

Lecture 1: Neutrino detection and basic properties

- Unique properties
- Discovery of neutrino flavours
- Measuring mass, helicity, interactions

Lecture 2: Neutrino mixing and oscillations

- Solar and atmospheric puzzles and solutions
- The three-neutrino mixing picture
- How to measure neutrino mixing parameters

Lecture 3: Neutrinos in astrophysics and cosmology

- Low-energy (meV) cosmological neutrinos
- Medium-energy (MeV) supernova neutrinos
- High-energy (> TeV) astrophysical neutrinos

Neutrino Physics: an Introduction (Lecture 1)

- Preliminary introduction
- Neutrinos in astrophysics, cosmology, and particle physics
- Discoveries of neutrinos and their flavours
- Mass and helicity measurements
- Interactions with matter

Neutrino Physics: an Introduction (Lecture 1)

- Preliminary introduction
- Neutrinos in astrophysics, cosmology, and particle physics
- Objective of neutrinos and their flavours
- Mass and helicity measurements
- 5 Interactions with matter

How does the Sun shine?

Nuclear fusion reactions: effectively

4
$$^{1}_{1}\text{H} + 2e^{-} \rightarrow ^{4}_{2}\text{He} + \text{light} + 2\nu_{e}$$

 Neutrinos needed to conserve energy, momentum, angular momentum

Neutrinos essential for the Sun to shine!!

Neutrinos from the Sun: some interesting facts

A very very large number of neutrinos

About hundred trillion through our body per second Hundred trillion = 100 000 000 000 000

Why do we not notice them?

Even during night!

If sunlight cannot reach, how do neutrinos?

Seem to come directly from the core of the Sun

Sunlight comes from the surface...

What are the reasons for these confusing facts?

Three questions, the same answer

- Why did the roti burn?
- Why did the betel leaves (paan) rot ?
- Why could the horse not run?

Because they were not moved!

Three questions about neutrinos

Pauli Dirac

- Why do we not notice neutrinos passing through us?
- Why do neutrinos from the Sun reach us during night?
- Why can we see "inside" the sun with neutrinos?

Because neutrinos interact extremely weakly!

The most weakly interacting particles

Stopping radiation with lead shielding

- Stopping α, β, γ radiation: 50 cm
- Stopping neutrinos from the Sun: light years of lead!

Answers to the three questions

- Why do we not notice neutrinos passing through us?
 Neutrinos pass through our bodies without interacting
- Why do neutrinos from the Sun reach us during night?
 Neutrinos pass through the Earth without interacting
- Why can we see "inside" the sun with neutrinos?
 Neutrinos pass through the Sun without interacting

How do we see the neutrinos then?

SuperKamiokande: 50 000 000 litres of water

A very rare observation

- About 10²⁵ neutrinos pass through SK every day.
- About 5–10 neutrinos interact in SK every day.

Recipe for observing neutrinos

- Build very large detectors
- Wait for a very long time

How does the Sun look in neutrinos?

Sun in photons: a few million years ago

Angular size \sim 1 $^\circ$

Sun in neutrinos: 8 minutes ago

Angular size \sim 20 $^\circ$

Neutrino Physics: an Introduction (Lecture 1)

- Preliminary introduction
- 2 Neutrinos in astrophysics, cosmology, and particle physics
- 3 Discoveries of neutrinos and their flavours
- Mass and helicity measurements
- Interactions with matter

A view from the Hubble telescope

The world without neutrinos

The world without neutrinos

Role of neutrinos in creating atoms

Neutrinos helped create the matter-antimatter asymmetry, without which, no atoms, no stars, no galaxies

Role of neutrinos in creating the Earth

- Earth has elements heavier than iron, which cannot be created inside the Sun, or in any ordinary star
- This can happen only inside an exploding star (supernova)!
 (Or a kilonova like the one recently observed)
- A supernova must have exploded bilions of years ago whose fragments formed the solar system

Supernovae explode because ... neutrinos push the shock wave from inside!

The second-most abundant particles in the universe

- Cosmic microwave background: 400 photons/ cm³
 Temperature: ∼ 3 K
- Cosmic neutrino background: 300 neutrinos / cm³
 Temperature: ~ 2 K

Even empty space between galaxies is full of neutrinos!

Neutrinos everywhere

Three kinds of neutrinos: ν_{e} ν_{μ} ν_{τ}

Positive particles coming out ⇒ antineutrinos

The Standard Model of Particle Physics

3 neutrinos:

$$\nu_{\rm e}, \nu_{\mu}, \nu_{\tau}$$

- chargeless
- spin 1/2
- almost massless (at least a million times lighter than electrons)
- only weak interactions

Neutrino Physics: an Introduction (Lecture 1)

- Preliminary introduction
- 2 Neutrinos in astrophysics, cosmology, and particle physics
- Oiscoveries of neutrinos and their flavours
- Mass and helicity measurements
- 5 Interactions with matter

The beta decay mystery: 1932

- Nuclear beta decay: X → Y + e⁻
- Conservation of energy and momentum ⇒ Electrons have a fixed energy.
- But:

• Energy-momentum conservation in grave danger !!

A reluctant solution (Pauli): postulate a new particle

Discovery of electron neutrino: 1956

The million-dollar particle

- Reactor neutrinos: $\bar{\nu}_e + p \rightarrow n + e^+$
- $e^+ + e^- \rightarrow \gamma + \gamma$ (0.5 MeV each)
- $n + ^{108}$ Cd $\rightarrow ^{109}$ Cd* $\rightarrow ^{109}$ Cd + γ (delayed)

Reines-Cowan: Nobel prize 1995

The "Who ordered muon neutrino?" mystery: 1962

Muon neutrino: an unexpected discovery

- Neutrinos from pion decay: $\pi^- \to \mu^- + \bar{\nu}$
- Expected: $\bar{\nu} + N \rightarrow N' + e^+$??
- Observed: always a muon, never an electron/positron
- This must be a new neutrino, not $\bar{\nu}_e$, but $\bar{\nu}_\mu$

Steinberger-Schwartz-Lederman Nobel prize 1988

The expected tau discovery

DONUT@Fermilab, 2000: emulsion+calorimeter

DONUT Detector

Combination of many detectors needed

- $\nu_{\tau} \rightarrow \tau$, whose decays need to be observed
- Emulsion + Drift chamber + Calorimeter + Muon chamber

Neutrino Physics: an Introduction (Lecture 1)

- Preliminary introduction
- 2 Neutrinos in astrophysics, cosmology, and particle physics
- Discoveries of neutrinos and their flavours
- Mass and helicity measurements
- Interactions with matter

Direct mass measurement

How do you hold a moonbeam in your hand?

Nuclear beta decay

$$\frac{d\Gamma}{dE_e} \propto \rho_e E_e \rho_\nu E_\nu = \rho_e E_e (E_0 - E_e) \sqrt{(E_0 - E_e)^2 - m_\nu^2}$$

Kurie plot:

$$\left(rac{d\Gamma/dE_e}{p_eE_e}
ight)^{1/2} \propto \left[(E_0-E_e)\sqrt{(E_0-E_e)^2-m_
u^2}
ight]^{1/2}$$

Straight line for a massless neutrino!

Tritium beta decay experiment

- Mainz exeriment: $m_{\nu_e} < 2.2$ eV (95% C.L.)
- Troitsk experiment: $m_{\nu_e} < 2.05$ eV (95% C.L.)
- Next generation expt: KATRIN (reach 0.2 eV)

Muon neutrino mass

• Mass of ν_{μ} decides the energy of μ^{+} .

$$E_{\mu} = rac{m_{\pi}^2 + m_{\mu}^2 - m_{
u}^2}{2m_{\pi}}$$

• Current limit: $m_{\nu_{\mu}} < 170 \text{ keV}$

Helicity

- Spin component along the direction of motion
- If detection itself is so hard, measuring spin would be even harder!
- Need clever experiment, where neutrino does not need to be observed!

Goldhaber experiment

Goldhaber et al, PRL 1957 http://qd.typepad.com/6/2005/01/spinning neutri.html

Implications of Goldhaber's experiment

Neutrinos only have negative helicity

Maximal violation of mirror symmetry (Parity)

Cobalt decay experiment

(Wu et al) BETA RAYS SPINNING COBALT BETA RAYS (ELECTRONS) MIRROR WORLD THIS WORLD

Pion decay experiment

(Garwin, Lederman, Weinrich) $\pi^- \rightarrow \mu^- \rightarrow e^-$

Fig. 1. Experimental arrangement. The magnetizing coil was close wound directly on the carbon to provide a uniform vertical field of 79 gauss per ampere.

Fig. 2. Variation of gated 3-4 counting rate with magnetizing current. The solid curve is computed from an assumed electron angular distribution 1-1 cost, with counter and gate-width resolution folded in.

Neutrino Physics: an Introduction (Lecture 1)

- Preliminary introduction
- 2 Neutrinos in astrophysics, cosmology, and particle physics
- Objective of neutrinos and their flavours
- Mass and helicity measurements
- Interactions with matter

Neutrino Interactions

Only weak interctions (with W and Z bosons)

Interactions with matter through exchange of W and Z

Cross section calculation

 ν interactions in the SM:

CC / NC

with quarks / leptons

Cross sections:

http://cupp.oulu.fi/neutrino/nd-cross.html

Cross section estimation at high energies:

Quasi-elastic and deep inelastic scattering

Cross section in a detector: various processes

Where are we now (at the end of Lecture 1)

- Neutrinos interact extremely weakly
- Neutrino flavours: definitions and discoveries
- Neutrino mass < eV, Neutrino helicity: always negative!