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Introduction

• Oft-quoted motivations for LHC are :

– Origin of (visible) mass
– Standard Model tested precisely and understood well but Physics beyond it

has to exist for . . .
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Introduction

• Oft-quoted motivations for LHC are :

– Origin of (visible) mass
– Standard Model tested precisely and understood well but Physics beyond it

has to exist for . . .

• Correct but not completely !

– Even if Higgs is found, mu,d can be understood only if gqqH ∼ 10−6 is
experimentally established.

– But QCD uniquely has very high interaction (binding) energies. E.g.,
MProton � (2mu +md), by a factor of 100 → Understanding it is knowing
where the Visible mass of Universe comes from.
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Quantum Chromo Dynamics (QCD)

• Gluons carry colour charge & hence interact amongst themselves.

• While QCD is similar to QED, both are gauge theories, Unlike QED, its
coupling is usually very large.
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Quantum Chromo Dynamics (QCD)

• Gluons carry colour charge & hence interact amongst themselves.

• While QCD is similar to QED, both are gauge theories, Unlike QED, its
coupling is usually very large.

• “Precision Tests” experimentally only at small couplings: Rare events.

• Much richer structure : Quark Confinement, Dynamical Symmetry Breaking..

• Non-perturbative techniques needed for real precision tests of QCD.

• QCD too complex  Simple models based on underlying symmetries are often
epmloyed, making them a weak link in precision tests : BSM physics may show
up in non-perturbative QCD beyond these models.
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Total Cross Section at LHC

Predicted σtot = 125± 25 mb !
P. V. Landshoff, arXiv 0709.0395
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Total Cross Section at LHC

Predicted σtot = 125± 25 mb !
P. V. Landshoff, arXiv 0709.0395

These Regge Models can explain the Q2-variation of F2 as well.
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Basic Lattice QCD
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• Discrete space-time : Lattice
spacing a UV Cut-off.
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• Gauge transform Vx ∈ SU(3)
⇒ ψ′(x) = Vxψ(x),
U ′

µ(x) = VxUµ(x)V −1
x+µ̂ .

• Gauge invariance : Actions
from Closed Wilson loops,
e.g., plaquette.
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• Discrete space-time : Lattice
spacing a UV Cut-off.

• Quark fields ψ(x), ψ̄(x) on
lattice sites.

• Gluon Fields on links : Uµ(x)

• Gauge transform Vx ∈ SU(3)
⇒ ψ′(x) = Vxψ(x),
U ′

µ(x) = VxUµ(x)V −1
x+µ̂ .

• Gauge invariance : Actions
from Closed Wilson loops,
e.g., plaquette.

• Fermion Actions : Staggered,
Wilson, Overlap..
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Typically, we need to evaluate

〈Θ(mv)〉 =

∫
DU exp(−SG)Θ(mv) Det M(ms)∫

DU exp(−SG) Det M(ms)
, (1)

where M is the Dirac matrix in x, colour, spin, flavour space for fermions of mass
ms, SG is the gluonic action, and the observable Θ may contain fermion
propagators of mass mv.
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, (1)

where M is the Dirac matrix in x, colour, spin, flavour space for fermions of mass
ms, SG is the gluonic action, and the observable Θ may contain fermion
propagators of mass mv.

Lattice scaffolding must be removed : Continuum limit a→ 0.
 Computer Simulations, 〈Θ〉 is computed by averaging over a set of
configurations {Uµ(x)} which occur with probability ∝ exp(−SG) ·Det M .
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Typically, we need to evaluate

〈Θ(mv)〉 =

∫
DU exp(−SG)Θ(mv) Det M(ms)∫

DU exp(−SG) Det M(ms)
, (1)

where M is the Dirac matrix in x, colour, spin, flavour space for fermions of mass
ms, SG is the gluonic action, and the observable Θ may contain fermion
propagators of mass mv.

Lattice scaffolding must be removed : Continuum limit a→ 0.
 Computer Simulations, 〈Θ〉 is computed by averaging over a set of
configurations {Uµ(x)} which occur with probability ∝ exp(−SG) ·Det M .

Complexity of evaluation of Det M =⇒ approximations : Quenched ( ms = ∞
limit) and Full ( low ms = mu = md ).

Q → Full  Computer time ↑ and Precision ↓.
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♥ Baryon mass comes
out (almost) right.
(From CP-PACS Collaboration, Japan)
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♥ Baryon mass comes
out (almost) right.
(From CP-PACS Collaboration, Japan)

♥ Massless quarks
acquire mass
dynamically :
Vacuum breaks
Chiral Symmetry,
i.e, 〈ψ̄ψ〉 6= 0.

♥ Goldstone nature of
Pion established:
m2

π ∝ mq.
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Dynamical 2+1 QCD : N. Ukita et al. [arXiv 0710.3462]
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Non-perturbative Test : QCD Phase Diagram

• At very high temperatures/densities, QCD simplifies (Asymptotic Freedom).
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• Quark-Gluon Plasma, such a new phase, expected in Relativistic Heavy Ion
Collisions.

• Color Superconductivity another phase, may exist in very dense stars.
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• Quark-Gluon Plasma, such a new phase, expected in Relativistic Heavy Ion
Collisions.

• Color Superconductivity another phase, may exist in very dense stars.

• From first principles — Z = Tr exp[−β(Hqcd − µBN)].

• Re-write Z as a path integral over fields & use Lattice Techniques : β →∞
corresponds to the canonical lattice QCD computations mentioned earlier.

• QCD defined on a space time lattice – Best and Most Reliable way to extract
Predictions for non-perturbative physics.

• Lattice ideal tool to establish the phase diagram and properties of the phases.
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Lattice QCD : What it can do
• Transition temperature, Critical energy density, Order of Phase Transition,

Properties of QGP (EoS, Excitation types, Screening..)
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Lattice QCD : What it can do
• Transition temperature, Critical energy density, Order of Phase Transition,

Properties of QGP (EoS, Excitation types, Screening..)

• Completely parameter-free : ΛQCD and quark masses from hadron spectrum.

Need Ns � Nt for thermodynamic limit and large Nt for continuum limit.
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Symmetries and Order Parameters

• QCD with Nf flavours of mass mf has SU(Nf)× SU(Nf) chiral symmetry for
mf = 0 and a global Z(3) symmetry for mf →∞.
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Symmetries and Order Parameters

• QCD with Nf flavours of mass mf has SU(Nf)× SU(Nf) chiral symmetry for
mf = 0 and a global Z(3) symmetry for mf →∞.

• Chiral Symmetry is broken for low T but may be restored at high T in a phase
transition : 〈ψ̄ψ〉 — Chiral Condensate is the order parameter.

• Z(3) is good at low T but may be broken at high T : 〈L〉 — Polyakov loop is
the order parameter for deconfinement since 〈L〉 ∼ exp(−FQ(T )/T ).

• Real world with 2 light + 1 moderately heavy flavours. Both symmetries not
exact but the order parameters may still act as beacons for transitions.
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Results for QCD at T 6= 0

• The Transition Temperature Tc ∼ 185 MeV, and Equation of State (EOS) have
been predicted by lattice QCD.
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Results for QCD at T 6= 0

• The Transition Temperature Tc ∼ 185 MeV, and Equation of State (EOS) have
been predicted by lattice QCD.
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F. Karsch, Lattice 2007, arxiv:0711.0661.
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EoS of QGP

– First results from Bielefeld :
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EoS of QGP

– First results from Bielefeld :

Celik, Engels & Satz, PLB129, 323 1983 Bernard et al., MILC, Phys. Rev. D75 (2007).

– Recent results for EoS : Nt=6, Smaller quark masses.
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EoS of QGP

– First results from Bielefeld :

Celik, Engels & Satz, PLB129, 323 1983 Bernard et al., MILC, Phys. Rev. D75 (2007).

– Recent results for EoS : Nt=6, Smaller quark masses. Small differences for Nt

= 4 & 6; ε(Tc) ∼ 6T 4
c still. Too small volumes −→ Thermodynamic Limit ?
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(RVG, S. Gupta and S. Mukherjee, hep-lat/0506015)

♠ Cv ∼ 4ε for 2Tc but No Ideal Gas limit.
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(RVG, S. Gupta and S. Mukherjee, hep-lat/0506015)

♠ Cv ∼ 4ε for 2Tc but No Ideal Gas limit.

♠ Entropy agrees with strong coupling SYM prediction (Gubser, Klebanov & Tseytlin, NPB ’98,

202) for T = 1.5− 3Tc but fails at lower T , as do various weak coupling schemes
: s

s0
= f(g2Nc), where f(x) = 3

4 + 45
32ζ(3)x−3/2 + · · · and s0 = 2

3π
2N2

cT
3.
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Weak Coupling
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♣ Re-summed weak coupling explains lattice results.
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♣ Re-summed weak coupling explains lattice results.

♣ So does dimensional reduction (Kajantie et al, Vourinen)
♣ Quasiparticle, PNJL models (Kampfer et al., Wiese et al.).
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Shear Viscosity
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∗ Kubo’s Linear Response
Theory : Transport
Coefficients in terms of
equilibrium correlation
functions.

∗ Obtain Energy-Momentum
Correlation functions
on Lattice (at discrete
Matsubara frequencies).

∗ Continue them to get
Retarded ones  Shear,
Bulk Viscosities.
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Nakamura and Sakai, PRL 94 (2005).

∗ Kubo’s Linear Response
Theory : Transport
Coefficients in terms of
equilibrium correlation
functions.

∗ Obtain Energy-Momentum
Correlation functions
on Lattice (at discrete
Matsubara frequencies).

∗ Continue them to get
Retarded ones  Shear,
Bulk Viscosities.

∗ Larger lattices and inclusion
of dynamical quarks in
future.
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Baryon-Strangeness Correlation

♣Correlation between quantum numbers K and L can be studied through the
ratio C(KL)/L = 〈KL〉−〈K〉〈L〉

〈L2〉−〈L〉2 .

♣ These are robust : theoretically & experimentally.
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〈L2〉−〈L〉2 .

♣ These are robust : theoretically & experimentally.

♣ Baryon Number(Charge)–Strangeness correlation : C(BS)/S (C(QS)/S) (Koch,

Majumdar and Randurp, PRL 95 (2005); RVG & Sourendu Gupta, PR D 2006; S. Mukherjee, hep-lat/0606018); u-d
Correlation.
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• Other quantities: notably the Wróblewski Parameter λs for Heavy Ion Physics.

From Strings to LHC II – Advanced School, Fireflies Ashram, Bangalore, December 11, 2007 R. V. Gavai Top 21
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• λs — Measure of Production of strange quark-antiquark pairs; Expts agree
with estimates from the new state Quark-Gluon Plasma.
— Lattice QCD suggests that strangeness carried by quark-like objects
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• λs — Measure of Production of strange quark-antiquark pairs; Expts agree
with estimates from the new state Quark-Gluon Plasma.
— Lattice QCD suggests that strangeness carried by quark-like objects

0.2 0.4 0.6 0.8 1
λs

AGS Si-Au

AGS Au-Au

SpS Pb-Pb

SpS S-Ag

SpS S-S

RHIC Au-Au

Quenched QCD (T  )c

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2  2.5  3

sλ

T/Tc

Nt = 4
Nf = 2 QCD

Gavai and Gupta, Phys Rev D65, 2002 and Phys.Rev. D73, 2006.
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QCD Critical Point

• New conceptual problems at nonzero baryon density, i.e., nonzero baryonic
chemical potential, µB : Fermion determinant becomes complex, known
analytical/numerical methods fail.

• Fermion Sign (Phase) Problem.
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QCD Critical Point

• New conceptual problems at nonzero baryon density, i.e., nonzero baryonic
chemical potential, µB : Fermion determinant becomes complex, known
analytical/numerical methods fail.

• Fermion Sign (Phase) Problem.

• Tremendous progress recently. BUT, still unable to address the very high
density and low temperature regions of colour superconductivity.

– Two parameter Re-weighting (Z. Fodor & S. Katz, JHEP 0203 (2002) 014 ).
– Imaginary Chemical Potential (Ph. de Frocrand & O. Philipsen, NP B642 (2002) 290; M.-P. Lombardo & M.

D’Elia PR D67 (2003) 014505 ).
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QCD Critical Point

• New conceptual problems at nonzero baryon density, i.e., nonzero baryonic
chemical potential, µB : Fermion determinant becomes complex, known
analytical/numerical methods fail.

• Fermion Sign (Phase) Problem.

• Tremendous progress recently. BUT, still unable to address the very high
density and low temperature regions of colour superconductivity.

– Two parameter Re-weighting (Z. Fodor & S. Katz, JHEP 0203 (2002) 014 ).
– Imaginary Chemical Potential (Ph. de Frocrand & O. Philipsen, NP B642 (2002) 290; M.-P. Lombardo & M.

D’Elia PR D67 (2003) 014505 ).
– Taylor Expansion (C. Allton et al., PR D66 (2002) 074507 & D68 (2003) 014507; R.V. Gavai and S. Gupta, PR D68

(2003) 034506 ).
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Our Workhorse

CRAY X1 of I L G T I , T I F R, Mumbai
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Our Results
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• We (RVG & S. Gupta, PRD 2005) find the Critical
Point at smaller µB/T ∼ 1.
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• We (RVG & S. Gupta, PRD 2005) find the Critical
Point at smaller µB/T ∼ 1.

• Our estimate consistent with Fodor
& Katz (2002) [ mπ/mρ = 0.31 and
Nsmπ ∼ 3-4].

From Strings to LHC II – Advanced School, Fireflies Ashram, Bangalore, December 11, 2007 R. V. Gavai Top 24



Our Results

0.7

0.8

0.9

1

1.1

0 1 2 3 4 5

T
/T

c�

/TB
�µ

Freezeout curve

10 GeV

18 GeV (CERN)

20 GeV
30 GeV

• We (RVG & S. Gupta, PRD 2005) find the Critical
Point at smaller µB/T ∼ 1.

• Our estimate consistent with Fodor
& Katz (2002) [ mπ/mρ = 0.31 and
Nsmπ ∼ 3-4].

• Strong finite size effects for small Ns.
A strong change around Nsmπ ∼ 6.
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• We (RVG & S. Gupta, PRD 2005) find the Critical
Point at smaller µB/T ∼ 1.

• Our estimate consistent with Fodor
& Katz (2002) [ mπ/mρ = 0.31 and
Nsmπ ∼ 3-4].

• Strong finite size effects for small Ns.
A strong change around Nsmπ ∼ 6.

• RHIC, if run at lower energy, can
potentially discover it.
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Anomalous J/ψ Suppression

• Matsui-Satz idea — J/ψ suppression as a signal of QGP.

• Deconfinement  Screening of coloured quarks, which cannot bind.
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• Matsui-Satz idea — J/ψ suppression as a signal of QGP.

• Deconfinement  Screening of coloured quarks, which cannot bind.

• Original idea — Based on Quarkonium potential model calculations and an
Ansatz for temperature dependence  dissolution of J/ψ and χc by 1.1Tc.
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Anomalous J/ψ Suppression

• Matsui-Satz idea — J/ψ suppression as a signal of QGP.

• Deconfinement  Screening of coloured quarks, which cannot bind.

• Original idea — Based on Quarkonium potential model calculations and an
Ansatz for temperature dependence  dissolution of J/ψ and χc by 1.1Tc.

• A critical assessment of the original theoretical argument: Made feasible by the
recognition of MEM technique as a tool to extract spectral functions from the
temporal correlators computed on the Euclidean lattice.
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Anomalous J/ψ Suppression

• Matsui-Satz idea — J/ψ suppression as a signal of QGP.

• Deconfinement  Screening of coloured quarks, which cannot bind.

• Original idea — Based on Quarkonium potential model calculations and an
Ansatz for temperature dependence  dissolution of J/ψ and χc by 1.1Tc.

• A critical assessment of the original theoretical argument: Made feasible by the
recognition of MEM technique as a tool to extract spectral functions from the
temporal correlators computed on the Euclidean lattice.

• Caution : nonzero temperature obtained by making temporal lattices shorter.
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483 × 12 to 643 × 24 Lattices used : (S. Datta et al., Phys. Rev. D 69, 094507 (2004).)
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483 × 12 to 643 × 24 Lattices used : (S. Datta et al., Phys. Rev. D 69, 094507 (2004).)

♠ χc seems to indeed dissolve by 1.1Tc, however, J/ψ and ηc persist up to 2.25
Tc and are gone at 3Tc; Similar results by Asakawa-Hatsuda and Matsufuru.
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483 × 12 to 643 × 24 Lattices used : (S. Datta et al., Phys. Rev. D 69, 094507 (2004).)

♠ χc seems to indeed dissolve by 1.1Tc, however, J/ψ and ηc persist up to 2.25
Tc and are gone at 3Tc; Similar results by Asakawa-Hatsuda and Matsufuru.

♠ Effect of inclusion of dynamical fermions ?
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Summary

• Lattice QCD predicts new states of
strongly interacting matter and is able
to shed light on the properties of the
Quark-Gluon plasma phase.
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Summary

• Lattice QCD predicts new states of
strongly interacting matter and is able
to shed light on the properties of the
Quark-Gluon plasma phase.

• Intense activity to unravel the nature
of QGP : strong or (resummed) weak
coupling ?

• Our results on correlations of quantum
numbers suggest QGP to have
quarklike excitations.
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Summary

• Lattice QCD predicts new states of
strongly interacting matter and is able
to shed light on the properties of the
Quark-Gluon plasma phase.

• Intense activity to unravel the nature
of QGP : strong or (resummed) weak
coupling ?

• Our results on correlations of quantum
numbers suggest QGP to have
quarklike excitations.
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♠ Phase diagram in T − µB plane has begun to emerge: Our estimate for the
critical point is µB/T ∼ 1− 2.
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