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Neutrino Physics: an Introduction
Lecture 2: Neutrino mixing and oscillations
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Lecture 1: Neutrino detection and basic properties

@ Unique properties
@ Discovery of neutrino flavours
@ Measuring mass, helicity, interactions

Lecture 2: Neutrino mixing and oscillations

@ Solar and atmospheric puzzles and solutions
@ Neutrino mixing, oscillations, flavour conversions
@ The three-neutrino mixing picture

Lecture 3: Neutrinos in astrophysics and cosmology

@ Low-energy (meV) cosmological neutrinos
@ Medium-energy (MeV) supernova neutrinos
@ High-energy (> TeV) astrophysical neutrinos




Neutrino Physics: an Introduction (Lecture 2)

@ Solar and atmospheric neutrino puzzles
e Atmospheric v solution: mixing and vacuum oscillations
© The path to the solution for solar v puzzle

6 The three-neutrino mixing picture



Neutrino Physics: an Introduction (Lecture 2)

0 Solar and atmospheric neutrino puzzles



Neutrinos from the Sun

Hydrogen burning: Proton-Proton Chains
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The solar neutrino spectra
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@ Magnitudes of fluxes depend on details of solar interior
@ Spectral shapes robustly known J




Detecting neutrinos from the Sun

@ The Sun produces ve
@ These v can be detected at Earth: difficult, but possible J

Ve+Cl >Ar+ e e+ Ga—Ge+€e Vgt € — g+ e
Homestake Gallex SuperKamiokande



Seeing the Sun with neutrinos

@ Light from the Sun’s surface:
due to nuclear reactions
millions of years ago

@ Neutrinos from the Sun’s core:
due to nuclear reactions
8 minutes ago

@ We know how much light we get
from the Sun...

@ So we know how many
neutrinos should arrive.

BUT...




really understand how the Sun shines ?
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The solar neutrino puzzle

@ Only about 30%—-50% of neutrinos from the Sun found

@ Different experiments give different neutrino loss...
(They look at different energy ranges, of course..)

@ SuperKamiokande shows similar neutrino loss at all
energies



Possible resolutions of the puzzle

@ The astrophysicists cannot calculate accurately
@ The experimentalists cannot measure accurately

@ Neutrinos behave differently from what everyone thought !

.... remained unresolved for about 40 years !



Neutrino production from cosmic rays
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inos detected in India
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Neutrino production from cosmic rays
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Expected neutrino fluxes at the Earth surface

Comparison of three neutrino flux calculations at Super-K

T
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@ 1, /v, ratio: increases with energy



Expected neutrino fluxes at Earth surface

Compatison of VetV fluxes
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@ v, flux: smaller at larger | cos |
@ However:

FluXcos 9—a = FluXcos 6:—a‘




How to detect v, and v, through Cherenkov cones
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Atmospheric neutrino puzzle
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Atmospheric neutrino puzzle

Zenith angle dependence:
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Preliminary observations from zenith angle data

@ Electron neutrinos match predictions
@ High energy v, from above: match predictions
@ High energy v, through the earth: partially lost

@ Low energy v,: lost even when coming from above, loss
while passing through the Earth even greater



Where are we now

@ About 20 years ago: in the middle of two long-standing
puzzles



Neutrino Physics: an Introduction (Lecture 2)

e Atmospheric v solution: mixing and vacuum oscillations



The breakthrough idea

Bruno Pontecorvo
(original idea suggested for solar neutrinos,
with neutrino-antineutrino mixing.)

B—/M‘fﬂo T o wiesc opdo—

Maybe the neutrino flavours change !
@ All the experiments are looking for ve and v,

@ What if ve / v, are getting converted to v, ?

@ This is possible, but only if the neutrinos have different
masses and they mix !




What is meant by neutrino mixing ?

Neutrino flavours ve, v,,, v do not have fixed masses !!

For example, ve—v, mixing:

I V> = V. sin 0 + W cos O

I VY, = V. cos O+ Vusin©

cos’0 sin’o

@ Only v and v» have fixed masses
(They are eigenstates of energy / eigenstates of evolution)

@ Then, if you produce v, it may be observed as v, !




Effective Hamiltonian for a single neutrino

m? m?
H= \/p2+m2~p+5~p+2E

Schrédinger’s equation:

.d
Mt v(t)) = Hlv(t))
Time evolution:

() = [v(0)e ™

= |(0))e Fle !

@ Simple for a mass eigenstate with fixed momentum !



Time evolution for a flavour eigenstate

@ Initial flavour state |v,):

|Va) = cOSO|v1) + Sinb|vo)

@ State after time ¢:

2

2
va(t)) = cos Bl )e Ple 2t 1 sinb|vy)e Ple izt !

@ “Survival” probability of finding the flavour |v,,) at time t:

P(va — va) = |<Va|7/a(t)>|2



Vacuum oscillations

AmPL
4F

P(vo — va) = 1 — sin? 26 sin? (

Am? =ms — m?
(In Natural units, where c =1 = h)
Amplitude, wavelength:



Neutrino oscillations as a function of distance travelled
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Broad features of atmospheric v data explained

@ Electron neutrinos match predictions
@ High energy v, from above: match predictions
@ High energy v, through the earth: partially lost

@ Low energy v,: lost even when coming from above, loss
while passing through the Earth even greater



The zenith angle dependence (1998) !

Zenith ana(e dependence
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Atmospheric v solution through “vacuum oscillations”

@ Neutrino flavours mix with each other
@ Neutrinos have different masses
@ v, do not participate in the oscillations

y

Neutrino oscillations: v, oscillate into v~

AN : , (AmPL
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Am? =ms — m?
e Measurements can determine sin 20,,,, and Anm2,,.




Confirming from terrestrial experiments
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OPERA experiment for v, appearance

Oscillation Project with Emulsion tRacking Apparatus
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© The path to the solution for solar v puzzle



The breakthrough idea

Bruno Pontecorvo
Original idea with v — 7 mixing

E/V%a Tonwiescopd—

Maybe the neutrino flavours change !

@ All the experiments are looking for ve

@ What if v, are getting converted to other flavours of
neutrinos (v, or v;) ?

@ This is possible, but only if the neutrinos have different
masses and they mix !




Neutrino flavour changes inside the Sun

John Lincoln Stanislav Alexei
Bahcall Wolfenstein ~ Mikheyev Smirnov

@ Bahcall: Calculated the neutrino production inside the Sun
in detalil

@ Wolfenstein: Showed that the neutrino mixing gets affected
by the matter inside the Sun

@ Mikheyev — Smirnov: Showed how these matter effects
affect the neutrino flavour changes




Heavy water Cherenkov experiment: SNO
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Solar neutrino problem settled (2002)

Total Rales: Standard Model vs. Experiment
Bahcall-Pinsonneault 2000

D48 0.02
250:023 0.3520.02
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@ All neutrinos from the Sun are now accounted for !
@ Our understanding of the Sun is vindicated... J




Solution of solar neutrino problem

@ e mixes with v, /v,
There is a “MSW resonance” inside the Sun

@ Survival probability is almost flat for E = 1 MeV:
Pee = sin? 6,
No oscillations observable but “flavour conversions”

@ The measurements can determine sin? Oc

@ To determine Am? accurately, have to conduct terrestrial
experiments (using reactors)



Reactor 7, from KamLAND

R B 45
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@ The oscillations are consistent with vacuum oscillations
@ ... with the same parameters Am? and 6



ve spectrum at KamLAND
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Overlap of solar and KamLAND allowed regions
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Neutrino Physics: an Introduction (Lecture 2)

6 The three-neutrino mixing picture



Assigning Am? values from available data

V1, V2, 3. in decreasing order of v, content J

Solar data

2 _ 2 2 — A2
Amg, = m; —m; = Amg,
@ MSW resonance = Am3, >0

v

Atmospheric data

) AmGy, = m3 — (m3 + m)/2

_ 2
[~ Am31 =mg —m;j

2 — m2 2
@ Ams, = ms — m;

2
atm

@ Sign of AmZ,,, unknown:

Measured quantity P,,, = 1 — sin® 20 sin(Am2,,

2 2
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The two mass orderings / mass hierarchies

Mixing of ve, 1, v; = 11,12, V3 (Mass eigenstates)

EE——— ()’ (m,)’ -
i (am,,
e ° Amgtm ~
2.4 x 1073 eV?
(Amd) Ye (*) Am% ~
wim _5 2
% w75 x107%eV
H v, o ealm ~ 45°
o 9@ ~ 320
(1r12)2 ° ereactor ~ 9°
Ao .
@m)* My’ —



The mixing matrix

Vo = Z UaiVi J
i

Ve Ut U2 Ugs 4!
V;U' = U'u1 U'u,2 Up,3 V2
Vr UT1 U7'2 U7'3 V3

PMNS matrix: elements in general complex

Uy =1



A general parameterization

Upmns =®(x1, X2, X3) R23(023) U13(013, 0) R12(612) P (91, 92, 0) J

0 0 1

elxt 0 0 e 0 0
®(x1x2:xa) = | 0 e 0 ®(p1,¢2,0)=( 0 €% 0

0 0 e'xs

Upmns = Res(023) Usa(013, 6) Riz(612) =

(o

1

0

0 0 C13 0 S136‘_M Ci2 S12 0
Co3  So3 0o 1 0 —S12 Ci2 O
—S23  Co3 *5136”6 0 Ci3 0 0 1

C12C43 S512C13 size™ "
—S812C23 — C123235139 C12Co3 — S12S23513€"° S23C13
512823 — C12023513€‘ —C12823 — 3120233136‘ Co3C13

¢ci = cosb;, sj=sinb;



Oscillation probability and phases

Pap = 6ap — »_ 4Re(agy) Sin®(4j) — 2 Im(Hagy) sin(24)
i<j i<j

Dagij = U Ugi Uy, Ug;

@ No-oscillation term
@ CP-conserving oscillation term
@ CP-violating oscillation term

@ Among the phases, only ¢ appears in oscillation
probabilities

@ Matter effects may change values of mixing elements



Open questions in neutrino oscillation physics

@ Mass ordering: Normal or Inverted ?

@ What are the absolute neutrino masses ?
@ Are there more than 3 neutrinos ?

@ Is there leptonic CP violation ?

@ Can neutrinos be their own antiparticles ?




And how do neutrinos get their mass at all ?

@ In Standard Model of particle physics, the mass arises
from the interaction between a left-handed particle, a
right-handed particle, and Higgs.

For example, e;, er and h come together to give mass to
the electron, which contains both e¢; and eg.

@ But there is no right-handed neutrino !
= Higgs mechanism is not enough

@ There has to be something beyond the Standard Model,
perhaps even beyond our current imagination.



Where are we now (end of Lecture 2)

@ Atmospheric neutrino problem solved through neutrino
mixing and vacuum oscillations

@ Solar neutrino problem solved through neutrino mixing,
and modification of vacuum mixing due to matter

@ Date from neutrino flavour conversion experiments can
fitted into a three-neutrino mixing framework, with the
mising matrix Upmns.
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