Neutrino oscillations and supernovae

Amol Dighe

Department of Theoretical Physics Tata Institute of Fundamental Research

UniverseNet school, Oxford, UK, 22-26 September 2008

Sac

Current understanding of neutrinos

- Various facets of neutrinos
- Atmospheric neutrino puzzle
- Solar neutrino puzzle
- What we know, what we do not

2 Core collapse supernova

- Collapse, explosion and neutrino emission
- Neutrino propagation and flavor conversions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Observable signals at the detectors

Current understanding of neutrinos

- Various facets of neutrinos
- Atmospheric neutrino puzzle
- Solar neutrino puzzle
- What we know, what we do not

2 Core collapse supernova

- Collapse, explosion and neutrino emission
- Neutrino propagation and flavor conversions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

• Observable signals at the detectors

The most abundant particles in the universe

The Standard Model of Particle Physics

- 3 neutrinos:
 - $\nu_{\textit{e}}, \nu_{\mu}, \nu_{\tau}$
- chargeless
- spin 1/2
- almost massless

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

 Only weak interactions

Current understanding of neutrinos Various facets of neutrinos

• Atmospheric neutrino puzzle

- Solar neutrino puzzle
- What we know, what we do not

Core collapse supernova

- Collapse, explosion and neutrino emission
- Neutrino propagation and flavor conversions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

• Observable signals at the detectors

Neutrinos from cosmic rays

- $\pi^+ \to \mu^+ + \nu_\mu$
- $\mu^+ \rightarrow e^+ + \nu_e + \bar{\nu}_\mu$
- " ν_{μ} " flux = 2× " ν_{e} " flux
- "Down" flux = "Up" flux

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Zenith angle dependence

Missing muon neutrinos !

(日) (字) (日) (日) (日)

Solution through "vacuum oscillations"

Effective Hamiltonian:

$$H = \frac{1}{2E} \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} m_1^2 & 0 \\ 0 & m_2^2 \end{pmatrix} \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}$$
$$= \frac{m_2^2 + m_1^2}{2E} + \frac{1}{4E} \begin{pmatrix} -\Delta m^2 \cos 2\theta & \Delta m^2 \sin 2\theta \\ \Delta m^2 \sin 2\theta & \Delta m^2 \cos 2\theta \end{pmatrix}$$

- Eigenvalues: $\frac{m_1^2}{2E}, \frac{m_2^2}{2E}$
- Survival probability

$$\mathsf{P}(
u_{\mu}
ightarrow
u_{\mu}) = 1 - \sin^2 2 heta \sin^2 \left(rac{\Delta m^2 L}{4E}
ight)$$

 $\Delta m^2 \equiv m_2^2 - m_1^2$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Precession of the polarization vector

- Density matrix $\rho = P_0/2 + \vec{P} \cdot \vec{\sigma}$
- Half-angle of precession $= \theta = mixing$ angle
- Different energies: same cone, different precession speeds

Solution of the atmospheric neutrino puzzle

Mixing angle $\theta_{\rm atm} \approx 36^{\circ}-54^{\circ}$

Ourrent understanding of neutrinos

- Various facets of neutrinos
- Atmospheric neutrino puzzle
- Solar neutrino puzzle
- What we know, what we do not

2 Core collapse supernova

- Collapse, explosion and neutrino emission
- Neutrino propagation and flavor conversions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

• Observable signals at the detectors

How the Sun shines

- Nuclear fusion reactions: mainly $4_1^1 H \rightarrow 2^4 He + 2e^+ + 2\nu_e$
- Light cannot be produced unless neutrinos are produced !!
- Davis-Koshiba Nobel prize 2002

Sun: now and then

Sun in neutrinos: 8 minutes ago

Angular size $\sim 20^\circ$

Sun in photons: a few million years ago

Angular size $\sim 1^\circ$

Nuclear reactions inside the Sun

Mystery of missing solar neutrinos

Solar ν_e convert to ν_μ and ν_{τ_1}

• $\nu_e D \rightarrow p p e^-$ • $\nu_{e,\mu,\tau} e^- \rightarrow \nu_{e,\mu,\tau} e^-$ • $\nu_{e,\mu,\tau} D \rightarrow n p \nu_{e,\mu,\tau}$

ヘロト ヘポト ヘヨト ヘヨト

- 22

• ν_e oscillate into ν_μ and ν_τ

$2-\nu$ level crossing: MSW resonance

Precession picture of MSW resonance

Solution of solar neutrino puzzle

 P_f depends on: Δm^2 , mixing angle θ_{\odot} , density profile

Survival probability:

 $P(\nu_e \rightarrow \nu_e) \approx P_f \cos^2 \theta_{\odot} + (1 - P_f) \sin^2 \theta_{\odot}$

No oscillations ! (Mass eigenstates have decohered)

 $\Delta m_{\odot}^2 \approx (7.2 - 9.5) \times 10^{-5} \text{ eV}^2$ Mixing angle $\theta_{\odot} \approx 28^{\circ} - 36^{\circ}$

Ourrent understanding of neutrinos

- Various facets of neutrinos
- Atmospheric neutrino puzzle
- Solar neutrino puzzle
- What we know, what we do not

Core collapse supernova

- Collapse, explosion and neutrino emission
- Neutrino propagation and flavor conversions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

• Observable signals at the detectors

Our current knowledge about neutrinos

• ν_e, ν_μ, ν_τ mix among each other

- Atmospheric neutrinos:
 - $\Delta m_{\rm atm}^2 \approx 2 \times 10^{-3} \, {\rm eV}^2, \, \theta_{\rm atm} \approx 45^\circ$
- Solar neutrinos:
 - $\Delta m_{\odot}^2 pprox 8 imes 10^{-5} \ {
 m eV}^2, \, heta_{\odot} pprox 32^\circ$
- Reactor neutrinos:

the "third" angle: very small ($\theta_{13} < 12^{\circ}$, may even be zero).

- ν_e, ν_μ, ν_τ mix among each other
- Atmospheric neutrinos:
 - $\Delta m_{\rm atm}^2 \approx 2 \times 10^{-3} \ {\rm eV^2}, \, \theta_{\rm atm} \approx 45^\circ$
- Solar neutrinos: $\Delta m_{\odot}^2 \approx 8 \times 10^{-5} \text{ eV}^2, \, \theta_{\odot} \approx 3$
- Reactor neutrinos:

the "third" angle: very small ($\theta_{13} < 12^{\circ}$, may even be zero).

- ν_e, ν_μ, ν_τ mix among each other
- Atmospheric neutrinos:

 $\Delta m_{\rm atm}^2 \approx 2 \times 10^{-3} \ {\rm eV}^2, \, \theta_{\rm atm} \approx 45^\circ$

- Solar neutrinos: $\Delta m_{\odot}^2 \approx 8 \times 10^{-5} \text{ eV}^2, \, \theta_{\odot} \approx 32^{\circ}$
- Reactor neutrinos:

the "third" angle: very small ($\theta_{13} < 12^{\circ}$, may even be zero).

- ν_e, ν_μ, ν_τ mix among each other
- Atmospheric neutrinos:

 $\Delta m_{\rm atm}^2 \approx 2 \times 10^{-3} \ {\rm eV^2}, \, \theta_{\rm atm} \approx 45^\circ$

Solar neutrinos:

 $\Delta m_{\odot}^2 pprox 8 imes 10^{-5} \, \mathrm{eV}^2, \, \theta_{\odot} pprox 32^\circ$

• Reactor neutrinos:

the "third" angle: very small ($\theta_{13} < 12^{\circ}$, may even be zero).

(日) (日) (日) (日) (日) (日) (日)

Open questions in neutrino physics

 Mass hierarchy: Normal or Inverted ? (red ν_e, green ν_u, blue ν_τ)

- Absolute neutrino masses
- Are there more than 3 neutrinos ?
- CP violation ? own antiparticles ? ...

Current understanding of neutrinos

- Various facets of neutrinos
- Atmospheric neutrino puzzle
- Solar neutrino puzzle
- What we know, what we do not

2 Core collapse supernova

- Collapse, explosion and neutrino emission
- Neutrino propagation and flavor conversions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Observable signals at the detectors

The onion ring structure

590

Trapped neutrinos before the collapse

• Neutrinos trapped inside "neutrinospheres" around $\rho \sim 10^{10} {\rm g/cc.}$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

• Escaping neutrinos: $\langle E_{\nu_e} \rangle < \langle E_{\bar{\nu}_e} \rangle < \langle E_{\nu_x} \rangle$

Gravitational core collapse \Rightarrow Shock Wave

・ 日 マ ス 雪 マ ス 雪 マ ス 目 マ

3

Neutronization burst

 u_e emitted for \sim 10 ms

Cooling through neutrino emission: $\nu_e, \bar{\nu}_e, \nu_\mu, \bar{\nu}_\mu, \nu_\tau, \bar{\nu}_\tau$

Duration: About 10 sec Emission of 99% of the SN energy in neutrinos

ززز Explosion ???

Gravitational core collapse \Rightarrow Shock Wave

ヘロア ヘロア ヘビア ヘビア 一切

Neutronization burst:

 $\nu_{\textit{e}}$ emitted for \sim 10 ms

Cooling through neutrino emission: $u_{m{e}},ar{ u}_{m{e}}, u_{\mu},ar{ u}_{\mu}, u_{ au},ar{ u}_{ au}$

Duration: About 10 sec Emission of 99% of the SN energy in neutrinos

ززز Explosion ???

Gravitational core collapse \Rightarrow Shock Wave

・ コット (雪) マイロット ロット

Neutronization burst:

 $\nu_{\textit{e}}$ emitted for \sim 10 ms

Cooling through neutrino emission: $\nu_e, \bar{\nu}_e, \nu_\mu, \bar{\nu}_\mu, \nu_\tau, \bar{\nu}_\tau$

Duration: About 10 sec Emission of 99% of the SN energy in neutrinos

ززز Explosion ???

Gravitational core collapse \Rightarrow Shock Wave

ヘロト ヘ戸ト ヘヨト ヘヨト

Neutronization burst:

 $\nu_{\textit{e}}$ emitted for \sim 10 ms

Cooling through neutrino emission: $\nu_e, \bar{\nu}_e, \nu_\mu, \bar{\nu}_\mu, \nu_\tau, \bar{\nu}_\tau$

Duration: About 10 sec Emission of 99% of the SN energy in neutrinos

¿¿¿ Explosion ???

Role of neutrinos in explosion

Neutrino heating needed for pushing the shock wave

- Neutrino heating essential, but not enough
- No spherically symmetric (1-D) simulations show robust explosions

Ingredients required for explosion

- Higher ν opacity
- Stiffer equation of state for the core
- Rotation of the star
- Large scale convection modes

・ロト ・ 同ト ・ ヨト ・ ヨ

R. Buras, H.-T. Janka, M. Rampp K. Kifonidis, astro-ph/0512189 The explosion movie

(ロ)、

Current understanding of neutrinos

- Various facets of neutrinos
- Atmospheric neutrino puzzle
- Solar neutrino puzzle
- What we know, what we do not

2 Core collapse supernova

- Collapse, explosion and neutrino emission
- Neutrino propagation and flavor conversions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Observable signals at the detectors

Primary fluxes and spectra

- Almost blackbody spectra, slightly "pinched"
- Energy hierarchy: $E_0(\nu_e) < E_0(\bar{\nu}_e) < E_0(\nu_x)$
- $E_0(\nu_e) \approx 10-12 \text{ MeV}$ $E_0(\bar{\nu}_e) \approx 13-16 \text{ MeV}$ $E_0(\nu_{\chi}) \approx 15-25 \text{ MeV}$

Propagation through matter of varying density

Inside the SN: flavour conversion

Collective effects and MSW matter effects

Between the SN and Earth: no flavour conversion

Mass eigenstates travel independently

Inside the Earth: flavour conversion

MSW matter effects (if detector is on the other side)

Nonlinear effects due to $\nu - \nu$ coherent interactions

• Large neutrino density \Rightarrow substantial $\nu - \nu$ potential $H = H_{vac} + H_{MSW} + H_{\nu\nu}$

$$\begin{aligned} H_{vac}(\vec{p}) &= M^2/(2p) \\ H_{MSW} &= \sqrt{2}G_F n_{e^-} diag(1,0,0) \\ H_{\nu\nu}(\vec{p}) &= \sqrt{2}G_F \int \frac{d^3q}{(2\pi)^3} (1 - \cos\theta_{pq}) \big(\rho(\vec{q}) - \bar{\rho}(\vec{q})\big) \end{aligned}$$

 $\frac{d\rho}{dt} = i[H(\rho), \rho] \quad \Rightarrow \qquad \text{Nonlinear effects } !$

(日) (日) (日) (日) (日) (日) (日)

Synchronized osc. \rightarrow Bipolar osc. \rightarrow Spectral split

Synchronized oscillations

- ν and $\bar{\nu}$ of all energies oscillate with the same frequency
- No significant flavour change since mixing angle is small

Bipolar oscillations

- Coherent $\nu_e \bar{\nu}_e \leftrightarrow \nu_x \bar{\nu}_x$ oscillations
- A nutating top ??
- Take place in inverted hierarchy
- Even $\theta_{13} \lesssim 10^{-10}$ OK !
- Prepare neutrinos for the "spectral split"

Spectral split

- \$\bar{\nu}_e\$ and \$\bar{\nu}_x\$ spectra interchange completely
- ν_e and ν_x spectra interchange for E > E_c
- Occurs in inverted hierarchy

・ロト・雪ト・ヨト・ヨト・ 直、 ろんの

Sequential dominance of processes

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

MSW Resonances inside a SN

H resonance: ($\Delta m_{
m atm}^2$, $heta_{
m 13}$), $ho \sim 10^3 - 10^4$ g/cc

- In $\nu(\bar{\nu})$ for normal (inverted) hierarchy
- Adiabatic (non-adiabatic) for $\sin^2 heta_{13} \gtrsim 10^{-3} (\ \lesssim 10^{-5})$

L resonance: (Δm_{\odot}^2 , θ_{\odot}), $\rho \sim 10-100$ g/cc

Always adiabatic, always in v

Fluxes arriving at the Earth

Mixture of initial fluxes:

$$\begin{array}{rcl} F_{\nu_{\theta}} &=& p \; F_{\nu_{\theta}}^{0} + (1-p) \; F_{\nu_{x}}^{0} \; , \\ F_{\bar{\nu}_{\theta}} &=& \bar{p} \; F_{\bar{\nu}_{\theta}}^{0} + (1-\bar{p}) \; F_{\nu_{x}}^{0} \; , \\ 4F_{\nu_{x}} &=& (1-p) \; F_{\nu_{\theta}}^{0} + (1-\bar{p}) \; F_{\bar{\nu}_{\theta}}^{0} + (2+p+\bar{p}) \; F_{\nu_{x}}^{0} \end{array}$$

Survival probabilities in different scenarios:

Α	Normal		$\sin^2 heta_{\odot}$
В	Inverted	$\cos^2 heta_\odot\mid$ 0	$\cos^2 heta_{\odot}$
С	Normal	$\sin^2 heta_{\odot}$	$\cos^2 heta_{\odot}$
D	Inverted	$\cos^2 \theta_{\odot} \mid 0$	

- "Small": $\sin^2 \theta_{13} \lesssim 10^{-5}$, "Large": $\sin^2 \theta_{13} \gtrsim 10^{-3}$.
- All four scenarios separable in principle !!

Fluxes arriving at the Earth

Mixture of initial fluxes:

$$\begin{array}{rcl} F_{\nu_{\theta}} &=& p \ F_{\nu_{\theta}}^{0} + (1-p) \ F_{\nu_{x}}^{0} \ , \\ F_{\bar{\nu}_{\theta}} &=& \bar{p} \ F_{\bar{\nu}_{\theta}}^{0} + (1-\bar{p}) \ F_{\nu_{x}}^{0} \ , \\ 4F_{\nu_{x}} &=& (1-p) \ F_{\nu_{\theta}}^{0} + (1-\bar{p}) \ F_{\bar{\nu}_{\theta}}^{0} + (2+p+\bar{p}) \ F_{\nu_{x}}^{0} \end{array}$$

Survival probabilities in different scenarios:

	Hierarchy	$\sin^2 \theta_{13}$	р	p
Α	Normal	Large	0	$\sin^2 heta_\odot$
В	Inverted	Large	$\cos^2 heta_\odot \mid 0$	$\cos^2 heta_{\odot}$
С	Normal	Small	$\sin^2 heta_{\odot}$	$\cos^2 heta_{\odot}$
D	Inverted	Small	$\cos^2 heta_\odot \mid 0$	0

- "Small": $\sin^2 \theta_{13} \lesssim 10^{-5}$, "Large": $\sin^2 \theta_{13} \gtrsim 10^{-3}$.
- All four scenarios separable in principle !!

Final spectra for inverted hierarchy

Antineutrinos

Small θ_{13}

Large θ_{13}

◆□> ◆□> ◆目> ◆目> ◆目> ◆□>

Current understanding of neutrinos

- Various facets of neutrinos
- Atmospheric neutrino puzzle
- Solar neutrino puzzle
- What we know, what we do not

2 Core collapse supernova

- Collapse, explosion and neutrino emission
- Neutrino propagation and flavor conversions

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Observable signals at the detectors

(Hubble image)

- Confirmed the SN cooling mechanism through neutrinos
- Number of events too small to say anything concrete about neutrino mixing
- Some constraints on SN parameters obtained

◆□▶ ◆□▶ ◆ ミ▶ ◆ ミ▶ ・ ミー のへぐ

Signal expected from a galactic SN (10 kpc)

Water Cherenkov detector:

- $\bar{\nu}_e p \to n e^+$: $\approx 7000 12000^*$
- $\nu e^- \rightarrow \nu e^-$: $\approx 200 300^*$
- $\nu_e + {}^{16}O \rightarrow X + e^-: \approx 150 800^*$

* Events expected at Super-Kamiokande with a galactic SN at 10 kpc

Carbon-based scintillation detector:

•
$$ar{
u}_e p
ightarrow ne^+$$

•
$$\nu + {}^{12}C \rightarrow \nu + X + \gamma$$
 (15.11 MeV)

Liquid Argon detector:

•
$$\nu_e$$
 + ⁴⁰ Ar \rightarrow ⁴⁰ K^* + e^-

Pointing to the SN in advance

- Neutrinos reach 6-24 hours before the light from SN explosion (SNEWS network)
- $\bar{\nu}_e p \rightarrow ne^+$: nearly isotropic background
- $\nu e^- \rightarrow \nu e^-$: forward-peaked "signal"
- Background-to-signal ratio: $N_B/N_S \approx 30-50$
- SN at 10 kpc may be detected within a cone of $\sim 5^\circ$ at SK

Earth matter effects

• "Earth effect" oscillations

Presence or absence of Earth matter effects:

Α	Normal	Х	\sim
В	Inverted	Х	\sim
С	Normal		\sim
D	Inverted	Х	X

Earth matter effects

• "Earth effect" oscillations

Presence or absence of Earth matter effects:

	Hierarchy	$\sin^2 \theta_{13}$	ν_{e}	$\bar{\nu}_{e}$
Α	Normal	Large	Х	
В	Inverted	Large	Х	
С	Normal	Small		
D	Inverted	Small	X	X

When shock wave passes through a resonance region (density ρ_H or ρ_L):

- adiabatic resonances may become momentarily non-adiabatic scenario A → scenario C scenario B → scenario D
- Sharp changes in the final spectra even if the primary spectra change smoothly

・ロト ・ 同ト ・ ヨト ・ ヨ

Shock wave effects

• Time dependent spectral evolution

Kneller, Mclaughlin, Brockman, PRD77, 045023 (2008)

Presence or absence of shock effects

Α	Normal		$\overline{}$
В	Inverted	Х	
С	Normal	Х	Х
D	Inverted	Х	Х

Shock wave effects

• Time dependent spectral evolution

Kneller, Mclaughlin, Brockman, PRD77, 045023 (2008)

Presence or absence of shock effects

	Hierarchy	$\sin^2 \theta_{13}$	ν_{e}	$\bar{\nu}_{e}$
Α	Normal	Large		
В	Inverted	Large	Х	
С	Normal	Small	Х	X
D	Inverted	Small	Х	Х

Tracking the shock fronts

- At $t \approx 4.5$ sec, (reverse) shock at ρ_{40}
- At $t \approx 7.5$ sec, (forward) shock at ρ_{40}
- Multiple energy bins ⇒ the times the shock fronts reach different densities of ρ ~ 10²−10⁴ g/cc

Neutrinocracy in Nova-land

• Explosion of the neutrinos

- $O(10^{65})$ neutrinos emitted, $O(10^{53})$ erg carried away
- Helps locating the SN before/without the optical signal
- Explosion by the neutrinos
 - Neutrino heating essential for shock propagation
 - Neutrino cooling essential for transporting energy
- Explosion for the neutrinos
 - Identifying the neutrino mixing scenario (A/B/C/D)
 - Tracking the shock wave while still inside the mantle

(日) (日) (日) (日) (日) (日) (日)

Neutrinocracy in Nova-land

Explosion of the neutrinos

- $\mathcal{O}(10^{65})$ neutrinos emitted, $\mathcal{O}(10^{53})$ erg carried away
- Helps locating the SN before/without the optical signal
- Explosion by the neutrinos
 - Neutrino heating essential for shock propagation
 - Neutrino cooling essential for transporting energy
- Explosion for the neutrinos
 - Identifying the neutrino mixing scenario (A/B/C/D)
 - Tracking the shock wave while still inside the mantle

(日) (日) (日) (日) (日) (日) (日)

Neutrinocracy in Nova-land

Explosion of the neutrinos

- $\mathcal{O}(10^{65})$ neutrinos emitted, $\mathcal{O}(10^{53})$ erg carried away
- Helps locating the SN before/without the optical signal
- Explosion by the neutrinos
 - Neutrino heating essential for shock propagation
 - Neutrino cooling essential for transporting energy
- Explosion for the neutrinos
 - Identifying the neutrino mixing scenario (A/B/C/D)
 - Tracking the shock wave while still inside the mantle

A D A D A D A D A D A D A D A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Theoretical challenges

- Neutrino transport inside the SN
- Primary neutrino spectra
- Many aspects of the nonlinear effects

Experimental challenges

- Reconstruction of ν_e spectrum (liq Ar detector ?)
- Multiple megaton-class water Cherenkov detectors

A rare event is a lifetime opportunity

(日) (字) (日) (日) (日)

Theoretical challenges

- Neutrino transport inside the SN
- Primary neutrino spectra
- Many aspects of the nonlinear effects

Experimental challenges

- Reconstruction of ν_e spectrum (liq Ar detector ?)
- Multiple megaton-class water Cherenkov detectors

A rare event is a lifetime opportunity

(日) (日) (日) (日) (日) (日) (日)

Theoretical challenges

- Neutrino transport inside the SN
- Primary neutrino spectra
- Many aspects of the nonlinear effects

Experimental challenges

- Reconstruction of ν_e spectrum (liq Ar detector ?)
- Multiple megaton-class water Cherenkov detectors

A rare event is a lifetime opportunity

・ロト・国ト・ヨト・ヨト ヨー うへの

Polarization analogy in two flavours

2-v flavors : Formalism

• Expand all matrices in terms of Pauli matrices as

$$X = \frac{I}{2} + \frac{1}{2} \sum_{i=1,2,3} X_i \sigma_i$$

The following vectors result from the matrices

$$\rho_{p} \Leftrightarrow \mathbf{P}_{\omega}$$

$$H_{p}^{0} \Leftrightarrow \omega \mathbf{B}$$

$$V \Leftrightarrow \sqrt{2}G_{F}N_{e} \mathbf{L} \equiv \lambda \mathbf{L}$$

$$H_{p}^{\nu\nu} \Leftrightarrow \sqrt{2}G_{F}(n+n) \int d\omega f(\omega) \mathbf{P}_{\omega} \operatorname{sgn}(\omega) \equiv \mu \mathbf{D}$$

EOM resembles spin precession

$$\frac{d}{dr}\mathbf{P}_{\omega} = (h\omega\,\mathbf{B} + \lambda\,\mathbf{L} + \mu\,\mathbf{D}) \times \mathbf{P}_{\omega} \equiv \mathbf{H}_{\omega} \times \mathbf{P}_{\omega}$$

Polarization analogy in three flavours

3-v flavors : Formalism

• Expand all matrices in terms of Gell-Mann matrices as

$$X = \frac{I}{3} + \frac{1}{2} \sum_{i=1-8} X_i \Lambda_i$$

The following vectors result from the matrices

$$\begin{aligned} \rho_{\rm p} &\Leftrightarrow \mathbf{P}_{\omega} \\ H_{\rm p}^{0} &\Leftrightarrow \omega \, \mathbf{B} \\ V &\Leftrightarrow \sqrt{2} G_{\rm F} N_{e} \, \mathbf{L} \equiv \lambda \, \mathbf{L} \\ H_{\rm p}^{\nu\nu} &\Leftrightarrow \sqrt{2} G_{\rm F} (n+\bar{n}) \int d\omega \, f(\omega) \, \mathbf{P}_{\omega} \, \mathrm{sgn}(\omega) \equiv \mu \, \mathbf{D} \end{aligned}$$

EOM formally resembles spin precession

$$\frac{d}{dr}\mathbf{P}_{\omega} = (\omega \mathbf{B} + \lambda \mathbf{L} + \mu \mathbf{D}) \times \mathbf{P}_{\omega} \equiv \mathbf{H}_{\omega} \times \mathbf{P}_{\omega}$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 三回 - のへで

Analogy to a spinning top

The spinning top analogy

• Motion of the average \mathbf{P}_{ω} defined by $\mathbf{S} = \int d\omega f(\omega) \mathbf{P}_{\omega}$

• Construct the "Pendulum" vector
$$\mathbf{Q} = \mathbf{S} - \frac{\omega_{avg}}{\mu} \mathbf{B}$$

• EOMs are given by
$$\mathbf{Q} = \mu \mathbf{D} \times \mathbf{Q}$$
, $\mathbf{D} = \omega_{avg} \mathbf{B} \times \mathbf{Q}$

• Mapping to Top :
$$\mathbf{Q}/\mathbf{Q} \equiv \mathbf{r}$$
, $\mathbf{D} \equiv \mathbf{j}$, $\omega_{avg} \mu \mathbf{Q} \mathbf{B} \equiv \mathbf{g}$
 $\mu^{-1} \equiv m$, $\mathbf{D}.\mathbf{Q}/\mathbf{Q} \equiv \sigma$

- EOMs now become $\mathbf{j} = m\mathbf{r} \times \mathbf{r} + \sigma \mathbf{r}$, $\mathbf{j} = m\mathbf{r} \times \mathbf{g}$
- Note that these are equations of a spinning top!!! (Hannestad, Raffelt, Sigl, Wong: astro-ph/0608695; Fogli, Lisi, Mirizzi, Marrone: hep-ph/0707.1998)

Synchronized oscillations

Synchronized oscillation

(日) (日) (日) (日) (日) (日) (日)

- Spin is very large : Top precesses about direction of gravity
- At large $\mu \gg \varpi_{\mathsf{avg}} : Q$ precesses about B with frequency ϖ_{avg}
- Large μ : all P_{ω} are bound together: same EOM

Bipolar oscillations

Bipolar oscillation

- Spin is not very large : Top precesses and nutates
- At large $\mu \geq \varpi_{\mathsf{avg}} : Q$ precesses + nutates about B
- Therefore ${\bf S}$ does the same
- All P_{ω} are still bound together, same EOM:

$$\frac{d}{dr}\mathbf{P}_{\omega} = (\omega \mathbf{B} + \lambda \mathbf{L} + \mu \mathbf{D}) \times \mathbf{P}_{\omega}$$

(Hannestad, Raffelt, Sigl, Wong: astro-ph/0608695; Duan, Fuller, Carlson, Qian: astro-ph/0703776)

(日) (日) (日) (日) (日) (日) (日)

Nutation = Complicated elliptic functions

• Survival probability : $\left|\left\langle \nu_{e}\left|\nu_{e}(r)\right\rangle \right|^{2}=(1+\mathrm{P_{z}})/2$

Spectral split

Adiabatic spectral split

- Top falls down when it slows down (when mass increases)
- If μ decreases slowly P_ω keeps up with H_ω
- As $\mu \rightarrow 0$ from its large value : \mathbf{P}_{ω} aligns with $h \omega \mathbf{B}$
- For inverted hierarchy P_{ω} has to flip, $BUT\ldots$

