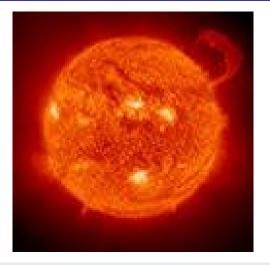
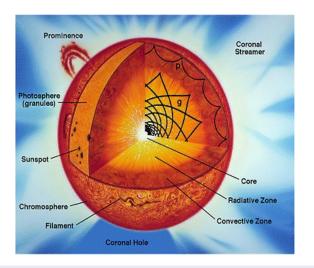


- Why look for neutrinos?
 - How does the Sun shine ?
 - Where did all the gold come from ?
 - What will we learn from neutrinos?
- 2 How to look for neutrinos
 - Going underground...
 - Neutrino mysteries: some solved, some unsolved
 - The India-based Neutrino Observatory (INO)

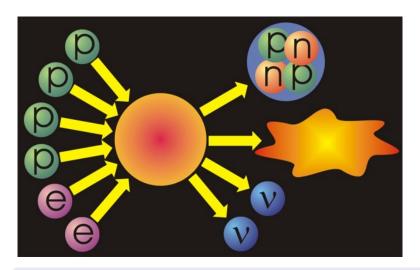

- Why look for neutrinos ?
 - How does the Sun shine ?
 - Where did all the gold come from ?
 - What will we learn from neutrinos ?
- 2 How to look for neutrinos
 - Going underground...
 - Neutrino mysteries: some solved, some unsolved
 - The India-based Neutrino Observatory (INO)

- Why look for neutrinos ?
 - How does the Sun shine ?
 - Where did all the gold come from ?
 - What will we learn from neutrinos ?
- 2 How to look for neutrinos
 - Going underground...
 - Neutrino mysteries: some solved, some unsolved
 - The India-based Neutrino Observatory (INO)

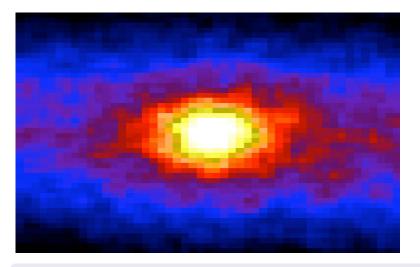
Burning ball of fire?



Burning ball of fire?


- Would have burnt out in a few thousand years
- But has been around for many more !!

The structure of the Sun


It is a nuclear reactor!

The nuclear reactions

How do we know this? Can we see some evidence?

Neutrinos from the Sun: tiny point particles

• Can indeed see neutrinos from the Sun now!

A very very large number of neutrinos

About hundred trillion through our body per second Hundred trillion = 100 000 000 000 000

A very very large number of neutrinos

About hundred trillion through our body per second Hundred trillion = 100 000 000 000 000

Even during night!

Neutrinos during night = Neutrinos during day

A very very large number of neutrinos

About hundred trillion through our body per second Hundred trillion = 100 000 000 000 000

Even during night!

Neutrinos during night = Neutrinos during day

Reach us directly from the core of the Sun

Light from the Sun's core cannot reach us directly

A very very large number of neutrinos

About hundred trillion through our body per second Hundred trillion = 100 000 000 000 000

Even during night!

Neutrinos during night = Neutrinos during day

Reach us directly from the core of the Sun

Light from the Sun's core cannot reach us directly

Why do we not notice them?

Three questions, the same answer

- Why did the roti burn?
- Why did the betel leaves (paan) rot ?
- Why could the horse not run?

Three questions, the same answer

- Why did the roti burn?
- Why did the betel leaves (paan) rot ?
- Why could the horse not run?

Because they were not moved!

Three questions about neutrinos

Pauli Dirac

- Why do we not notice neutrinos passing through us?
- Why do neutrinos from the Sun reach us during night?
- Why can we see "inside" the sun with neutrinos?

Three questions about neutrinos

Pauli Dirac

- Why do we not notice neutrinos passing through us?
- Why do neutrinos from the Sun reach us during night?
- Why can we see "inside" the sun with neutrinos?

Because neutrinos interact extremely weakly!

Stopping radiation with lead shielding

• Stopping α, β, γ radiation: 50 cm

Stopping radiation with lead shielding

- Stopping α, β, γ radiation: 50 cm
- Stopping neutrinos from the Sun: light years of lead!

Stopping radiation with lead shielding

- Stopping α, β, γ radiation: 50 cm
- Stopping neutrinos from the Sun: light years of lead!

Answers to the three questions

Why do we not notice neutrinos passing through us?
 Neutrinos pass through our bodies without interacting

Stopping radiation with lead shielding

- Stopping α, β, γ radiation: 50 cm
- Stopping neutrinos from the Sun: light years of lead!

Answers to the three questions

- Why do we not notice neutrinos passing through us?
 Neutrinos pass through our bodies without interacting
- Why do neutrinos from the Sun reach us during night?
 Neutrinos pass through the Earth without interacting

Stopping radiation with lead shielding

- Stopping α, β, γ radiation: 50 cm
- Stopping neutrinos from the Sun: light years of lead!

Answers to the three questions

- Why do we not notice neutrinos passing through us?
 Neutrinos pass through our bodies without interacting
- Why do neutrinos from the Sun reach us during night?
 Neutrinos pass through the Earth without interacting
- Why can we see "inside" the sun with neutrinos?
 Neutrinos pass through the Sun without interacting

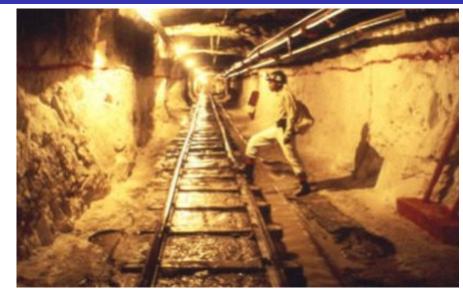
Stopping radiation with lead shielding

- Stopping α, β, γ radiation: 50 cm
- Stopping neutrinos from the Sun: light years of lead!

Answers to the three questions

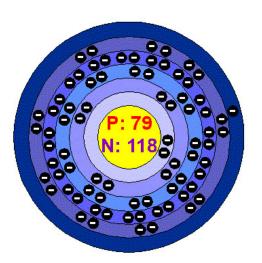
- Why do we not notice neutrinos passing through us?
 Neutrinos pass through our bodies without interacting
- Why do neutrinos from the Sun reach us during night?
 Neutrinos pass through the Earth without interacting
- Why can we see "inside" the sun with neutrinos?
 Neutrinos pass through the Sun without interacting

.... Neutrinos play a crucial role in the Sun shining!



- 1 Why look for neutrinos?
 - How does the Sun shine ?
 - Where did all the gold come from ?
 - What will we learn from neutrinos?
- 2 How to look for neutrinos
 - Going underground...
 - Neutrino mysteries: some solved, some unsolved
 - The India-based Neutrino Observatory (INO)

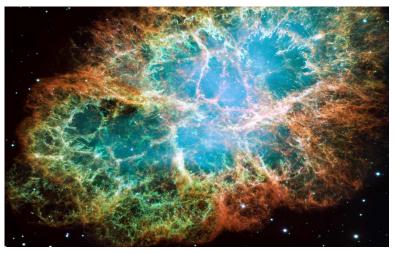
Many forms of gold: origin?



The gold mine

But where did the gold in the mines come from?

The essence of gold


 Elements have to be made, starting from hydrogen, by nuclear fusion inside stars

- Elements have to be made, starting from hydrogen, by nuclear fusion inside stars
- Even the intense temperature and pressure inside stars cannot make elements heavier than iron (26 protons, 30 neutrons)

- Elements have to be made, starting from hydrogen, by nuclear fusion inside stars
- Even the intense temperature and pressure inside stars cannot make elements heavier than iron (26 protons, 30 neutrons)
- Gold has 79 protons and 118 neutrons. How is this possible?

- Elements have to be made, starting from hydrogen, by nuclear fusion inside stars
- Even the intense temperature and pressure inside stars cannot make elements heavier than iron (26 protons, 30 neutrons)
- Gold has 79 protons and 118 neutrons. How is this possible?
- There is just one phenomenon we know in nature that can do this...

A supernova!

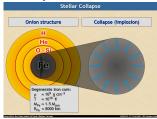
Crab nebula, Supernova seen exploding in 1054

So that's the story...

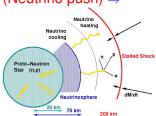
- Once upon a time, there was a big star, which exploded (supernova)
- The exploded material travelled far and wide in the galaxies
- It is from this material that the solar system was made.
- We are, literally, "Stardust"

So that's the story...

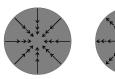
- Once upon a time, there was a big star, which exploded (supernova)
- The exploded material travelled far and wide in the galaxies
- It is from this material that the solar system was made.
- We are, literally, "Stardust"


But, how does a supernova explode?

(This is now a search to understand where we came from.)



Supernova: the death of a star


Gravity ⇒

Weak nuclear force (Neutrino push) ⇒

Strong nuclear force ⇒

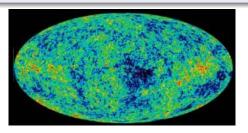
Electromagnetism (Hydrodynamics) ⇒

The search for invisible neutrinos

- Why look for neutrinos ?
 - How does the Sun shine?
 - Where did all the gold come from ?
 - What will we learn from neutrinos ?
- 2 How to look for neutrinos
 - Going underground...
 - Neutrino mysteries: some solved, some unsolved
 - The India-based Neutrino Observatory (INO)

A view from the Hubble telescope

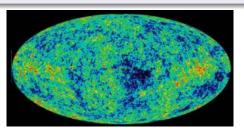
The world without neutrinos


The world without neutrinos

Role of neutrinos in creating atoms

Neutrinos helped create the matter-antimatter asymmetry, without which, no atoms, no stars, no planets, no galaxies

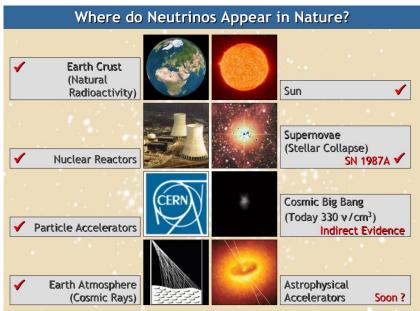
The second-most abundant particles in the universe


Even empty space between galaxies is full of light and neutrinos!

- ullet Cosmic microwave background: 400 photons/ cm³ Temperature: \sim 3 K
- \bullet Tell us about the universe when it was *only* 400,000 years old (Now it is \sim 14 000 000 000 years old.)

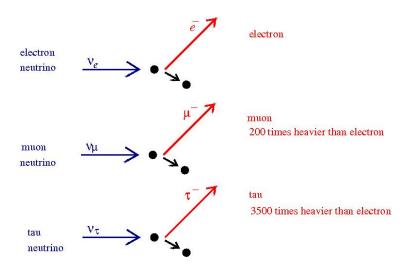
The second-most abundant particles in the universe

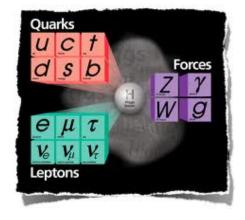
Even empty space between galaxies is full of light and neutrinos!


- ullet Cosmic microwave background: 400 photons/ cm³ Temperature: \sim 3 K
- ullet Tell us about the universe when it was *only* 400,000 years old (Now it is \sim 14 000 000 000 years old.)
- ullet Cosmic neutrino background: 300 neutrinos / cm³ Temperature: \sim 2 K
- Can tell us about the universe when it was 0.18 sec old!

Neutrinos as messengers

- No bending in magnetic fields ⇒ point back to the source
- Minimal obstruction / scattering ⇒
 can arrive directly from regions from where light cannot
 come (inside the stars, behind the galaxy...)


Neutrinos everywhere

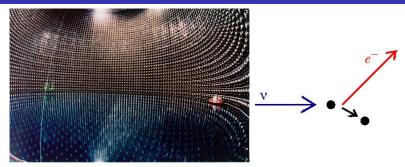

Three kinds of neutrinos:

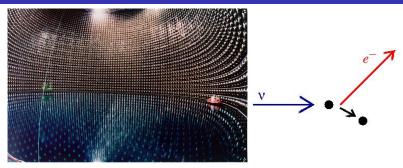
 $u_{ au}$

The Standard Model of Particle Physics

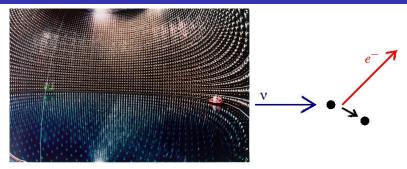
3 neutrinos:

$$\nu_{\rm e}, \nu_{\mu}, \nu_{\tau}$$

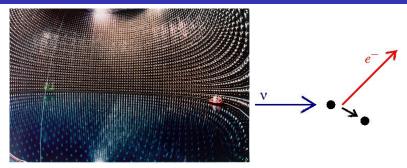

- chargeless
- spin 1/2
- almost massless (at least a million times lighter than electrons)
- only weak interactions


The search for invisible neutrinos

- Why look for neutrinos?
 - How does the Sun shine?
 - Where did all the gold come from ?
 - What will we learn from neutrinos?
- 2 How to look for neutrinos
 - Going underground...
 - Neutrino mysteries: some solved, some unsolved
 - The India-based Neutrino Observatory (INO)


The search for invisible neutrinos

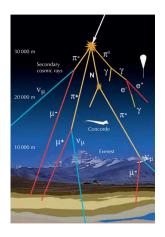
- Why look for neutrinos ?
 - How does the Sun shine?
 - Where did all the gold come from ?
 - What will we learn from neutrinos?
- 2 How to look for neutrinos
 - Going underground...
 - Neutrino mysteries: some solved, some unsolved
 - The India-based Neutrino Observatory (INO)


- Neutrinos passing through SK per day: 10²⁵
- Neutrino interactions in SK per day: 5-10

- Neutrinos passing through SK per day: 10²⁵
- Neutrino interactions in SK per day: 5-10

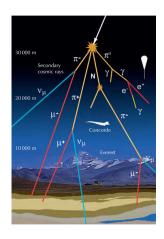
Recipe for observing neutrinos

- Build very large detectors
- Wait for a very long time

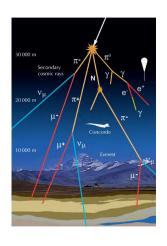


- Neutrinos passing through SK per day: 10²⁵
- Neutrino interactions in SK per day: 5-10

Recipe for observing neutrinos


- Build very large detectors
- Wait for a very long time
- Go deep underground: why?

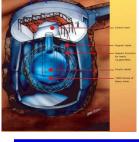
Cosmic rays: muon background and neutrinos

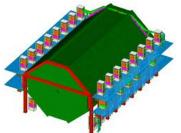

- Muons and neutrinos reach the Earth surface in roughly equal numbers
- All muons interact, only one in 1 000 000 000 000 000 000 neutrinos interact
- At the Earth surface, neutrinos get lost among muons!

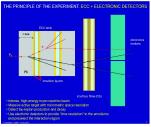
Cosmic rays: muon background and neutrinos

- Muons and neutrinos reach the Earth surface in roughly equal numbers
- All muons interact, only one in 1 000 000 000 000 000 000 neutrinos interact
- At the Earth surface, neutrinos get lost among muons!
- Underground, muons get absorbed but neutrinos do not
- Have to go ~ 1 km underground for a clean environment

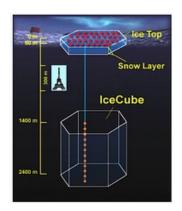
Cosmic rays: muon background and neutrinos

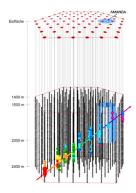

- Muons and neutrinos reach the Earth surface in roughly equal numbers
- All muons interact, only one in 1 000 000 000 000 000 000 neutrinos interact
- At the Earth surface, neutrinos get lost among muons!
- Underground, muons get absorbed but neutrinos do not
- Have to go ~ 1 km underground for a clean environment


Neutrinos from atmosphere first discovered in Kolar gold mines!



Some neutrino detectors





Common feature: all underground

Below the antarctic ice: Gigaton IceCube

1 000 000 000 000 litres of ice

- Looks at neutrinos coming from below
- The whole Earth acts as a shield from cosmic muons

The search for invisible neutrinos

- Why look for neutrinos ?
 - How does the Sun shine?
 - Where did all the gold come from ?
 - What will we learn from neutrinos?
- 2 How to look for neutrinos
 - Going underground...
 - Neutrino mysteries: some solved, some unsolved
 - The India-based Neutrino Observatory (INO)

The long-term mysteries ⇒ neutrino oscillations

Solar neutrino mystery: 1960s - 2002

• Only about half the expected ν_e observed!

Atmospheric neutrino mystery: 1980s – 1998

• Half the ν_{μ} lost in the Earth!

Reactor neutrino experiments

• Breaking news of 2012-13: 10% of reactor $\bar{\nu}_e$ are lost!

The long-term mysteries ⇒ neutrino oscillations

Solar neutrino mystery: 1960s - 2002

- Only about half the expected ν_e observed!
- \bullet Possible solution: $\nu_{\rm e}$ change to ν_{μ}/ν_{τ}

Atmospheric neutrino mystery: 1980s – 1998

- Half the ν_{μ} lost in the Earth!
- ullet Possible solution: u_{μ} change to u_{τ}

Reactor neutrino experiments

- Breaking news of 2012-13: 10% of reactor $\bar{\nu}_e$ are lost!
- Possible solution: $\bar{\nu}_e$ change to $\bar{\nu}_{\mu}/\bar{\nu}_{\tau}$

Three questions, the same answer

 ν conference participants

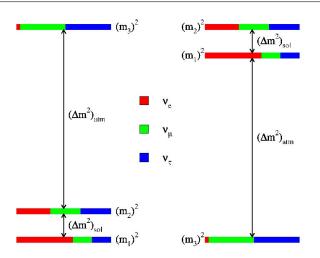
- Why did half the ν_e from the sun become ν_{μ}/ν_{τ} ?
- Why did half the ν_{μ} from the atmosphere become ν_{τ} ?
- Why did 10% $\bar{\nu}_e$ from the reactors become $\bar{\nu}_{\mu}/\bar{\nu}_{\tau}$?

Three questions, the same answer

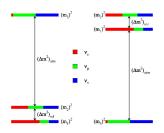
 ν conference participants

- Why did half the ν_e from the sun become ν_{μ}/ν_{τ} ?
- Why did half the ν_{μ} from the atmosphere become ν_{τ} ?
- Why did 10% $\bar{\nu}_e$ from the reactors become $\bar{\nu}_{\mu}/\bar{\nu}_{\tau}$?

Because neutrinos have different masses and they mix!


What is meant by neutrino mixing?

 ν_e, ν_μ, ν_τ do not have fixed masses !!


What is meant by neutrino mixing?

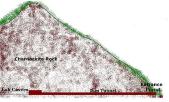
 $\nu_{e}, \nu_{\mu}, \nu_{\tau}$ do not have fixed masses !!

Mixing of ν_e , ν_μ , $\nu_\tau \Rightarrow \nu_1, \nu_2, \nu_3$ (These have fixed masses!)

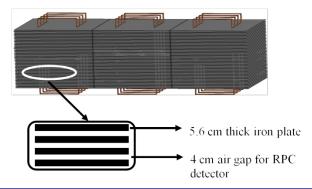
Still open mysteries about neutrino masses

- Mass ordering: Normal or Inverted?
- What are the absolute neutrino masses?
- Are there more than 3 neutrinos ?
- Do neutrinos behave differently than antineutrinos ?
- Can neutrinos be their own antiparticles?

The search for invisible neutrinos


- Why look for neutrinos?
 - How does the Sun shine?
 - Where did all the gold come from ?
 - What will we learn from neutrinos?
- 2 How to look for neutrinos
 - Going underground...
 - Neutrino mysteries: some solved, some unsolved
 - The India-based Neutrino Observatory (INO)

The location


- In a tunnel below a peak (Bodi West Hills, near Madurai)
- 1 km rock coverage from all sides

The cavern plan

- Largest cavern: 132 m x 26 m x 20 m
- Other smaller sensitive experiments possible (dark matter etc.)

The iron calorimeter (ICAL) experiment

India-based Neutrino Observatory

- The world's largest electromagnet:
 50 kiloton of magnetized iron (50 000 000 kg)
- Can distinguish neutrinos from antineutrinos
- Determining mass ordering from atmospheric neutrinos

INO: an opportunity

- The largest (planned) experimental facility in India
- Combines expertise of physicists and engineers, from more than 25 universities, research institutes, and industry
- Many opportunities available for students
- Inter-Institutional Centre for High Energy Physics (IICHEP) to be established at Madurai
- Please visit http://www.ino.tifr.res.in

Some technological speculations....

- Nuclear reactor monitoring (for non-proliferation)
- Oil exploration
- Faster communication

A scientist's view....

"ONE HUNDRED MILLION NEUTRINOS ARE PASSING THROUGH OUR BODIES EVERY SECOND AND WE'RE WORRED ABOUT THE PRICE OF COFFEE."