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unknown manner in re-weighting.
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T

µ

V1

V2

We study volume dependence at several T to i) bracket the critical region and
then to ii) track its change as a function of volume.
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Formalism

Assuming Nf flavours of quarks, and denoting by µf the corresponding chemical
potentials, the QCD partition function is

Z =
∫
DU exp(−SG)

∏
f Det M(mf,µf ) .

Canonical definitions then yield various number densities and susceptibilities :

ni = T
V
∂ lnZ
∂µi

and χij = T
V
∂2 lnZ
∂µi∂µj

.

Higher order susceptibilities are defined by

χfg··· =
T

V

∂n logZ
∂µf∂µg · · ·

=
∂nP

∂µf∂µg · · ·
. (1)
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These are Taylor coefficients of the pressure P in its expansion in µ.

∆P
T 4
≡ P (µ, T )

T 4
− P (0, T )

T 4
=
∑
nu,nd

χnu,nd
1
nu!

(µu
T

)nu 1
nd!

(µd
T

)nd
(2)

From this a series for baryonic susceptibility can be constructed. Its radius of
convergence gives the nearest critical point.

For 2 light flavours, its coefficients up to 6th order in µB/3 = µu = µd are

χ0
B = χ20, χ4

B =
1
4!

[χ60 + 4χ51 + 7χ42 + 4χ33] ,

χ2
B =

1
2!

[χ40 + 2χ31 + χ22] , χ6
B =

1
6!

[χ80 + 6χ71 + 16χ62 + 26χ53 + 15χ44] .

(3)
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Successive estimates for the radius of convergence can be obtained from these

using

√
χn
B

χn+2
B

.

Similar coefficients for the off-diagonal susceptibility are

χ0
B

= χ11, χ2
B

=
1
2!

[2χ31 + 2χ22] ,

χ4
B

=
1
4!

[2χ51 + 8χ42 + 6χ33] , χ6
B

=
1
6!

[2χ71 + 12χ62 + 30χ53 + 20χ44] .(4)

♥ The ratio χ11/χ20 can be shown to yield the ratio of widths of the measure in
the imaginary and real directions at µ = 0.

♥ Can be generalized to nonzero µ with some care and the coefficients above.
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The Susceptibilities

All susceptibilities can be written as traces of products of M−1 and various
derivatives of M .
Two steps for getting NLS : 1) Writing down in terms of derivatives of Z and 2)
obtaining these derivatives in terms of traces.

Setting µi = 0,χ’s are nontrivial for only even N = nu+nd. Thus at leading order

χ20 =
(
T

V

)
Z20

Z
χ11 =

(
T

V

)
Z11

Z
(5)

with derivatives given by

Z20 = Z[〈O2 +O11〉], Z11 = Z[〈O11〉] (6)
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Here O2 = Tr M−1M ′′−Tr M−1M ′M−1M ′, and O11 = (Tr M−1M ′)2, and the
traces are estimated by a stochastic method:
Tr A =

∑Nv
i=1R

†
iARi/2Nv , and (Tr A)2 = 2

∑L
i>j=1(Tr A)i(Tr A)j/L(L− 1) ,

where Ri is a complex vector from a set of Nv subdivided in L independent sets.

Higher order NLS are more involved; systematic evaluation procedure helpful.
E.g., at the 8th order,

χ80 =
T

V

[
Z80

Z
− 28

Z20

Z

Z60

Z
− 35

(
Z40

Z

)2

+ 420
(
Z20

Z

)2
Z40

Z
− 630

(
Z20

Z

)4
]
,

(7)

with the higher derivatives involving operators up to O8 which in turn have terms
up to 8 quark propagators. In fact, the entire evaluation of the χ80 needs 20
inversions of Dirac matrix.

Problem of finding the minimum number inversions for a given order

— Akin to Steiner Problem in Computer Science  our algorithm
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Our Simulations & Results

• Lattice used : 4 ×N3
s , Ns = 8, 10, 12, 16, 24

• Staggered fermions with Nf = 2 of m/Tc = 0.1; R-algorithm with traj. length
of 1 MD time on Ns = 8, scaled ∝ Ns on larger ones.

• mρ/Tc = 5.4± 0.2 and mπ/mρ = 0.31± 0.01 (MILC)
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s , Ns = 8, 10, 12, 16, 24

• Staggered fermions with Nf = 2 of m/Tc = 0.1; R-algorithm with traj. length
of 1 MD time on Ns = 8, scaled ∝ Ns on larger ones.

• mρ/Tc = 5.4± 0.2 and mπ/mρ = 0.31± 0.01 (MILC)

• Simulations made at T/Tc = 0.75(2), 0.80(2), 0.85(1), 0.90(1), 0.95(1),
0.975(10), 1.00(1), 1.05(1), 1.25(1), 1.65(6) and 2.15(10)

• Typical stat. 50-100 in max autocorrelation units.
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(2002) [ mπ/mρ = 0.31
and Nsmπ ∼ 3-4].

• Strong finite size effects
for small Ns. A strong
change around Nsmπ ∼
6. ( Compatible with arguments

of Smilga & Leutwyler and also seen for

hadron masses by Gupta & Ray)

• Bielefeld results for
Nsmπ ∼ 15 but large
mπ/mρ ∼ 0.7.

• Critical point shifted to
smaller µB/T ∼ 1− 2.
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More Details

Measure of the seriousness of sign problem : Ratio χ11/χ20
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Volume Dependence

♠ Each coefficient in the Taylor expansion must be volume independent.

♠ Nontrivial check on lattice computations since there are diverging terms which
have to cancel.
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Volume Dependence

♠ Each coefficient in the Taylor expansion must be volume independent.

♠ Nontrivial check on lattice computations since there are diverging terms which
have to cancel.

♠ We had earlier suggested to obtain more pairs of diverging terms by taking
larger Nf .

♠ E.g. T/V 〈O22〉c should be finite as it is a combination of Taylor Coeffs.
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♠ Interesting to note that χ40 shows the same volume dependence at Tc as χL
which in turn comes from the 〈O22〉c.
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♠ Similar behaviour in higher order terms as well.
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Summary

• Phase diagram in T − µ on Nt = 4 has begun to emerge: Different methods,
 similar qualitative picture.
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• Our results on volume dependence suggest Nsmπ > 6 in thermodynamic
volume limit. µB/T of critical end point shows a strong drop at that volume.
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• Phase diagram in T − µ on Nt = 4 has begun to emerge: Different methods,
 similar qualitative picture.

• Our results on volume dependence suggest Nsmπ > 6 in thermodynamic
volume limit. µB/T of critical end point shows a strong drop at that volume.

• µB/T ∼ 1− 2 is indicated for the critical point. Larger Nt would be
interesting.

• Volume independence provides check on the computation from cancellations in
connected terms

• Continuum limit of χuu yields λs in agreement with RHIC and SPS results after
extrapolation to Tc. First full QCD investigations show encouraging trend.
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Discussion Figure
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