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Why Taylor series expansion?

e Ease of taking continuum and
thermodynamic limit.
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e Better control of systematic errors.

We study volume dependence at several T' to i) bracket the critical region and
then to ii) track its change as a function of volume.
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Formalism

Assuming N flavours of quarks, and denoting by 1+ the corresponding chemical

potentials, the QCD partition function is

Z = fDUexp(—sG) [T f Det M(m ppuyp)

Canonical definitions then yield various number densities and susceptibilities :

_TO0lnZ

2
n; = and T oInZ

\%4 8,LLZ' X'L] o V(‘)M@uj

Higher order susceptibilities are defined by

T 0"logZ o" P
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These are Taylor coefficients of the pressure P in its expansion in fi.

™ T4 T4 Ny! \T

nU7nd

nd!

AP _P(nT) POT) g~ 1 (Hy™ ! e
Musnd T

From this a series for baryonic susceptibility can be constructed. Its radius of
convergence gives the nearest critical point.

For 2 light flavours, its coefficients up to 6th order in up/3 = p, = pq are

1

X% = X20 X5 = 1 60 + 4X51 + Txa2 + 4x33]
1 1
X5 = o1 X410 + 2x31 + X22] , X5 = g1 X80 + 6x71 + 1662 + 2653 + 15X 44] -

(3)
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Successive estimates for the radius of convergence can be obtained from these

. X%
using W
B

Similar coefficients for the off-diagonal susceptibility are

0 2 1
Xp = X11, KB:§[QX31+2X22]7

1 1
X; = 2x51 + 8X42 + 6x33], X?g =5 2x71 + 12x62 + 30X53 + 20x44] (4)

O The ratio x11/x20 can be shown to yield the ratio of widths of the measure in
the imaginary and real directions at u = 0.

¢ Can be generalized to nonzero u with some care and the coefficients above.
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The Susceptibilities

All susceptibilities can be written as traces of products of M ~! and various

derivatives of M.
Two steps for getting NLS : 1) Writing down in terms of derivatives of Z and 2)
obtaining these derivatives in terms of traces.

Setting 1; = 0,x's are nontrivial for only even N = n, +ng4. Thus at leading order

_ (L) 420 _ (L) 4n (5)
X20 =\ 7/ | 7 xu=\y|7

with derivatives given by

Z20 = Z[(O2 + O11)], Z11 = Z[(O1)] (6)
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Here Oy = Tr M~ tM" — Tr M~ *M'M~*M’, and O1; = (Tr M~1M’)?, and the
traces are estimated by a stochastic method:

Tr A= RTAR;/2N, ,and (Tr A)2=2%"" . (Tr A)(Tr A);/L(L—1) ,

i>j=1
where R, is a complex vector from a set of IV, subdivided in L independent sets.

Higher order NLS are more involved; systematic evaluation procedure helpful.
E.g., at the 8th order,

T | Zgo Zo0 Zeo Zao\ 2 Zo0\ > Zao Zoo\
— = | 280 9gZ20 700 gy [ 240 420 —630 [ 22
(7)

with the higher derivatives involving operators up to Og which in turn have terms
up to 8 quark propagators. In fact, the entire evaluation of the xgg needs 20
inversions of Dirac matrix.

Problem of finding the minimum number inversions for a given order

— Akin to Steiner Problem in Computer Science ~» our algorithm
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Our Simulations & Results

o Lattice used : 4 xN3, N, = 8, 10, 12, 16, 24

e Staggered fermions with Ny = 2 of m /T, = 0.1; R-algorithm with traj. length
of 1 MD time on Ny = 8§, scaled «x N on larger ones.

e m,/T.=54+0.2and m,/m, = 0.31 £ 0.01 (MILC)
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o Lattice used : 4 xN3, N, = 8, 10, 12, 16, 24

e Staggered fermions with Ny = 2 of m /T, = 0.1; R-algorithm with traj. length
of 1 MD time on Ng = 8, scaled x N on larger ones.

e m,/T.=54+0.2and m,/m, = 0.31 £ 0.01 (MILC)

e Simulations made at T7'/T. = 0.75(2), 0.80(2), 0.85(1), 0.90(1), 0.95(1),
0.975(10), 1.00(1), 1.05(1), 1.25(1), 1.65(6) and 2.15(10)

e Typical stat. 50-100 in max autocorrelation units.
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a for small N,. A strong
_ St 1 change around N,m, ~
\:CP 6 ( Compatible with arguments
2+ @ D § of Smilga & Leutwyler and also seen for

hadron masses by Gupta & Ray)

o Bielefeld results for
4/6 radius of convergence: T/Tc=10.95 0.9 | Nym, ~ 15 but large
5 10 15 20 25

e Critical point shifted to
smaller up/T ~ 1 — 2.
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More Details

Measure of the seriousness of sign problem : Ratio x11/X20
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Volume Dependence

& Each coefficient in the Taylor expansion must be volume independent.

& Nontrivial check on lattice computations since there are diverging terms which
have to cancel.

Quantum Fields & TeraFlop-Computing, ZiF, Bielefeld, November 24, 2004 R. V. Gavai Top 12
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& Each coefficient in the Taylor expansion must be volume independent.

& Nontrivial check on lattice computations since there are diverging terms which
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& We had earlier suggested to obtain more pairs of diverging terms by taking

larger Ny.

# E.g. T/V (D). should be finite as it is a combination of Taylor Coeffs.
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@& Interesting to note that y4o shows the same volume dependence at 1. as x,

which in turn comes from the (Oss)..
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@& Interesting to note that y4o shows the same volume dependence at 1. as x,

which in turn comes from the (Oss)..
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& Similar behaviour in higher order terms as well.
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Summary

e Phase diagram in T'— 1 on Ny = 4 has begun to emerge: Different methods,
~+ similar qualitative picture.
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Summary

e Phase diagram in T'— 1 on Ny = 4 has begun to emerge: Different methods,
~» similar qualitative picture.

e Our results on volume dependence suggest Nym, > 6 in thermodynamic
volume limit. up/T of critical end point shows a strong drop at that volume.

e up/T ~1—2isindicated for the critical point. Larger N; would be
Interesting.

e Volume independence provides check on the computation from cancellations in
connected terms

e Continuum limit of x,. yields Ay in agreement with RHIC and SPS results after
extrapolation to 7. First full QCD investigations show encouraging trend.
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Discussion Figure
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