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Introduction : Why Exact Chiral Symmetry ?

• Quest for Quark-Gluon Plasma : Heavy Ion Collisions at SPS, RHIC and LHC.

• Lattice QCD a major theoretical tool.
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Introduction : Why Exact Chiral Symmetry ?

• Quest for Quark-Gluon Plasma : Heavy Ion Collisions at SPS, RHIC and LHC.

• Lattice QCD a major theoretical tool.

• Completely parameter-free : ΛQCD and quark masses from hadron spectrum.
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EoS of QGP

• First results from Bielefeld :
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EoS of QGP

• First results from Bielefeld :
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• Recent results for EoS : Nt=6, Smaller quark masses.
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EoS of QGP

• First results from Bielefeld :
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6

3p/T4: Nτ=4
6

Celik, Engels & Satz, PLB129, 323 1983 Cheng et al., Phys. Rev. D77, 014511, 2008.

• Recent results for EoS : Nt=6, Smaller quark masses. Small differences for Nt

= 4 & 6; ε(Tc) ∼ 6T 4
c still.
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Baryon-Strangeness Correlation

♣Correlation between quantum numbers K and L can be studied through the
ratio C(KL)/L = 〈KL〉−〈K〉〈L〉

〈L2〉−〈L〉2 .

♣ These are robust : theoretically & experimentally.
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♣Correlation between quantum numbers K and L can be studied through the
ratio C(KL)/L = 〈KL〉−〈K〉〈L〉

〈L2〉−〈L〉2 .

♣ These are robust : theoretically & experimentally.

♣ Baryon Number(Charge)–Strangeness correlation : C(BS)/S (C(QS)/S) (Koch,

Majumdar and Randurp, PRL 95 (2005); RVG & Sourendu Gupta, PR D 2006; S. Mukherjee, PR D 2007); u-d Correlation.
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Baryon-Strangeness Correlation

♣Correlation between quantum numbers K and L can be studied through the
ratio C(KL)/L = 〈KL〉−〈K〉〈L〉

〈L2〉−〈L〉2 .
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Hadronic Screening Lengths

• DeTar & Kogut (PRD ’87) advocated study of Hadronic Screening Lengths to
explore the large scale composition of QGP : Long-range nonperturbative
effects ?
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Hadronic Screening Lengths

• DeTar & Kogut (PRD ’87) advocated study of Hadronic Screening Lengths to
explore the large scale composition of QGP : Long-range nonperturbative
effects ?

• Their conclusion : Existence of hadronic modes in QGP, unlike expectations
from naive pictures of deconfinement.
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Hadronic Screening Lengths

• DeTar & Kogut (PRD ’87) advocated study of Hadronic Screening Lengths to
explore the large scale composition of QGP : Long-range nonperturbative
effects ?

• Their conclusion : Existence of hadronic modes in QGP, unlike expectations
from naive pictures of deconfinement.

• MTc-collaboration (Born et al. PRL ’89) pointed out that lowest Matsubara frequency
for small Nt is much larger than in continuum =⇒ can explain ρ (N)-screening
mass as that for free qq̄ (qqq)-pair. But µπ was still very different.
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Hadronic Screening Lengths

• DeTar & Kogut (PRD ’87) advocated study of Hadronic Screening Lengths to
explore the large scale composition of QGP : Long-range nonperturbative
effects ?

• Their conclusion : Existence of hadronic modes in QGP, unlike expectations
from naive pictures of deconfinement.

• MTc-collaboration (Born et al. PRL ’89) pointed out that lowest Matsubara frequency
for small Nt is much larger than in continuum =⇒ can explain ρ (N)-screening
mass as that for free qq̄ (qqq)-pair. But µπ was still very different.

• Is π really different in QGP ? or are there “artifacts” of lattice formulation
dominating it ?
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• Similar results for Nf = 0 (quenched), 2 and 4 flavours of dynamical quarks.
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• Similar results for Nf = 0 (quenched), 2 and 4 flavours of dynamical quarks.

• Type of quarks ? Fermions on lattice have a well-known “No-Go” theorem due
to Nielsen-Ninomiya :
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• Similar results for Nf = 0 (quenched), 2 and 4 flavours of dynamical quarks.

• Type of quarks ? Fermions on lattice have a well-known “No-Go” theorem due
to Nielsen-Ninomiya : Popular choices

– Wilson Fermions – Break all chiral symmetries.
– Kogut-Susskind Fermions – Have some chiral symmetry but break flavour

symmetry.
– Overlap Fermions – both correct chiral and flavour symmetry on lattice.
– Domain Wall Fermions – small violations of chiral symmetry [∼ exp(−L5)]

with exact flavour symmetry on lattice.
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Overlap Compared with Staggered Fermions

♣ Local masses [∼ ln(C(r)/C(r + 1)] show nice plateau behaviour for pi & rho
for Overlap (left) unlike staggered (right) fermions.

Gavai, Gupta, Lacaze PRD 2008 Gavai, Gupta PRD 2002
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Overlap Compared with Wilson Fermions

♣ Wilson Fermions (Figure from PoS Lattice 2005, 164. (Bielefeld Group). Nice
plateau behaviour for Overlap fermions (Gavai, Gupta, Lacaze PRD 2008).
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Screening Masses Compared

♣ The pionic screening length shows significant a2 corrections for staggered (left)
unlike Overlap (right) fermions.

Gavai, Gupta PRD 2002 Gavai, Gupta, Lacaze PRD 2008
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QCD Phase diagram

♠ Another fundamental aspect – Critical Point in T -µB plane; based on
symmetries and models.
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QCD Phase diagram

♠ Another fundamental aspect – Critical Point in T -µB plane; based on
symmetries and models.

Expected QCD Phase Diagram

From Rajagopal-Wilczek Review
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QCD Phase diagram

♠ Another fundamental aspect – Critical Point in T -µB plane; based on
symmetries and models.

Expected QCD Phase Diagram

From Rajagopal-Wilczek Review

... but could, however, be ...

Τ
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QCD Phase diagram

♠ Another fundamental aspect – Critical Point in T -µB plane; based on
symmetries and models.

Expected QCD Phase Diagram

From Rajagopal-Wilczek Review

... but could, however, be ...

Τ

McLerran-

Pisarski 2007
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Overlap & Domain Wall Fermions

♠ Exact chiral invariance for a lattice fermion operator D is assured if it satisfies
the Ginsparg-Wilson relation : {γ5, D} = aDγ5D.
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Overlap & Domain Wall Fermions

♠ Exact chiral invariance for a lattice fermion operator D is assured if it satisfies
the Ginsparg-Wilson relation : {γ5, D} = aDγ5D.

♠ In particular, the chiral transformations (Lüscher, PLB 1999) δψ = αγ5(1− a
2D)ψ and

δψ̄ = αψ̄(1− a
2D)γ5, leave the action S =

∑
ψ̄Dψ invariant:

δS = α
∑
x,y

ψ̄x

[
γ5D +Dγ5 −

a

2
Dγ5D −

a

2
Dγ5D

]
xy
ψy = 0 (1)
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Overlap & Domain Wall Fermions

♠ Exact chiral invariance for a lattice fermion operator D is assured if it satisfies
the Ginsparg-Wilson relation : {γ5, D} = aDγ5D.

♠ In particular, the chiral transformations (Lüscher, PLB 1999) δψ = αγ5(1− a
2D)ψ and

δψ̄ = αψ̄(1− a
2D)γ5, leave the action S =

∑
ψ̄Dψ invariant:

δS = α
∑
x,y

ψ̄x

[
γ5D +Dγ5 −

a

2
Dγ5D −

a

2
Dγ5D

]
xy
ψy = 0 (1)

♠ Overlap fermions, and Domain Wall fermions in the limit of large fifth
dimension satisfy this relation.
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Overlap-Dirac Operator

♠ Neuberger (PLB 1998) proposed the overlap-Dirac operator :

aD = 1 +A(A†A)−1/2 = 1 + γ5 sign(γ5A) with A = aDw, (2)
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Overlap-Dirac Operator

♠ Neuberger (PLB 1998) proposed the overlap-Dirac operator :

aD = 1 +A(A†A)−1/2 = 1 + γ5 sign(γ5A) with A = aDw, (2)

♠ Here Dw is the Wilson-Dirac Operator given by,

aDw =
1
2
{γµ(∂∗µ + ∂µ)− a∂∗µ∂µ}+M, (3)

with −2 < M < 0 and ∂µ and ∂∗µ as forward and backward gauge-invariant
difference operators. An extra a/a4 factor for µ = 4 at T 6= 0.
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Overlap-Dirac Operator

♠ Neuberger (PLB 1998) proposed the overlap-Dirac operator :

aD = 1 +A(A†A)−1/2 = 1 + γ5 sign(γ5A) with A = aDw, (2)

♠ Here Dw is the Wilson-Dirac Operator given by,

aDw =
1
2
{γµ(∂∗µ + ∂µ)− a∂∗µ∂µ}+M, (3)

with −2 < M < 0 and ∂µ and ∂∗µ as forward and backward gauge-invariant
difference operators. An extra a/a4 factor for µ = 4 at T 6= 0.

♠ quark with a mass : D(ma) = ma+ (1−ma/2)D
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Domain Wall Fermions
♠ Proposed by Kaplan (PLB 1992), a convenient form for Domain Wall fermion
action (Shamir, NPB, 1993) is:

SF =
N5∑

s,s′=1

∑
x,x′

ψ̄(x, s)Ddw(x, s;x′, s′)ψ(x′, s′) , (4)
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Domain Wall Fermions
♠ Proposed by Kaplan (PLB 1992), a convenient form for Domain Wall fermion
action (Shamir, NPB, 1993) is:

SF =
N5∑

s,s′=1

∑
x,x′

ψ̄(x, s)Ddw(x, s;x′, s′)ψ(x′, s′) , (4)

where Ddw is defined in terms of Dw as

Ddw(x, s;x′, s′) = [a5Dw + 1]δs,s′ − [P−δs,s′−1 + P+δs,s+1′] , (5)

with boundary conditions P+ψ(x, 0) = −am P+ψ(x,N5) and
P−ψ(x,N5 + 1) = −am P−ψ(x, 1).
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Domain Wall Fermions
♠ Proposed by Kaplan (PLB 1992), a convenient form for Domain Wall fermion
action (Shamir, NPB, 1993) is:

SF =
N5∑

s,s′=1

∑
x,x′

ψ̄(x, s)Ddw(x, s;x′, s′)ψ(x′, s′) , (4)

where Ddw is defined in terms of Dw as

Ddw(x, s;x′, s′) = [a5Dw + 1]δs,s′ − [P−δs,s′−1 + P+δs,s+1′] , (5)

with boundary conditions P+ψ(x, 0) = −am P+ψ(x,N5) and
P−ψ(x,N5 + 1) = −am P−ψ(x, 1).

♠ Only light modes attached to the wall(s) are physical. Divide out heavy modes
by having the Ddw(am)/Ddw(am = 1) as the effective Domain Wall operator in
Z.
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♥ As outlined in Chiu, hep-lat/0303008, one can integrate out the fermionic fields
in the fifth direction to rewrite the above ratio as

[(1 + am)− (1− am)γ5tanh(
N5

2
lnT )] , (6)

with T = (1 + a5γ5DwP+)−1(1− a5γ5DwP−).
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♥ As outlined in Chiu, hep-lat/0303008, one can integrate out the fermionic fields
in the fifth direction to rewrite the above ratio as

[(1 + am)− (1− am)γ5tanh(
N5

2
lnT )] , (6)

with T = (1 + a5γ5DwP+)−1(1− a5γ5DwP−).

♥ Taking the limit N5 →∞ for a5 = 1, one obtains sign function of log T ,
proving that the DWF satisfy the Ginsparg-Wilson relation in this limit.

♥ Taking the limit a5 → 0 such that L5 = a5N5 = constant, one can show
N5 lnT → L5γ5Ddw. Further, for L5 →∞, DWF reduce to the overlap fermions.

♥ We use this form in our numerical work.
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Introducing Chemical Potential

• Ideally, one should construct the conserved charge as a first step.

• Non-locality makes it difficult, even non-unique (Mandula, 2007).
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Introducing Chemical Potential

• Ideally, one should construct the conserved charge as a first step.

• Non-locality makes it difficult, even non-unique (Mandula, 2007).

• Simpler alternative : Dw → Dw(aµ) by K(aµ) = exp(aµ) and
L(aµ) = exp(−aµ) in positive/negative time direction respectively. (Bloch and
Wettig, PRL 2006).
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Introducing Chemical Potential

• Ideally, one should construct the conserved charge as a first step.

• Non-locality makes it difficult, even non-unique (Mandula, 2007).

• Simpler alternative : Dw → Dw(aµ) by K(aµ) = exp(aµ) and
L(aµ) = exp(−aµ) in positive/negative time direction respectively. (Bloch and
Wettig, PRL 2006).

• Note γ5Dw(aµ) is no longer hermitian, requiring an extension of the sign
function : For complex λ = (x+ iy), sign(λ) = sign (x).
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Introducing Chemical Potential

• Ideally, one should construct the conserved charge as a first step.

• Non-locality makes it difficult, even non-unique (Mandula, 2007).

• Simpler alternative : Dw → Dw(aµ) by K(aµ) = exp(aµ) and
L(aµ) = exp(−aµ) in positive/negative time direction respectively. (Bloch and
Wettig, PRL 2006).

• Note γ5Dw(aµ) is no longer hermitian, requiring an extension of the sign
function : For complex λ = (x+ iy), sign(λ) = sign (x).

• Gattringer-Liptak, PRD 2007, showed numerically that this has no µ2

divergences for the free case (U =1) and with M = 1.
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• We show this to be true analytically and for all M as well. Furthermore, this
holds for all functions such that K(aµ) · L(aµ) = 1. (Banerjee, Gavai, Sharma,
PRD 2008)
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• We show this to be true analytically and for all M as well. Furthermore, this
holds for all functions such that K(aµ) · L(aµ) = 1. (Banerjee, Gavai, Sharma,
PRD 2008)

• We claim that chiral invariance is lost for nonzero µ, since

δS = α
∑
x,y

ψ̄x

[
γ5D(aµ)+D(aµ)γ5−

a

2
D(0)γ5D(aµ)−a

2
D(aµ)γ5D(0)

]
xy
ψy ,

(7)
under Lüscher’s chiral transformations.
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• We show this to be true analytically and for all M as well. Furthermore, this
holds for all functions such that K(aµ) · L(aµ) = 1. (Banerjee, Gavai, Sharma,
PRD 2008)

• We claim that chiral invariance is lost for nonzero µ, since

δS = α
∑
x,y

ψ̄x

[
γ5D(aµ)+D(aµ)γ5−

a

2
D(0)γ5D(aµ)−a

2
D(aµ)γ5D(0)

]
xy
ψy ,

(7)
under Lüscher’s chiral transformations.

• However, the sign function definition above merely ensures

γ5D(aµ) +D(aµ)γ5 − a D(aµ)γ5D(aµ) = 0 , (8)

which is not sufficient to make δS = 0.
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• We show this to be true analytically and for all M as well. Furthermore, this
holds for all functions such that K(aµ) · L(aµ) = 1. (Banerjee, Gavai, Sharma,
PRD 2008)

• We claim that chiral invariance is lost for nonzero µ, since

δS = α
∑
x,y

ψ̄x

[
γ5D(aµ)+D(aµ)γ5−

a

2
D(0)γ5D(aµ)−a

2
D(aµ)γ5D(0)

]
xy
ψy ,

(7)
under Lüscher’s chiral transformations.

• However, the sign function definition above merely ensures

γ5D(aµ) +D(aµ)γ5 − a D(aµ)γ5D(aµ) = 0 , (8)

which is not sufficient to make δS = 0. True for both Overlap and Domain
Wall fermions and any K,L.
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Our Results

• We investigated thermodynamics of free overlap and domain wall fermions with
an aim to examine the continuum limit analytically and numerically.

• Analytic efforts to prove absence of µ2-divergences for general K and L.
Numerical results to tune the irrelevant parameter M to obtain small deviations
from continuum limit on coarse lattices.

RIKEN Lunch Seminar, Physics Department, BNL, June 26, 2008 R. V. Gavai Top 17



Our Results

• We investigated thermodynamics of free overlap and domain wall fermions with
an aim to examine the continuum limit analytically and numerically.

• Analytic efforts to prove absence of µ2-divergences for general K and L.
Numerical results to tune the irrelevant parameter M to obtain small deviations
from continuum limit on coarse lattices.

• Energy density and pressure can be obtained from lnZ = ln det Dov by taking
T and V , or equivalently a4 and a, partial derivatives.

RIKEN Lunch Seminar, Physics Department, BNL, June 26, 2008 R. V. Gavai Top 17



Our Results

• We investigated thermodynamics of free overlap and domain wall fermions with
an aim to examine the continuum limit analytically and numerically.

• Analytic efforts to prove absence of µ2-divergences for general K and L.
Numerical results to tune the irrelevant parameter M to obtain small deviations
from continuum limit on coarse lattices.

• Energy density and pressure can be obtained from lnZ = ln det Dov by taking
T and V , or equivalently a4 and a, partial derivatives.

• Dirac operator is diagonal in momentum space. Use its eigenvalues to compute
Z.

• Easy to show that ε = 3P for all a and a4.
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• I will show results for ε/εSB which is also P/PSB.

RIKEN Lunch Seminar, Physics Department, BNL, June 26, 2008 R. V. Gavai Top 18



• I will show results for ε/εSB which is also P/PSB.

• Hiding pi-dependence in terms of known functions g, d and f , the energy
density on an N3 ×NT lattice is found to be

εa4 =
2

N3NT

∑
pi,n

[
(g + cosωn) +

√
d+ 2g cosωn

]
×

[
(1− cosωn)
d+ 2g cosωn

+
sin2 ωn(g + cosωn)

(d+ 2g cosωn)(f + sin2 ωn)

]
. (9)

where ωn are the Matsubara frequencies.
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• I will show results for ε/εSB which is also P/PSB.

• Hiding pi-dependence in terms of known functions g, d and f , the energy
density on an N3 ×NT lattice is found to be

εa4 =
2

N3NT

∑
pi,n

[
(g + cosωn) +

√
d+ 2g cosωn

]
×

[
(1− cosωn)
d+ 2g cosωn

+
sin2 ωn(g + cosωn)

(d+ 2g cosωn)(f + sin2 ωn)

]
. (9)

where ωn are the Matsubara frequencies.

• Can be evaluated using the standard contour technique or numerically.

• Continuum limit of the contour result shown to be εSB.
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Numerical Evaluation

♣ Zero temperature contribution : as NT →∞, ω sum becomes integral which
we estimated numerically.
♣ Continuum limit by holding ζ = N/NT = LT fixed and increasing NT .
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Numerical Evaluation

♣ Zero temperature contribution : as NT →∞, ω sum becomes integral which
we estimated numerically.
♣ Continuum limit by holding ζ = N/NT = LT fixed and increasing NT .
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Approach to SB-Limit
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♥ Results for M = 1 agree with Hegde et al. ; Smaller corrections than for
Staggered or Wilson fermions.
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Approach to SB-Limit
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2)

Banerjee, Gavai & Sharma , arXiv:0803.3925 Hegde, Karsch, Laermann & and Shcheredin, arXiv:0801.4883

♥ Results for M = 1 agree with Hegde et al. ; Smaller corrections than for
Staggered or Wilson fermions.

♥ 1.50 ≤M ≤ 1.60 seems optimal, with 2-3 % deviations already for NT = 12.
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Domain Wall Fermions
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♦ L5 ≥ 14 seems to be large enough to get L5-independent results.

RIKEN Lunch Seminar, Physics Department, BNL, June 26, 2008 R. V. Gavai Top 21



Domain Wall Fermions

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0  0.005  0.01  0.015  0.02  0.025  0.03

ε/
ε S

B

1/NT
2

M=1.55,ζ= 4
20
18
16
14
12
10
6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0  0.005  0.01  0.015  0.02  0.025  0.03

ε/
ε S

B

1/NT
2

L5=14,ζ= 4
M=1.00
M=1.45
M=1.50
M=1.55
M=1.60
M=1.65

Rajiv V. Gavai and Sayantan Sharma, in preparation.

♦ L5 ≥ 14 seems to be large enough to get L5-independent results.

♦ Optimal range again seems to be 1.50 ≤M ≤ 1.60; M = 1.9 used by Chen et
al. (PRD 2001) in their study of order paraemters of FTQCD.
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T = 0, µ 6= 0
• Doing the contour integral, the energy density turns out to be :

εa4 = (πN3)−1
∑

pj

[
2πRes F (R,ω)Θ

(
K(aµ)− L(aµ)− 2

√
f
)

+
∫ π

−π
F (R,ω)dω −

∫ π

−π
F (1, ω)dω

]
.
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T = 0, µ 6= 0
• Doing the contour integral, the energy density turns out to be :

εa4 = (πN3)−1
∑

pj

[
2πRes F (R,ω)Θ

(
K(aµ)− L(aµ)− 2

√
f
)

+
∫ π

−π
F (R,ω)dω −

∫ π

−π
F (1, ω)dω

]
.

• R = K(aµ) · L(aµ) = 1 ensures cancellation of the last two terms and the
canonical result in the continuum limit a→ 0.
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T = 0, µ 6= 0
• Doing the contour integral, the energy density turns out to be :

εa4 = (πN3)−1
∑
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(
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)
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F (R,ω)dω −

∫ π

−π
F (1, ω)dω

]
.

• R = K(aµ) · L(aµ) = 1 ensures cancellation of the last two terms and the
canonical result in the continuum limit a→ 0.

• If R 6= 1, one has a µ2 divergence in the continuum limit as well as violation of
Fermi surface since ε 6= 0 for any µ.
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T = 0, µ 6= 0
• Doing the contour integral, the energy density turns out to be :

εa4 = (πN3)−1
∑

pj

[
2πRes F (R,ω)Θ

(
K(aµ)− L(aµ)− 2

√
f
)

+
∫ π

−π
F (R,ω)dω −

∫ π

−π
F (1, ω)dω

]
.

• R = K(aµ) · L(aµ) = 1 ensures cancellation of the last two terms and the
canonical result in the continuum limit a→ 0.

• If R 6= 1, one has a µ2 divergence in the continuum limit as well as violation of
Fermi surface since ε 6= 0 for any µ.

• K and L should be such that K(aµ)− L(aµ) = 2a µ+O(a3) with
K(0) = 1 = L(0).
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T = 0, µ 6= 0
• Doing the contour integral, the energy density turns out to be :

εa4 = (πN3)−1
∑

pj

[
2πRes F (R,ω)Θ

(
K(aµ)− L(aµ)− 2

√
f
)

+
∫ π

−π
F (R,ω)dω −

∫ π

−π
F (1, ω)dω

]
.

• R = K(aµ) · L(aµ) = 1 ensures cancellation of the last two terms and the
canonical result in the continuum limit a→ 0.

• If R 6= 1, one has a µ2 divergence in the continuum limit as well as violation of
Fermi surface since ε 6= 0 for any µ.

• K and L should be such that K(aµ)− L(aµ) = 2a µ+O(a3) with
K(0) = 1 = L(0).

• Generalization to T 6= 0 and µ 6= 0 case straightforward. One merely needs two
different contours depending on pole locations and value of θ.
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Numerical Evaluation
♦ Two Observables : ∆ε(µ, T ) = ε(µ, T )− ε(0, T ) and Susceptibility,
∼ ∂2 lnZ/∂µ2.

RIKEN Lunch Seminar, Physics Department, BNL, June 26, 2008 R. V. Gavai Top 23



Numerical Evaluation
♦ Two Observables : ∆ε(µ, T ) = ε(µ, T )− ε(0, T ) and Susceptibility,
∼ ∂2 lnZ/∂µ2.

♦ For odd NT and large enough µ the sign function is undefined as an eigenvalue
becomes pure imaginary.
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Numerical Evaluation
♦ Two Observables : ∆ε(µ, T ) = ε(µ, T )− ε(0, T ) and Susceptibility,
∼ ∂2 lnZ/∂µ2.

♦ For odd NT and large enough µ the sign function is undefined as an eigenvalue
becomes pure imaginary.

♦ Former computed for two r = µ/T = 0.5 and 0.8 while latter for µ = 0
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Numerical Evaluation
♦ Two Observables : ∆ε(µ, T ) = ε(µ, T )− ε(0, T ) and Susceptibility,
∼ ∂2 lnZ/∂µ2.

♦ For odd NT and large enough µ the sign function is undefined as an eigenvalue
becomes pure imaginary.

♦ Former computed for two r = µ/T = 0.5 and 0.8 while latter for µ = 0
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♥ Susceptibility too behaves the same way as the energy density.
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♥ Susceptibility too behaves the same way as the energy density.

♥ Again 1.50 ≤M ≤ 1.60 seems optimal, with 2-3 % deviations already for
NT = 12.
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Summary

• Exact chiral symmetry without violation of flavour symmetry important for
many studies on lattice, especially for the critical point and the QCD phase
diagram in µ–T plane.

• Overlap and Domain wall fermions lose their chiral invariance on introduction
of chemical potential in the Bloch-Wettig method and its generalizations.
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Summary

• Exact chiral symmetry without violation of flavour symmetry important for
many studies on lattice, especially for the critical point and the QCD phase
diagram in µ–T plane.

• Overlap and Domain wall fermions lose their chiral invariance on introduction
of chemical potential in the Bloch-Wettig method and its generalizations.

• However, any µ2-divergence in the continuum limit is avoided for it and an
associated general class of functions K(µ) and L(µ) with K(µ) · L(µ) = 1.

• For the choice of 1.5 ≤M ≤ 1.6, both the energy density and the quark
number susceptibility computed for µ = 0 exhibited the smallest deviations
from the ideal gas limit for NT ≥ 12.
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Analytic Evaluation
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• Poles at ω = ±i sinh−1√f
and Poles (branch points) at
±i cosh−1 d

2g.
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• Poles at ω = ±i sinh−1√f
and Poles (branch points) at
±i cosh−1 d

2g.

• Evaluating integrals, εa4 =
4N−3

∑
pj

[√
f/1 + f

]
[exp(NT sinh−1√f) + 1]−1
+ε3 + ε4 , where f =∑

i sin
2(api).
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• Poles at ω = ±i sinh−1√f
and Poles (branch points) at
±i cosh−1 d

2g.

• Evaluating integrals, εa4 =
4N−3

∑
pj

[√
f/1 + f

]
[exp(NT sinh−1√f) + 1]−1
+ε3 + ε4 , where f =∑

i sin
2(api).

• Can be seen to go to εSB as
a→ 0 for all M.
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More Details : T = 0, µ 6= 0

• Defining K(µ) + L(µ) = 2R cosh θ and K(µ)− L(µ) = 2R sinh θ, the same
treatment as above goes through by substituting sinωn → R sin(ωn − iθ) and
cosωn → R cos(ωn − iθ).
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More Details : T = 0, µ 6= 0

• Defining K(µ) + L(µ) = 2R cosh θ and K(µ)− L(µ) = 2R sinh θ, the same
treatment as above goes through by substituting sinωn → R sin(ωn − iθ) and
cosωn → R cos(ωn − iθ).

• Energy density is also functionally the same with F (ωn) → F (R,ωn − iθ).

• Additional observable, number density : Has the same pole structure so similar
computation.
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