How fast is the fastest ?

Amol Dighe Department of Theoretical Physics Tata Institute of Fundamental Research

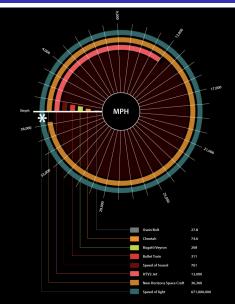
Chai-and-Why, Ruparel College, Oct 18, 2015

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- 2 How to measure such a large speed ?
- 3 Why is there even a single "the fastest" speed ?
- Modern (20th-century) measurements of the speed

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

5 How to measure this speed at home

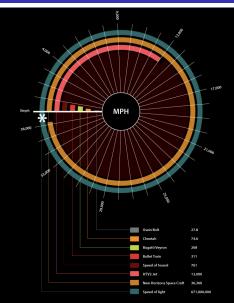

What moves the fastest ?

- 2 How to measure such a large speed ?
- 3 Why is there even a single "the fastest" speed ?
- 4 Modern (20th-century) measurements of the speed

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

5 How to measure this speed at home

The light (travelling through vacuum)



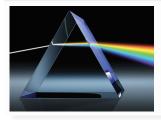
 Light would have gone around the track
 ~ 18,000 times !

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○ ○

* The speed of light would go around the circle another x18,135 times if we wanted to show on this graph.

The light (travelling through vacuum)

 Light would have gone around the track
 ~ 18,000 times !


< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Some approximate idea of the speed

Speed of light in vacuum: about 3 lakh km/s

- Time to the sun: 8 minutes
- Time to the moon: 1 second
- Time to cross the earth: ¹/₂₅ second
- Time to travel 1 foot: 1 nanosecond (
 ¹/_{1 000 000 000} second)

Light slows down in media..

- Light speed reduces in glass to about 2 lakh km/s (~ 70%)
- The colours split because they travel at different speeds in glass

Some approximate idea of the speed

Speed of light in vacuum: about 3 lakh km/s

- Time to the sun: 8 minutes
- Time to the moon: 1 second
- Time to cross the earth: ¹/₂₅ second
- Time to travel 1 foot: 1 nanosecond (
 ¹/_{1.000,000,000} second)

Light slows down in media..

- Light speed reduces in glass to about 2 lakh km/s (~ 70%)
- The colours split because they travel at different speeds in glass

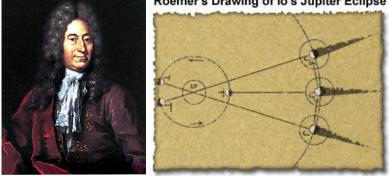
- 2 How to measure such a large speed ?
- 3 Why is there even a single "the fastest" speed ?
- 4 Modern (20th-century) measurements of the speed

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

5 How to measure this speed at home

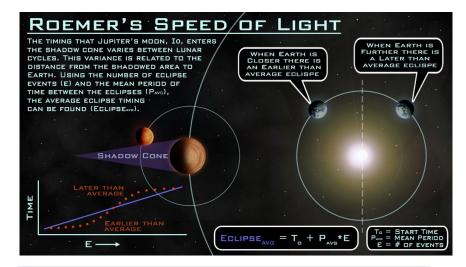
What's wrong with this ?

Light would travel 3 km in only 0.00001 secondsLight speed is, practically speaking, infinity.


・ロト ・四ト ・ヨト ・ヨト

What's wrong with this ?

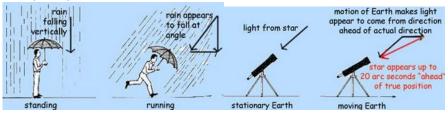
- Light would travel 3 km in only 0.00001 seconds
- Light speed is, practically speaking, infinity.


Eclipse of jupiter: Roemer 1676

Roemer's Drawing of lo's Jupiter Eclipse

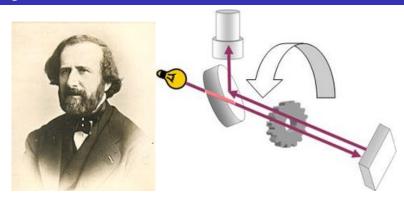
- When earth is closer to jupiter, eclipses happen earlier
- When earth is away, eclipses happen later
- Light takes 22 minutes to cross the earth's orbit

Eclipse of jupiter: Roemer 1676


Roemer's light speed: 220 000 km/s

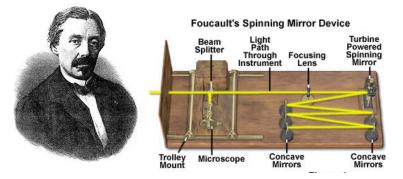
Aberration of stars: Bradley 1729

star: Gamma Draconis


James Bradley (1693-1762)

Observed small annual cyclic motion of a

Bradley speed of light: 301 000 km/s


Cogwheel method: Fizeau 1849

- Mirror 8 km away
- Keep increasing the speed of cogwheel till Light enters from one gap, returns from the next
- Speed of light = distance / time

Fizeau's light speed: 315 000 km/s

Rotating mirror method: Foucault 1850

- Many reflections, so the apparatus can be shorter
- Time measurement was the most difficult part
- Still 1% accuracy obtained !

Focault's light speed: (298 000 \pm 500) km/s

ヘロト ヘポト ヘヨト ヘヨト

- 2 How to measure such a large speed ?
- Why is there even a single "the fastest" speed ?
- 4 Modern (20th-century) measurements of the speed

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

5 How to measure this speed at home

- Bullet shot from a gun, which is itself moving forwards (say on a train), travels faster when seen from the ground.
- Light emitted from a source moving in the same direction should travel faster when seen from outside.

- Faster the source, faster the speed of light
- There should not be a "fastest" speed

- Bullet shot from a gun, which is itself moving forwards (say on a train), travels faster when seen from the ground.
- Light emitted from a source moving in the same direction should travel faster when seen from outside.

- Faster the source, faster the speed of light
- There should not be a "fastest" speed

- Bullet shot from a gun, which is itself moving forwards (say on a train), travels faster when seen from the ground.
- Light emitted from a source moving in the same direction should travel faster when seen from outside.

- Faster the source, faster the speed of light
- There should not be a "fastest" speed

How to measure change in light speed due to source

Luminiferous ether: medium light travels through

- Earth moves through the Ether.
- The light should travel faster in the direction of movement of Earth, slower in the opposite direction.
- The speed of light cannot be the same in all directions !

Speeds of the earth

- Spinning about its axis: 0.5 km/s
- Revolution about the sun: 30 km/s
- Solar system around the milky way: 250 km/s
- Milky way around other nearby galaxies: 300 km/s

Need to measure speed of light to an accuracy of at least \sim 300 km/s (i.e. 0.1 %)

How to measure change in light speed due to source

Luminiferous ether: medium light travels through

- Earth moves through the Ether.
- The light should travel faster in the direction of movement of Earth, slower in the opposite direction.
- The speed of light cannot be the same in all directions !

Speeds of the earth

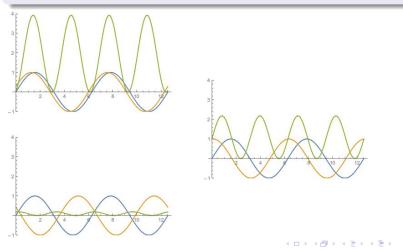
- Spinning about its axis: 0.5 km/s
- Revolution about the sun: 30 km/s
- Solar system around the milky way: 250 km/s
- Milky way around other nearby galaxies: 300 km/s

Need to measure speed of light to an accuracy of at least \sim 300 km/s (i.e. 0.1 %)

How to measure change in light speed due to source

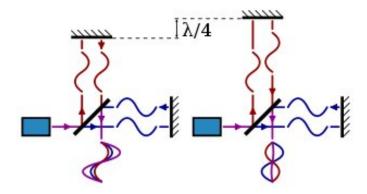
Luminiferous ether: medium light travels through

- Earth moves through the Ether.
- The light should travel faster in the direction of movement of Earth, slower in the opposite direction.
- The speed of light cannot be the same in all directions !

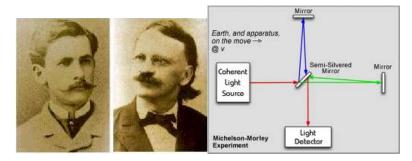

Speeds of the earth

- Spinning about its axis: 0.5 km/s
- Revolution about the sun: 30 km/s
- Solar system around the milky way: 250 km/s
- Milky way around other nearby galaxies: 300 km/s

Need to measure speed of light to an accuracy of at least \sim 300 km/s (i.e. 0.1 %)


Interference: the principle

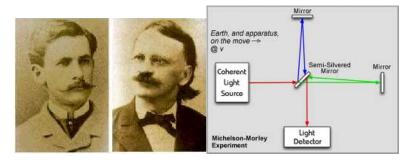
Intensity of the sum of two waves \Rightarrow The phase difference between the waves


ъ

The interference experiment

- If distances travelled by two light rays are different, the interference pattern will be different.
- We are using the light wavelength (~ 500nm) as a precise scale to measure distances !
- Note: measures difference in speeds precisely, not actual speeds

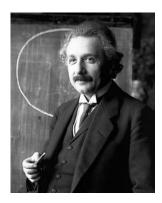
Michaelson-Morley experiment 1887



Shock of the century

- Speed of light along the earth's motion
 Speed of light perpendicular to earth's motion
- A counter-intuitive result that revolutionised physics !

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ


Michaelson-Morley experiment 1887

Shock of the century

- Speed of light along the earth's motion
 Speed of light perpendicular to earth's motion
- A counter-intuitive result that revolutionised physics !


Special Theory of relativity: Einstein, 1905

- Speed of light in vacuum the same for everyone
- Distances not the same for everyone
- Time not the same for everyone
- A consequence: No signal can travel faster than the speed of light in vacuum

・ロト ・聞ト ・ヨト ・ヨト 三日


Special Theory of relativity: Einstein, 1905

- Speed of light in vacuum the same for everyone
- Distances not the same for everyone
- Time not the same for everyone
- A consequence: No signal can travel faster than the speed of light in vacuum

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Special Theory of relativity: Einstein, 1905

- Speed of light in vacuum the same for everyone
- Distances not the same for everyone
- Time not the same for everyone
- A consequence: No signal can travel faster than the speed of light in vacuum

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- All speed measurements
- Cosmic rays coming from space
- High energy particles at particle acelerators
- All tests of Special Relativity

Moving light spots ? receding galaxies ? tacheons ?

- All speed measurements
- Cosmic rays coming from space
- High energy particles at particle acelerators
- All tests of Special Relativity

Moving light spots ? receding galaxies ? tacheons ?

What moves the fastest ?

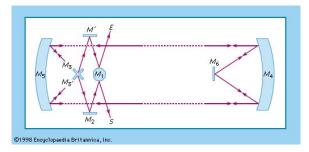
- 2 How to measure such a large speed ?
- 3 Why is there even a single "the fastest" speed ?

4 Modern (20th-century) measurements of the speed

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

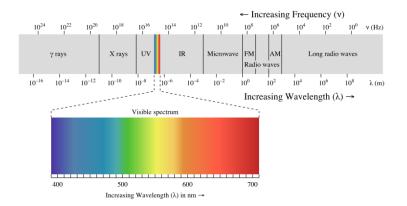
5 How to measure this speed at home

From capacitors: Rosa and Dorsay 1907


- Capacitances of simple geometries can be calculated theoretically
- These capacitances depend on the speed of light, $c = 1/\sqrt{\epsilon\mu}$
- Precision manufacture of capacitors and accurate measurements of their capacitances
 ⇒ speed of light

ヘロト ヘ戸ト ヘヨト ヘヨト

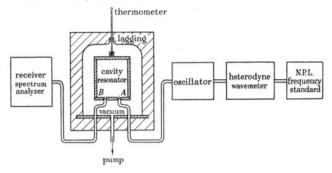
Speed of light from capacitances: (299 710 \pm 30) km/s


Distance / time: Michelson 1926

- Mount Wilson to Mount San Antonio : 22 miles \times 2
- A rotating-mirror assembly

Michelson's speed of light: 299 796 km /s Applies corrections for the refractive index of air !

Light as an electromagnetic wave


Measuring speed of any electromagnetic wave is the same as measuring the speed of light...

Resonance cavity: Essen and Gordan-Smith 1947

The velocity of propagation of electromagnetic waves derived from the resonant frequencies of a cylindrical cavity resonator

> By L. ESSEN, D.Sc., Ph.D. AND A. C. GORDON-SMITH The National Physical Laboratory

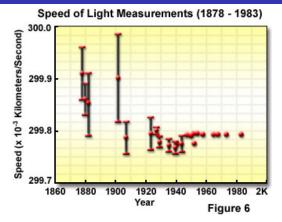
(Communicated by Sir Charles Darwin, F.R.S.-Received 4 December 1947)

Cavity speed of light: (299 792.5 \pm 3.0) km/s

「と 《 聞 と 《 言 と 《 言 と 二 言 〔 �� � (

Interferometry: Froome 1958, Evensen 1972

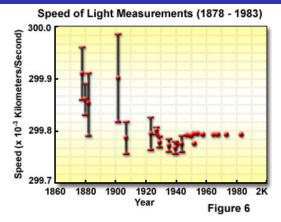
Radio interferometry: Froome 1958


Speed of light: 299 792.50 \pm 0.1 km/s

Laser interferometry: Evensen 1972

Speed of light: 299 792.4562 \pm 0.0011 km/s

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □


The latest situation

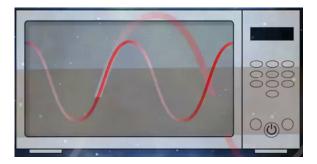
The tables have turned

- Now we define meter using speed of light and time !
- The metre is the length of the path travelled by light in vacuum during a time interval of 1/(299 792 458) of a second.

The latest situation

The tables have turned !

- Now we define meter using speed of light and time !
- The metre is the length of the path travelled by light in vacuum during a time interval of 1/(299 792 458) of a second.


What moves the fastest ?

- 2 How to measure such a large speed ?
- Why is there even a single "the fastest" speed ?
- 4 Modern (20th-century) measurements of the speed

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

5 How to measure this speed at home

The microwave as a electromagnetic wave generator

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

- 2 How to measure such a large speed ?
- 3 Why is there even a single "the fastest" speed ?
- Modern (20th-century) measurements of the speed

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

5 How to measure this speed at home