} \rightarrow \text{Ge} + e^-$
- No energy measurement
- Threshold 0.233 MeV

Solar spectrum measurement: SuperKamiokande

Water Cherenkov

- ullet $u_{e} + e^{-}
 ightarrow
 u_{e} + e^{-} (ext{fast})$
- $v_{e^-} > c_{\text{water}} \Rightarrow \text{Cherenkov light}$

The solar neutrino problem

- SuperKamiokande spectrum gives almost energy-independent suppression
- Different experiments give different suppression

Heavy water Cherenkov experiment: SNO

- Heavy water Cherenkov
- ν_e $D \rightarrow p \ p \ e^-$ sensitive to Φ_e
- $\nu_{e,\mu,\tau}~e^-
 ightarrow \nu_{e,\mu,\tau}~e^-$ Sensitive to $\Phi_e + \Phi_{\mu\tau}/6$
- $\nu_{e,\mu,\tau}$ $D \rightarrow n p \nu_{e,\mu,\tau}$ sensitive to $\Phi_e + \Phi_{\mu\tau}$
- Neutral current: no effect of oscillations

Solar neutrino problem settled

Total Rates: Standard Model vs. Experiment Bahcall-Serenelli 2005 [BS05(0P)]

The mystery of missing Solar neutrinos (1-10 MeV)

The source and the puzzle (1960s-2002)

- Neutrinos essential for the sun to shine: many modes of producing ν_e
- Neutrino flux measured at the Earth only 30%–50% of the calculated value

Solution through "neutrino oscillations in matter"

- Neutrinos have different masses, ν_e mixes with others
- The matter inside the Sun affects Δm^2 and θ (MSW effect)
- A level crossing (resonance) takes place inside the Sun, which determines how many ν_e survive.
- Can measure Δm_{\odot}^2 and θ_{\odot}

The mystery of missing Solar neutrinos (1-10 MeV)

The source and the puzzle (1960s-2002)

- Neutrinos essential for the sun to shine: many modes of producing ν_e
- Neutrino flux measured at the Earth only 30%–50% of the calculated value

Solution through "neutrino oscillations in matter"

- Neutrinos have different masses, ν_e mixes with others
- The matter inside the Sun affects Δm^2 and θ (MSW effect)
- A level crossing (resonance) takes place inside the Sun, which determines how many ν_e survive.
- Can measure Δm_{\odot}^2 and θ_{\odot}

Neutrino detectors

- Discoverers
- 2 Sun-seekers
- 3 Earth-watchers
- 4 Sky-gazers
- 5 New ideas...

Neutrinos from cosmic rays

$$\bullet \pi^+ \to \mu^+ + \nu_\mu$$

$$\bullet \ \mu^+ \rightarrow e^+ + \nu_e + \bar{\nu}_\mu$$

• "
$$\nu_{\mu}$$
" flux = 2× " ν_{e} " flux

• "Down" flux = "Up" flux

How to detect ν_e and ν_μ through Cherenkov cones

Water Cherenkov

Diffused ring

Sharp ring

Atmospheric neutrino puzzle

The anomaly in atmospheric neutrinos (1–50 GeV)

The source and the puzzle (1980s–1998)

- Cosmic rays \oplus atmosphere \Rightarrow pions and muons \Rightarrow decay to neutrinos (ν_{μ} and ν_{e})
- Expect almost isotropic flux of neutrinos
- Almost half the ν_{μ} are lost while passing through the Earth, no ν_{e} are lost.

Solution through "vacuum oscillations

- Neutrinos have different masses, ν_u and ν_{τ} mix
- Quantum Mechanics predicts neutrino oscillations:

$$P(
u_{\mu}
ightarrow
u_{\mu}) = 1 - \sin^2 2 heta \sin^2 \left(rac{\Delta m^2 L}{4E}
ight)$$

$$\Delta m^2 \equiv m_2^2 - m_1^2$$

• Can measure $\Delta m_{\rm atm}^2$ and $\theta_{\rm atm}$

The anomaly in atmospheric neutrinos (1–50 GeV)

The source and the puzzle (1980s-1998)

- Cosmic rays \oplus atmosphere \Rightarrow pions and muons \Rightarrow decay to neutrinos (ν_{μ} and ν_{e})
- Expect almost isotropic flux of neutrinos
- Almost half the ν_{μ} are lost while passing through the Earth, no ν_{e} are lost.

Solution through "vacuum oscillations"

- Neutrinos have different masses, ν_{μ} and ν_{τ} mix
- Quantum Mechanics predicts neutrino oscillations:

$$P(
u_{\mu}
ightarrow
u_{\mu}) = 1 - \sin^2 2 heta \sin^2 \left(rac{\Delta m^2 L}{4E}
ight)$$

$$\Delta m^2 \equiv m_2^2 - m_1^2$$

• Can measure $\Delta m_{\rm atm}^2$ and $\theta_{\rm atm}$

Geoneutrinos

Liquid scintillator

Geoneutrinos: $\bar{\nu}_e$

- Produced due to natural radioactivity in the Earth's crust
- Recently confirmed, after separating reactor neutrinos
- Useful for understanding Earth's radioactivity

Beam-catcher (long baseline) detectors

The future of atmospheric neutrino detectors

Iron calorimeter (ICAL)

India-based Neutrino Observatory

- Under a mountain, inside a tunnel (Bodi Hills, TN)
- 1 km rock coverage from all sides
- 50 kiloton of magnetized iron (50 000 000 kg)
- Can distinguish ν_u from $\bar{\nu}_u$: muon tracking
- Can measure hadron energy in neutrino events

Future multipurpose mega-scale detectors

Water Cherenkov, scintillator, liquid Argon

Each detector with its own advantages

- Water Cherenkov: cheap, can make large volume
- Scintillator: better energy measurement
- Argon: more sensitive to ν_e even in MeV range

Neutrino detectors

- Discoverers
- 2 Sun-seekers
- Earth-watchers
- Sky-gazers
- 5 New ideas...

Neutrinos as astrophysical messengers

Messenger properties

- No bending in magnetic fields ⇒ point back to the source
- Minimal obstruction / scattering ⇒ can arrive directly from regions from where light cannot come.
- This messenger may have unknown interesting properties!

Sources

- Stars, Earth's atmosphere and crust
- Astrophysical phenomena with large ν flux
- Diffused fluxes accumulated over the lifetime of universe

Detectors

- Water / ice Cherenkov, scintillators, liquid Ar, Lead
- Big, bigger and still bigger size!
- Energy resolution, time resolution, and directionality

Neutrinos as astrophysical messengers

Messenger properties

- No bending in magnetic fields ⇒ point back to the source
- Minimal obstruction / scattering ⇒ can arrive directly from regions from where light cannot come.
- This messenger may have unknown interesting properties!

Sources

- Stars, Earth's atmosphere and crust
- Astrophysical phenomena with large ν flux
- Diffused fluxes accumulated over the lifetime of universe

Detectors

- Water / ice Cherenkov, scintillators, liquid Ar, Lead
- Big, bigger and still bigger size!
- Energy resolution, time resolution, and directionality

Neutrinos as astrophysical messengers

Messenger properties

- No bending in magnetic fields ⇒ point back to the source
- Minimal obstruction / scattering ⇒ can arrive directly from regions from where light cannot come.
- This messenger may have unknown interesting properties!

Sources

- Stars, Earth's atmosphere and crust
- Astrophysical phenomena with large ν flux
- Diffused fluxes accumulated over the lifetime of universe

Detectors

- Water / ice Cherenkov, scintillators, liquid Ar, Lead
- Big, bigger and still bigger size!
- Energy resolution, time resolution, and directionality

High energy ($E \gtrsim 100 \text{ GeV}$) sources

Secondaries of cosmic rays

 \bullet Primary protons interacting within the source or with CMB photons $\Rightarrow \pi^{\pm} \Rightarrow$ Decay to ν

AGNs and GRBs

- Neutrinos produced by particle decays / nuclear reactions / pair production in extreme environments
- Can give measurable diffused flux in near future

Below the antarctic ice: Gigaton IceCube

1 gigaton water = 1 000 000 000 000 litres

Ice Cherenkov

below the mediterranian

Sea-water Cherenkov

ANTARES

Detection of HE neutrinos: water/ice Cherenkov

- Thresholds of ~ 100 GeV, controlled by the distance between optical modules
- Track for ν_{μ}
- Cascade for ν_e , hadrons, ν_τ
- Double-bang for ν_{τ} ?

Preferred energy ranges

- Down-going neutrinos: atmospheric muon background becomes insignificant only for $E \gtrsim 10^{16-17} \text{ eV}$
- Up-going neutrinos: $E \lesssim 10^{16}$ eV, since more energetic neutrinos get absorbed in the Earth

The two PeV events at Icecube

- Two events at \sim 1 PeV energies found
- Cosmogenic ? X
 Glashow
 resonance? X
 atmospheric ?

Roulet et al 2013 ++ many

- IceCube analyzing 28 events from 30 TeV to 1.1 PeV
- Constraints on Lorentz violation:

$$\delta(v^2-1) \lesssim \mathcal{O}(10^{-18})$$

Borriello, Chakraborty, Mirizzi, 2013

Detection of UHE neutrinos: cosmic ray showers

Scintillator + fluorescent telescope

- Neutrinos with $E \gtrsim 10^{17}$ eV can induce giant air showers (probability $\lesssim 10^{-4}$)
- Deep down-going muon showers
- Deep-going ν_{τ} interacting in the mountains
- Up-going Earth-skimming ν_{τ} shower

Detection through radio waves: ANITA

- Charged particle shower ⇒
 Radio Askaryan: charged clouds
 emit coherent radio waves
 through interactions with B_{Earth}
 or Cherenkoy
- Detectable for E ≥ 10¹⁷ eV at balloon experiments like ANITA

Limits on UHE neutrino fluxes

Talk by Darren Grant

Waxman-Bahcall, AMANDA, ANITA, RICE, Auger, IceCube Also expect complementary info from: NEMO, NESTOR, ANTARES, KM3NET ...

Flavor information from UHE neutrinos

- Neutrino flavor ratio $\nu_e: \nu_\mu: \nu_\tau$ from primary sources: Neutron source 1 : 0 : 0, Pion source 1 : 2 : 0, Dense sources that absorb muons 0 : 1 : 0
- L/E large ⇒ oscillations change the flavor ratio.
 Pion source: approx 1 : 1 : 1
 Muon-absorbing sources: 1 : 2 : 2
- Decaying neutrinos can skew the flavor ratio even further: as extreme as 6 : 1 : 1 or 0 : 1 : 1
 Ratio measurement ⇒ improved limits on neutrino lifetimes

Beacom et al, PRL 2003

(The numbers obtained with bimaximal mixing)

A core-collapse SN $\Rightarrow 10^{58}$ neutrinos in 10 sec

Weak nuclear force (Neutrino push) \Rightarrow

Strong nuclear force ⇒

Electromagnetism (Hydrodynamics) \Rightarrow

(Crab nebula, SN seen in 1054)

Detection of neutrinos from SN1987A ($E \sim 10 \text{ MeV}$)

Neutrinos: Feb 23, 1987

Water Cherenkov, scintillator

- Neutrinos reached a few hours before light
- Confirmed the SN cooling mechanism through neutrinos
- Constraints on SN parameters and limits on new physics models

Gearing up for future SN neutrino detections

- Water Cherenkov / liquid scintillator / liquid Ar detectors for tracking individual neutrinos (HK, LENA,)
- Large-volume ice Cherenkov for determining luminosity to a high accuracy (integrated Cherenkov glow)
- LBNE liquid Ar ? If it is underground...

Major reactions at the large detectors (SN at 10 kpc)

Water Cherenkov detector: size advantage (events at SK)

- $\bar{\nu}_e p \to n e^+$: ($\sim 7000 12000$)
- $\nu e^- \to \nu e^-$: $\approx 200 300$
- $\nu_e + ^{16}O \rightarrow X + e^-$: $\approx 150-800$

Carbon-based scintillation detector: ΔE advantage

- ullet $ar{
 u}_e p
 ightarrow n e^+ \ (\sim 300 \ {
 m per} \ {
 m kt})$
- $\nu + {}^{12}C \rightarrow \nu + X + \gamma \text{ (15.11 MeV)}$
- $\bullet \nu p \rightarrow \nu p$

Liquid Argon detector: ν_e spectrum advantage

• $\nu_e + {}^{40}Ar \rightarrow {}^{40}K^* + e^- (\sim 300 \text{ per kt})$

Lead detector:

- CC: $\nu_e + ^{208} \text{ Pb} \rightarrow ^{207} \text{Bi} + n + e^-,$ $\nu_e + ^{208} \text{ Pb} \rightarrow ^{206} \text{Bi} + 2n + e^-$
- NC: $\nu_x + ^{208} \text{ Pb} \rightarrow ^{207} \text{ Pb} + n$, $\nu_x + ^{208} \text{ Pb} \rightarrow ^{206} \text{ Pb} + 2n$

What supernova neutrinos can tell us

On neutrino masses and mixing

Identify neutrino mass ordering: normal or inverted

On supernova astrophysics

- Locate a supernova hours before the light arrives
- Track the shock wave through neutrinos while it is still inside the mantle (Not possible with light)

Neutrino detectors

- Discoverers
- 2 Sun-seekers
- Earth-watchers
- 4 Sky-gazers
- New ideas...

Some new detector ideas

Mossbauer neutrinos

- Production: ${}^{3}\text{H} \longrightarrow {}^{3}\text{He}^{+} + \bar{\nu}_{e} + e^{-} \text{(bound)}$
- Detection: ${}^{3}\text{H} \leftarrow {}^{3}\text{He}^{+} + \bar{\nu}_{e} + e^{-} \text{(bound)}$
- \bullet Resonance enhancement of $10^{12},$ line width $\sim 10^{-11}$ eV, if embedded in a crystal
- Neutrino oscillations visible on tabletop!

Indium-based detectors

- $\nu_e + ^{115} \text{In} \rightarrow ^{115} \text{Sn} + e^-$
- $E_e = E_{\nu} 0.115 \text{ MeV} \Rightarrow \text{low threshold}$
- Solar Be neutrinos would give monochromatic electrons

Atomic tritium detectors for CMB (relic) neutrinos

- $\nu_e + N_1(A, Z) \rightarrow N_2(A, Z + 1) + e^-$
- $E \sim 0.16 \text{ meV} \Rightarrow \text{almost zero threshold required}$
- Strong confirmation of Standard Model of cosmology

Some new detector ideas

Mossbauer neutrinos

- Production: ${}^{3}\text{H} \longrightarrow {}^{3}\text{He}^{+} + \bar{\nu}_{e} + e^{-} \text{(bound)}$
- Detection: ${}^{3}\text{H} \leftarrow {}^{3}\text{He}^{+} + \bar{\nu}_{e} + e^{-} \text{(bound)}$
- \bullet Resonance enhancement of $10^{12},$ line width $\sim 10^{-11}$ eV, if embedded in a crystal
- Neutrino oscillations visible on tabletop!

Indium-based detectors

- $\nu_e + ^{115} \text{In} \rightarrow ^{115} \text{Sn} + e^-$
- $E_e = E_{\nu} 0.115 \text{ MeV} \Rightarrow \text{low threshold}$
- Solar Be neutrinos would give monochromatic electrons

Atomic tritium detectors for CMB (relic) neutrinos

- $\nu_e + N_1(A, Z) \rightarrow N_2(A, Z + 1) + e^-$
- $E \sim 0.16 \text{ meV} \Rightarrow \text{almost zero threshold required}$
- Strong confirmation of Standard Model of cosmology

Some new detector ideas

Mossbauer neutrinos

- Production: ${}^{3}\text{H} \longrightarrow {}^{3}\text{He}^{+} + \bar{\nu}_{e} + e^{-} \text{(bound)}$
- Detection: ${}^{3}\text{H} \leftarrow {}^{3}\text{He}^{+} + \bar{\nu}_{e} + e^{-} \text{(bound)}$
- \bullet Resonance enhancement of $10^{12},$ line width $\sim 10^{-11}$ eV, if embedded in a crystal
- Neutrino oscillations visible on tabletop!

Indium-based detectors

- $\nu_e + ^{115} \text{In} \rightarrow ^{115} \text{Sn} + e^-$
- $E_e = E_{\nu} 0.115 \text{ MeV} \Rightarrow \text{low threshold}$
- Solar Be neutrinos would give monochromatic electrons

Atomic tritium detectors for CMB (relic) neutrinos

- $\nu_e + N_1(A, Z) \rightarrow N_2(A, Z + 1) + e^-$
- $E \sim 0.16 \text{ meV} \Rightarrow \text{almost zero threshold required}$
- Strong confirmation of Standard Model of cosmology

Concluding remarks

 Neutrino detectors have used ideas that combine nuclear physics, atomic physics, particle physics, chemistry, electrodynamics, material science ...

- There are still unexplored ideas that can help us probe the world of neutrinos even deeper
- Challenges for material science and technology development