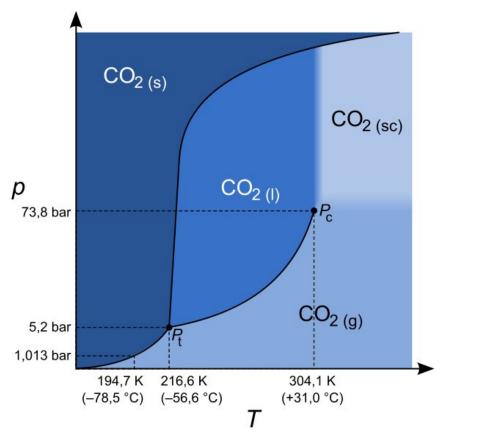
QCD Critical Point : The Race is on

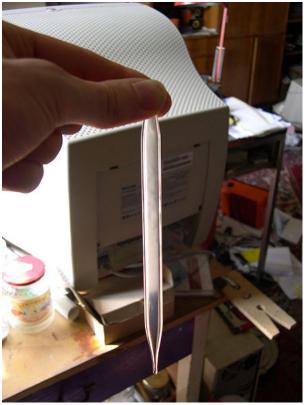
Rajiv V. Gavai T. I. F. R., Mumbai, India

Introduction

Lattice QCD Results

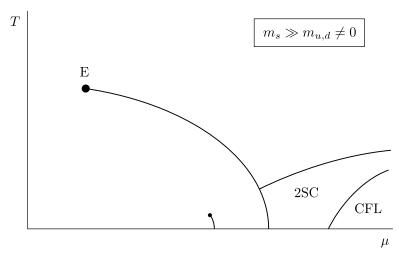
Searching Experimentally


Summary


Critical Point : The Race is WON

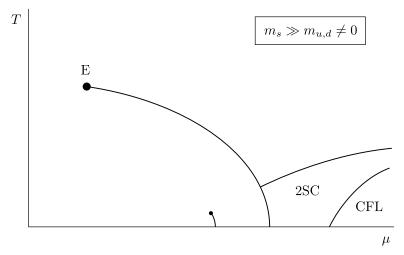
Critical Point : The Race is WON

Critical Point : The Race is WON



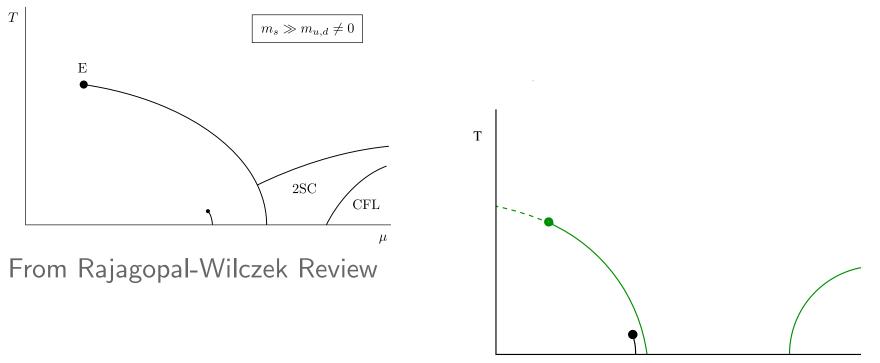
From Wikipedia

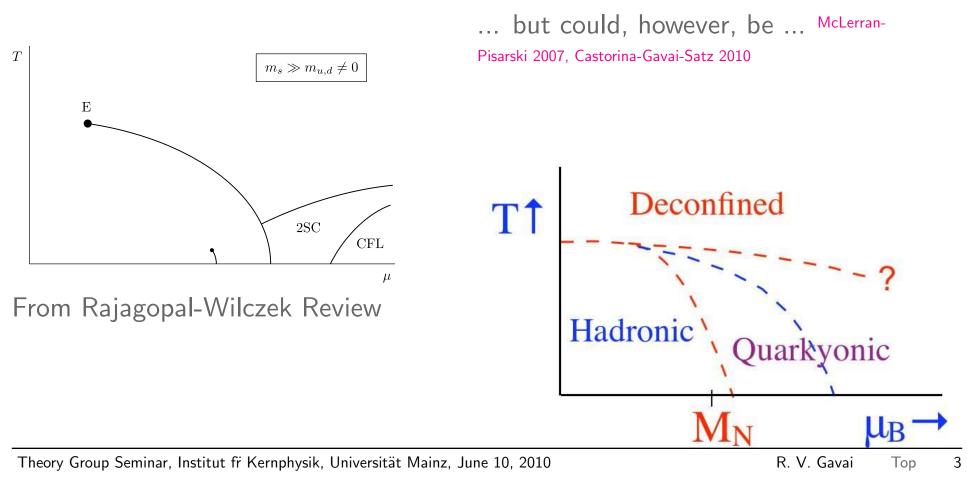
• QCD Critical Point in T- μ_B plane – A fundamental aspect;


♠ QCD Critical Point in T- μ_B plane – A fundamental aspect; Based on symmetries and models, the Expected QCD Phase Diagram

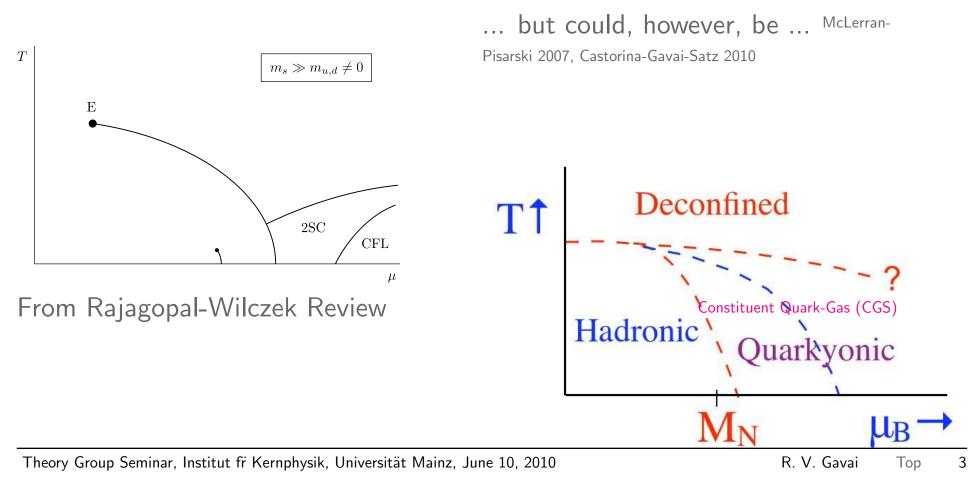
From Rajagopal-Wilczek Review

♠ QCD Critical Point in T- μ_B plane – A fundamental aspect; Based on symmetries and models, the Expected QCD Phase Diagram


... but could, however, be ...


From Rajagopal-Wilczek Review

♠ QCD Critical Point in T- μ_B plane – A fundamental aspect; Based on symmetries and models, the Expected QCD Phase Diagram


... but could, however, be ...

• QCD Critical Point in T- μ_B plane – A fundamental aspect; Based on symmetries and models, the Expected QCD Phase Diagram

• QCD Critical Point in T- μ_B plane – A fundamental aspect; Based on symmetries and models, the Expected QCD Phase Diagram

The Race is ON

- Between the theorists, to claim a patch on the QCD phase diagram,
- Between the model builders and the lattice folks for precise location,
- Between the phenomenologists to come up with the best tool to find it;

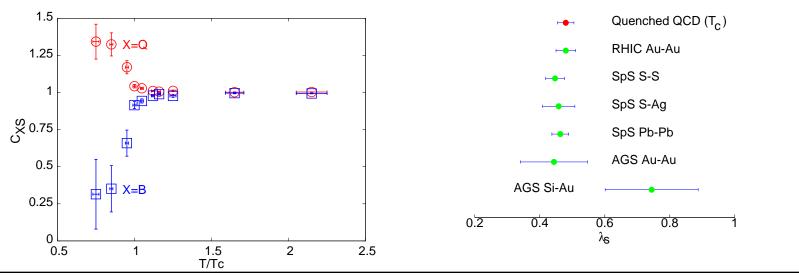
The Race is ON

- Between the theorists, to claim a patch on the QCD phase diagram,
- Between the model builders and the lattice folks for precise location,
- Between the phenomenologists to come up with the best tool to find it;
- Between the theorists and experimentalists : to establish/locate OR to disprove;
- And, of course, between the various ongoing (RHIC/STAR) and the proposed/designed experiments (FAIR/CBM).

The Race is ON

- Between the theorists, to claim a patch on the QCD phase diagram,
- Between the model builders and the lattice folks for precise location,
- Between the phenomenologists to come up with the best tool to find it;
- Between the theorists and experimentalists : to establish/locate OR to disprove;
- And, of course, between the various ongoing (RHIC/STAR) and the proposed/designed experiments (FAIR/CBM).

 \heartsuit In the true "consumer" spirit, careful evaluation of each of the claims is necessary.



Lattice QCD Results

- QCD defined on a space time lattice Best and Most Reliable way to extract non-perturbative physics.
- Completely parameter-free : Λ_{QCD} and quark masses from hadron spectrum.
- The Transition Temperature T_c , the Equation of State, Flavour Correlations (C_{BS}) and the Wróblewski Parameter λ_s are some examples for Heavy Ion Physics. (Gavai-Gupta, PRD 2006 & PRD 2002)

Lattice QCD Results

- QCD defined on a space time lattice Best and Most Reliable way to extract non-perturbative physics.
- Completely parameter-free : Λ_{QCD} and quark masses from hadron spectrum.
- The Transition Temperature T_c , the Equation of State, Flavour Correlations (C_{BS}) and the Wróblewski Parameter λ_s are some examples for Heavy Ion Physics. (Gavai-Gupta, PRD 2006 & PRD 2002)

The $\mu \neq 0$ problem : Quark Type

 Mostly staggered quarks used in these simulations. Broken flavour and spin symmetry on lattice ⇒ N_f = 2 simulations may be fine in a → 0 limit but 3 or 2 +1 problematic.

The $\mu \neq 0$ problem : Quark Type

- Mostly staggered quarks used in these simulations. Broken flavour and spin symmetry on lattice ⇒ N_f = 2 simulations may be fine in a → 0 limit but 3 or 2 +1 problematic.
- Domain Wall or Overlap Fermions better. BUT Computationally expensive.
- Introduction of μ a la Bloch & Wettig (PRL 2006 & PRD2007)

The $\mu \neq 0$ problem : Quark Type

- Mostly staggered quarks used in these simulations. Broken flavour and spin symmetry on lattice ⇒ N_f = 2 simulations may be fine in a → 0 limit but 3 or 2 +1 problematic.
- Domain Wall or Overlap Fermions better. BUT Computationally expensive.
- Introduction of μ a la Bloch & Wettig (PRL 2006 & PRD2007)
- Unfortunately breaks chiral symmetry ! (Banerjee, Gavai & Sharma PRD 2008; PoS (Lattice 2008); PRD 2009)
- Desperately needed : Formalism with Continuum-like (flavour & spin) symmetries for quarks at nonzero μ and T.

The $\mu \neq 0$ problem : The Measure

Assuming N_f flavours of quarks, and denoting by μ_f the corresponding chemical potentials, the QCD partition function is

$$\mathcal{Z} = \int {DU\exp (- S_G)} \; \prod_f {
m Det} \; M(m_f, \mu_f)$$
 ,

and the thermal expectation value of an observable $\ensuremath{\mathcal{O}}$ is

$$\langle \mathcal{O} \rangle = \frac{\int DU \exp(-S_G) \mathcal{O} \prod_f \text{Det } M(m_f, \mu_f)}{\mathcal{Z}}.$$

The $\mu \neq 0$ problem : The Measure

Assuming N_f flavours of quarks, and denoting by μ_f the corresponding chemical potentials, the QCD partition function is

$$\mathcal{Z} = \int {DU\exp (- S_G)} \ \prod_f {
m Det} \ M(m_f, \mu_f)$$
 ,

and the thermal expectation value of an observable $\ensuremath{\mathcal{O}}$ is

$$\langle \mathcal{O} \rangle = \frac{\int DU \exp(-S_G) \mathcal{O} \prod_f \text{Det } M(m_f, \mu_f)}{\mathcal{Z}}.$$

Simulations can be done IF Det M > 0 for any set of $\{U\}$ as probabilistic methods are used to evaluate $\langle \mathcal{O} \rangle$.

The $\mu \neq 0$ problem : The Measure

Assuming N_f flavours of quarks, and denoting by μ_f the corresponding chemical potentials, the QCD partition function is

$$\mathcal{Z} = \int {DU\exp (- S_G)} \ \prod_f {
m Det} \ M(m_f, \mu_f)$$
 ,

and the thermal expectation value of an observable $\ensuremath{\mathcal{O}}$ is

$$\langle \mathcal{O} \rangle = \frac{\int DU \exp(-S_G) \mathcal{O} \prod_f \text{Det } M(m_f, \mu_f)}{\mathcal{Z}}.$$

Simulations can be done IF Det M > 0 for any set of $\{U\}$ as probabilistic methods are used to evaluate $\langle \mathcal{O} \rangle$.

However, det M is a complex number for any $\mu \neq 0$: The Phase/sign problem

Lattice Approaches

Several Approaches proposed in the past two decades : None as satisfactory as the usual $T \neq 0$ simulations. Still scope for a good/great idea !

Lattice Approaches

Several Approaches proposed in the past two decades : None as satisfactory as the usual $T \neq 0$ simulations. Still scope for a good/great idea !

- Two parameter Re-weighting (Z. Fodor & S. Katz, JHEP 0203 (2002) 014).
- Imaginary Chemical Potential (Ph. de Frocrand & O. Philipsen, NP B642 (2002) 290; M.-P. Lombardo & M. D'Elia PR D67 (2003) 014505).
- Taylor Expansion (C. Allton et al., PR D66 (2002) 074507 & D68 (2003) 014507; R.V. Gavai and S. Gupta, PR D68 (2003) 034506).

Lattice Approaches

Several Approaches proposed in the past two decades : None as satisfactory as the usual $T \neq 0$ simulations. Still scope for a good/great idea !

- Two parameter Re-weighting (Z. Fodor & S. Katz, JHEP 0203 (2002) 014).
- Imaginary Chemical Potential (Ph. de Frocrand & O. Philipsen, NP B642 (2002) 290; M.-P. Lombardo & M.
 D'Elia PR D67 (2003) 014505).
- Taylor Expansion (C. Allton et al., PR D66 (2002) 074507 & D68 (2003) 014507; R.V. Gavai and S. Gupta, PR D68 (2003) 034506).
- Canonical Ensemble (K. -F. Liu, IJMP B16 (2002) 2017, S. Kratochvila and P. de Forcrand, Pos LAT2005 (2006) 167.)
- Complex Langevin (G. Aarts and I. O. Stamatescu, arXiv:0809.5227 and its references for earlier work).

How Do We Do This Expansion?

Canonical definitions yield various number densities and susceptibilities :

$$n_i = \frac{T}{V} \frac{\partial \ln \mathcal{Z}}{\partial \mu_i}$$
 and $\chi_{ij} = \frac{T}{V} \frac{\partial^2 \ln \mathcal{Z}}{\partial \mu_i \partial \mu_j}$

These are also useful by themselves both theoretically and for Heavy Ion Physics (Flavour correlations, $\lambda_s \dots$)

Denoting higher order susceptibilities by χ_{n_u,n_d} , the pressure P has the expansion in μ :

$$\frac{\Delta P}{T^4} \equiv \frac{P(\mu, T)}{T^4} - \frac{P(0, T)}{T^4} = \sum_{n_u, n_d} \chi_{n_u, n_d} \frac{1}{n_u!} \left(\frac{\mu_u}{T}\right)^{n_u} \frac{1}{n_d!} \left(\frac{\mu_d}{T}\right)^{n_d} \tag{1}$$

How Do We Do This Expansion?

Canonical definitions yield various number densities and susceptibilities :

$$n_i = \frac{T}{V} \frac{\partial \ln \mathcal{Z}}{\partial \mu_i}$$
 and $\chi_{ij} = \frac{T}{V} \frac{\partial^2 \ln \mathcal{Z}}{\partial \mu_i \partial \mu_j}$

These are also useful by themselves both theoretically and for Heavy Ion Physics (Flavour correlations, $\lambda_s \dots$)

Denoting higher order susceptibilities by χ_{n_u,n_d} , the pressure P has the expansion in $\mu:$

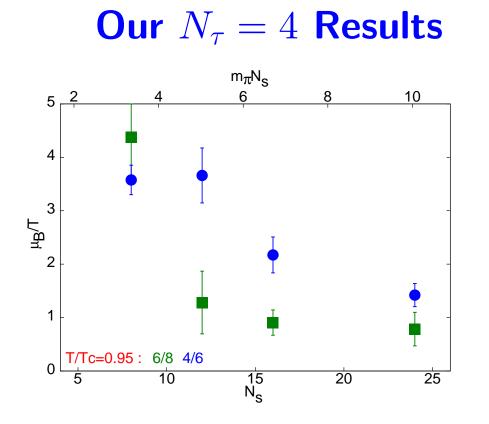
$$\frac{\Delta P}{T^4} \equiv \frac{P(\mu, T)}{T^4} - \frac{P(0, T)}{T^4} = \sum_{n_u, n_d} \chi_{n_u, n_d} \frac{1}{n_u!} \left(\frac{\mu_u}{T}\right)^{n_u} \frac{1}{n_d!} \left(\frac{\mu_d}{T}\right)^{n_d} \tag{1}$$

- From this expansion, a series for baryonic susceptibility can be constructed. Its radius of convergence gives the nearest critical point.
- Successive estimates for the radius of convergence obtained from these using $\sqrt{\frac{n(n+1)\chi_B^{(n+1)}}{\chi_B^{(n+3)}T^2}}$ or $\left(n!\frac{\chi_B^{(2)}}{\chi_B^{(n+2)}T^2}\right)^{1/n}$. We use both and terms up to 8th order in μ .
- All coefficients of the series must be POSITIVE for the critical point to be at real μ , and thus physical.
- We (Gavai-Gupta '05, '09) use up to 8^{th} order (B-RBC so far has up to 6^{th} order). Need 20 inversions of (D + m) on ~ 500 vectors for a single measurement.
- Ideas to extend to higher orders are emerging (Gavai-Sharma PRD 2010) which save up to 60 % computer time.

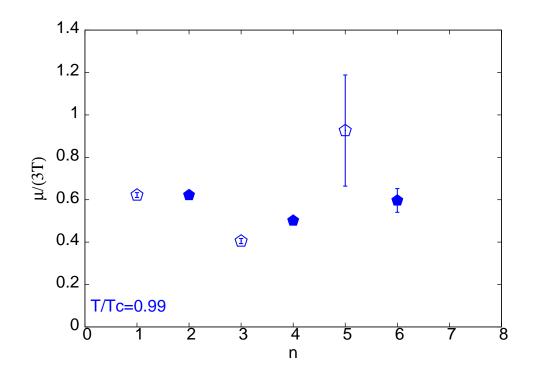
- From this expansion, a series for baryonic susceptibility can be constructed. Its radius of convergence gives the nearest critical point.
- Successive estimates for the radius of convergence obtained from these using $\sqrt{\frac{n(n+1)\chi_B^{(n+1)}}{\chi_B^{(n+3)}T^2}}$ or $\left(n!\frac{\chi_B^{(2)}}{\chi_B^{(n+2)}T^2}\right)^{1/n}$. We use both and terms up to 8th order in μ .
- All coefficients of the series must be POSITIVE for the critical point to be at real μ , and thus physical.
- We (Gavai-Gupta '05, '09) use up to 8^{th} order (B-RBC so far has up to 6^{th} order). Need 20 inversions of (D + m) on \sim 500 vectors for a single measurement.
- Ideas to extend to higher orders are emerging (Gavai-Sharma PRD 2010) which save up to 60 % computer time.

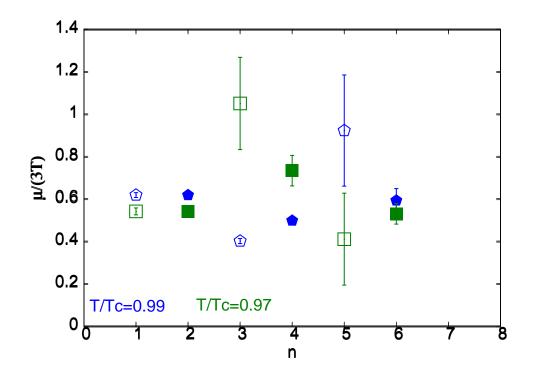
- From this expansion, a series for baryonic susceptibility can be constructed. Its radius of convergence gives the nearest critical point.
- Successive estimates for the radius of convergence obtained from these using $\sqrt{\frac{n(n+1)\chi_B^{(n+1)}}{\chi_B^{(n+3)}T^2}}$ or $\left(n!\frac{\chi_B^{(2)}}{\chi_B^{(n+2)}T^2}\right)^{1/n}$. We use both and terms up to 8th order in μ .
- All coefficients of the series must be POSITIVE for the critical point to be at real μ , and thus physical.
- We (Gavai-Gupta '05, '09) use up to 8^{th} order (B-RBC so far has up to 6^{th} order). Need 20 inversions of (D + m) on ~ 500 vectors for a single measurement.
- Ideas to extend to higher orders are emerging (Gavai-Sharma PRD 2010) which save up to 60 % computer time.

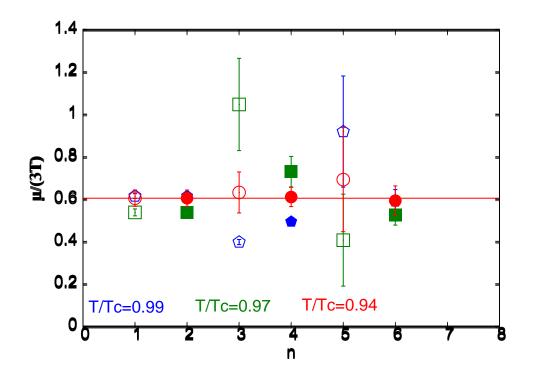
How Do We Do This Expansion?

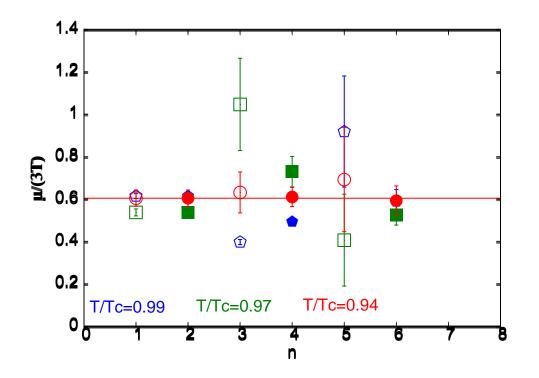

CRAY X1 of I L G T I , T I F R, Mumbai

Our Simulations & Results

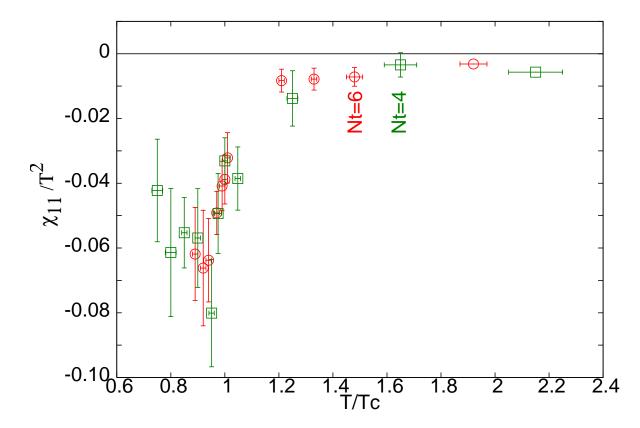

- Staggered fermions with $N_f = 2$ of $m/T_c = 0.1$; R-algorithm used.
- $m_{
 ho}/T_c = 5.4 \pm 0.2$ and $m_{\pi}/m_{
 ho} = 0.31 \pm 0.01$ (MILC)
- Earlier Lattice : 4 $\times N_s^3$, $N_s = 8$, 10, 12, 16, 24 (Gavai-Gupta, PRD 2005)
- Lattice used : 6 × N_s^3 , $N_s = 12$, 18, 24 (Gavai-Gupta, PRD 2009). Needed to determine β_c . Our result ($\beta_c = 5.425(5)$) well bracketed by MILC for $m/T_c = 0.075$ and 0.15.


Our Simulations & Results


- Staggered fermions with $N_f = 2$ of $m/T_c = 0.1$; R-algorithm used.
- $m_{
 ho}/T_c = 5.4 \pm 0.2$ and $m_{\pi}/m_{
 ho} = 0.31 \pm 0.01$ (MILC)
- Earlier Lattice : 4 $\times N_s^3$, $N_s =$ 8, 10, 12, 16, 24 (Gavai-Gupta, PRD 2005)
- Lattice used : $6 \times N_s^3$, $N_s = 12$, 18, 24 (Gavai-Gupta, PRD 2009). Needed to determine β_c . Our result ($\beta_c = 5.425(5)$) well bracketed by MILC for $m/T_c = 0.075$ and 0.15.
- New Simulations made at $T/T_c = 0.89(1)$, 0.92(1), 0.94(1), 0.97(1), 0.99 (1) 1.00(1), 1.21(1), 1.33(1), 1.48(3) and 1.92(5)
- Typical stat. 50-200 in max autocorrelation units.



- Our estimate consistent with Fodor & Katz (2002) [$m_{\pi}/m_{
 ho} = 0.31$ and $n_s m_{\pi} \sim 3$ -4].
- Strong finite size effects for small N_s . A strong change around $N_s m_{\pi} \sim 6$.

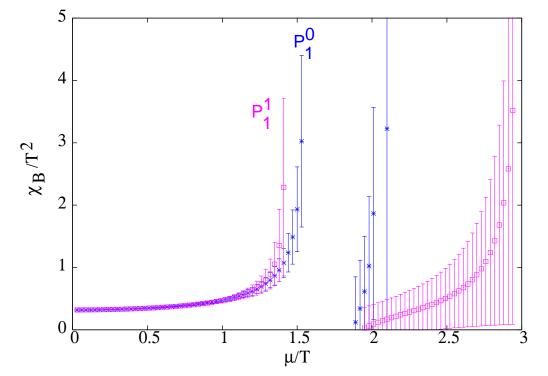


• $\frac{T^E}{T_c} = 0.94 \pm 0.01$, and $\frac{\mu_B^E}{T^E} = 1.8 \pm 0.1$ for finer lattice: Our earlier coarser lattice result was $\mu_B^E/T^E = 1.3 \pm 0.3$. Infinite volume result: \downarrow to 1.1(1)

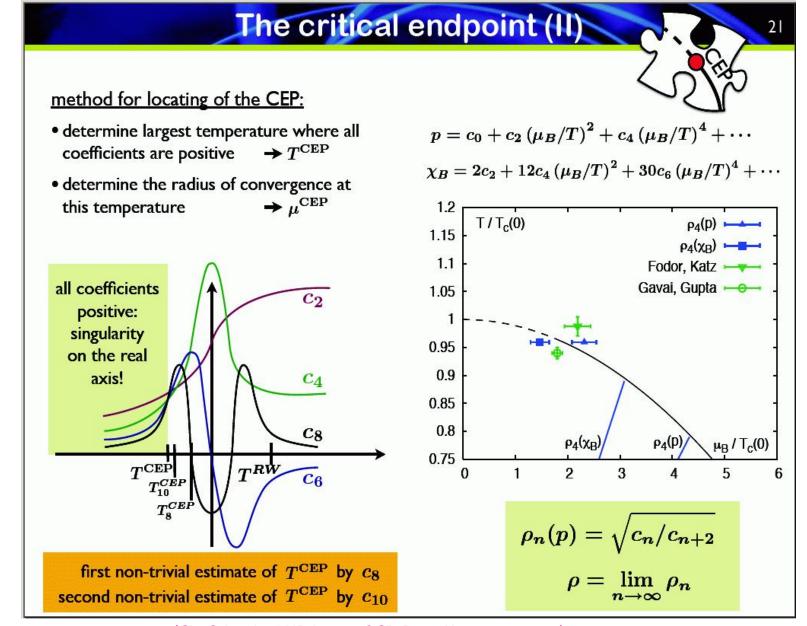
• Critical point at smaller $\mu_B/T \sim 1-2$.

More Details

Measure of the seriousness of sign problem : χ_{11} ; $N_t = 4$ & 6 agree.



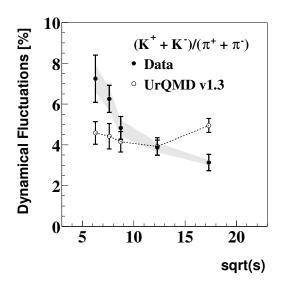
Cross Check on μ^E/T^E


• Use Padé approximants for the series to estimate the radius of convergence.

Cross Check on μ^E/T^E

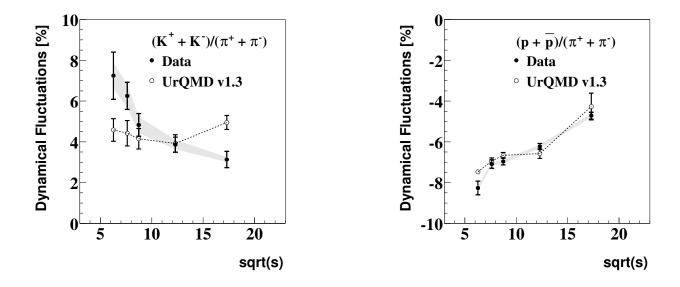
♠ Use Padé approximants for the series to estimate the radius of convergence.

 \heartsuit Consistent Window with our other estimates.

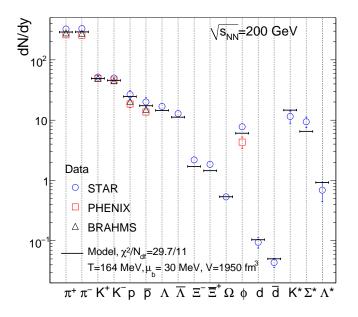

(Ch. Schmidt FAIR Lattice QCD Days, Nov 23-24, 2009.)

Searching Experimentally

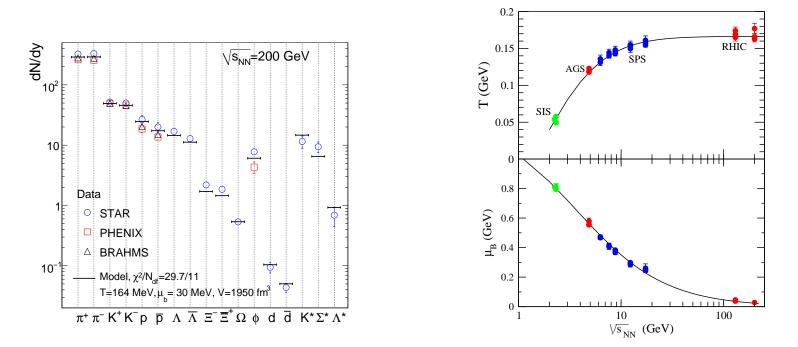
- Exploit the facts i) susceptibilities diverge near the critical point and ii) decreasing \sqrt{s} increases μ_B (Rajagopal, Shuryak & Stephanov PRD 1999)
- Look for nonmontonic dependence of the event-by-event fluctuations with colliding energy.

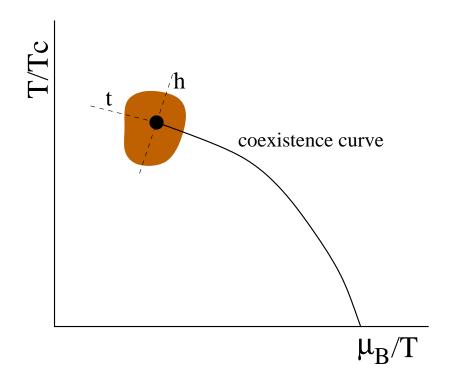

Searching Experimentally

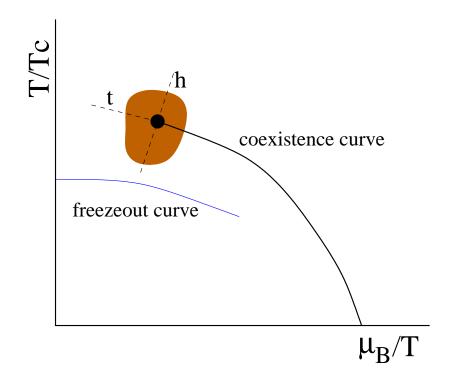
- Exploit the facts i) susceptibilities diverge near the critical point and ii) decreasing \sqrt{s} increases μ_B (Rajagopal, Shuryak & Stephanov PRD 1999)
- Look for nonmontonic dependence of the event-by-event fluctuations with colliding energy. NA49 results (C. Roland NA49, J.Phys. G30 (2004) S1381-S1384)

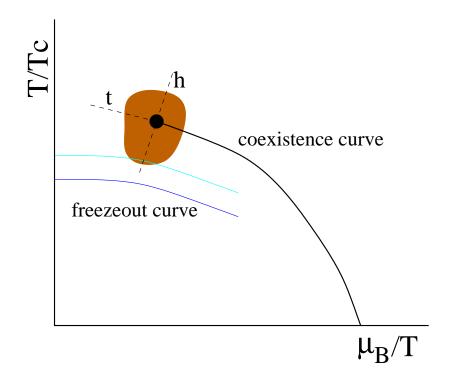

Searching Experimentally

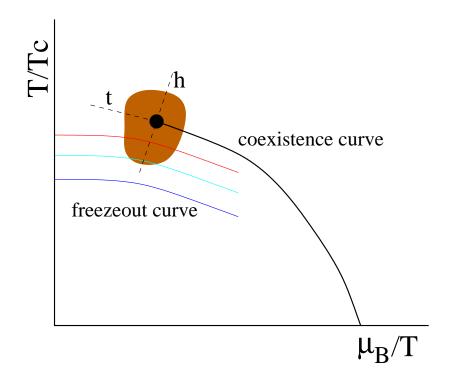
- Exploit the facts i) susceptibilities diverge near the critical point and ii) decreasing \sqrt{s} increases μ_B (Rajagopal, Shuryak & Stephanov PRD 1999)
- Look for nonmontonic dependence of the event-by-event fluctuations with colliding energy. NA49 results (C. Roland NA49, J.Phys. G30 (2004) S1381-S1384)

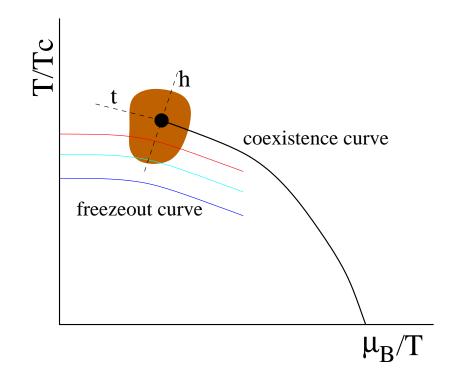

Lattice predictions along the freezeout curve

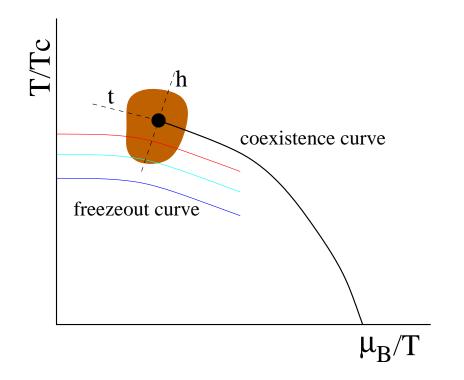

• Hadron yields well described using Statistical Models, leading to a freezeout curve in the T- μ_B plane. (Andronic, Braun-Munzinger & Stachel, PLB 2009; Oeschler, Cleymans, Redlich & Wheaton, 2009)

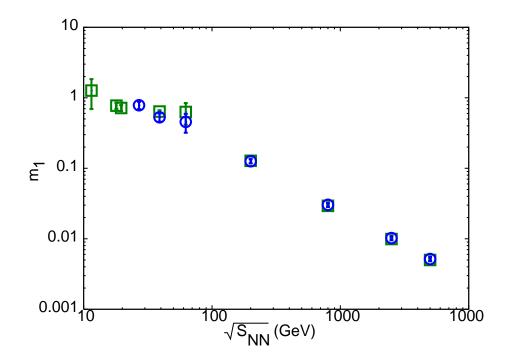



Lattice predictions along the freezeout curve

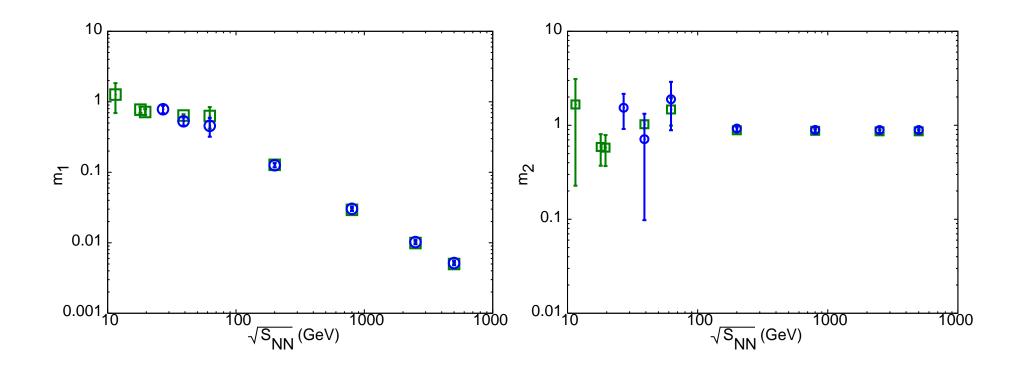

• Hadron yields well described using Statistical Models, leading to a freezeout curve in the $T-\mu_B$ plane. (Andronic, Braun-Munzinger & Stachel, PLB 2009; Oeschler, Cleymans, Redlich & Wheaton, 2009)



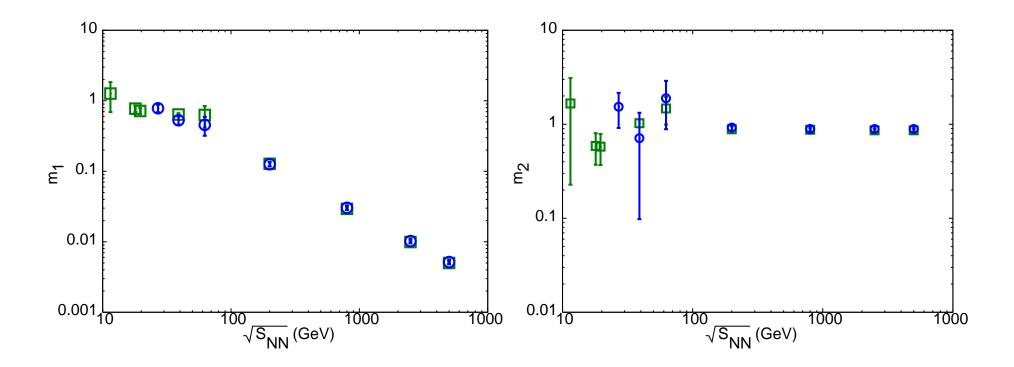




• Use the freezeout curve computed from hadron abundances to relate (T, μ_B) to \sqrt{s} and employ lattice QCD predictions along it. (Gavai-Gupta, TIFR/TH/10-01, arXiv 1001.3796)



- Use the freezeout curve computed from hadron abundances to relate (T, μ_B) to \sqrt{s} and employ lattice QCD predictions along it. (Gavai-Gupta, TIFR/TH/10-01, arXiv 1001.3796)
- Define $m_1 = \frac{T\chi^{(3)}(T,\mu_B)}{\chi^{(2)}(T,\mu_B)}$, $m_3 = \frac{T\chi^{(4)}(T,\mu_B)}{\chi^{(3)}(T,\mu_B)}$, and $m_2 = m_1m_3$ and use the Padè method to construct them.

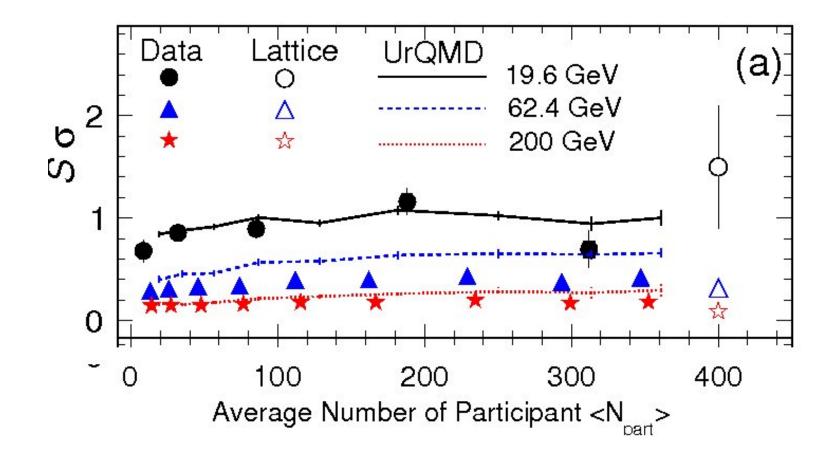

• Use $T_c(\mu = 0) = 175 \text{ MeV}$; for $N_t = 4$ (boxes) and 6 (circles).

• Use $T_c(\mu = 0) = 175 \text{ MeV}$; for $N_t = 4$ (boxes) and 6 (circles).

• Use $T_c(\mu = 0) = 175$ MeV; for $N_t = 4$ (boxes) and 6 (circles).

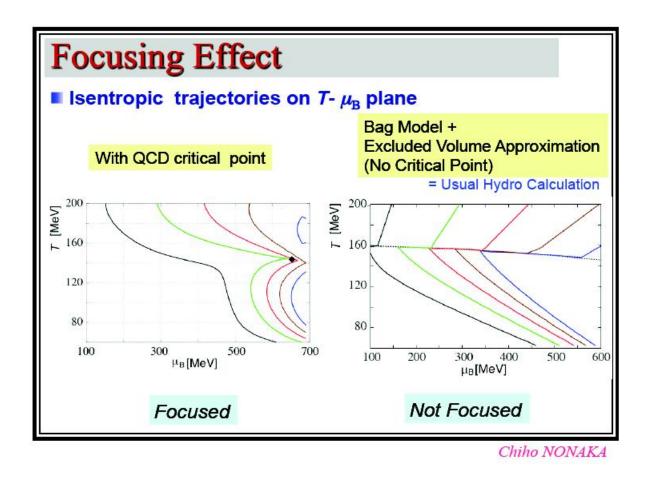
- Our estimated critical point suggests a peak-like structure in all m_i which would be accessible to the low energy scan of RHIC BNL !!
- Dull, smooth & monotonic behaviour without the critical point.

- Proton number fluctuations (Hatta-Stephenov, PRL 2003)
- Neat idea : directly linked to the baryonic susceptibility which ought to diverge at the critical point. Since diverging ξ is linked to σ mode, which cannot mix with any isospin modes, expect χ_I to be regular.

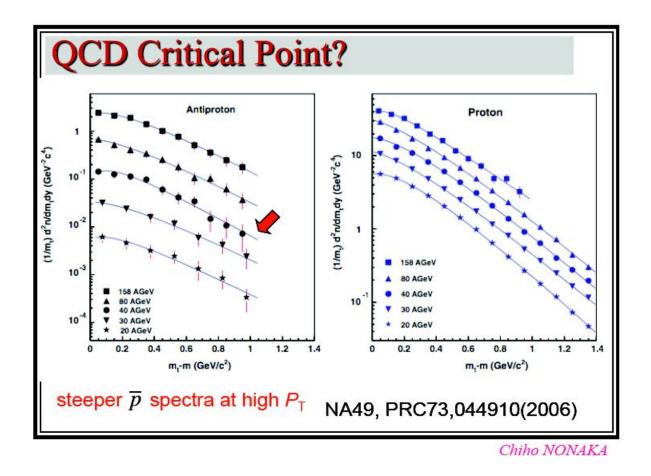

• Proton number fluctuations (Hatta-Stephenov, PRL 2003)

• Neat idea : directly linked to the baryonic susceptibility which ought to diverge at the critical point. Since diverging ξ is linked to σ mode, which cannot mix with any isospin modes, expect χ_I to be regular.

• Leads to a ratio $\chi_Q:\chi_I:\chi_B = 1:0:4$


• Assuming protons, neutrons, pions to dominate, both χ_Q and χ_B can be shown to be proton number fluctuations only.

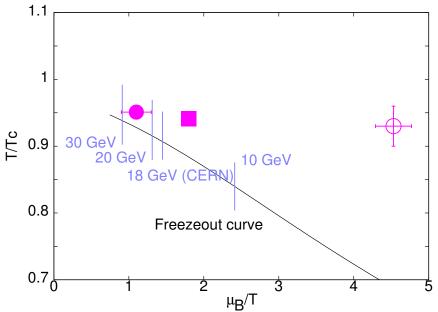
• STAR has recently used this idea and constructed the ratio m_2 we have.



• Reasonable agreement with our lattice results. Where is the critical point ?

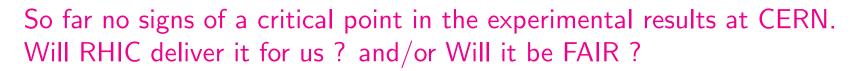
• Isentropic trajectories focus at the critical point (Asakawa-Nonaka, PRC 2005).

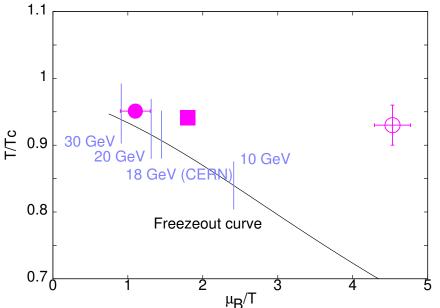
• This leads to the emission of high p_T particles at earlier times.


• Note this is NOT a fluctuations signal but model (EoS) dependent ?

Summary

- Phase diagram in $T \mu$ has begun to emerge: Different methods, \rightsquigarrow similar qualitative picture. Critical Point at $\mu_B/T \sim 1 - 2$.
- Our results for $N_t = 6$ first to begin the crawling towards continuum limit.

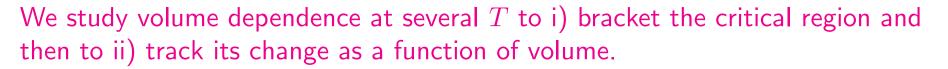

Summary

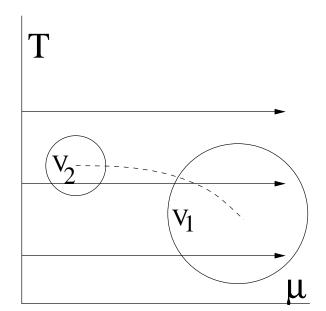

- Phase diagram in T − μ has begun to emerge: Different methods, → similar qualitative picture. Critical Point at μ_B/T ~ 1 − 2.
- Our results for $N_t = 6$ first to begin the crawling towards continuum limit.
- Critical Point leads to structures in m_i on the Freeze-Out Curve.

Summary

- Phase diagram in T − μ has begun to emerge: Different methods, ~→ similar qualitative picture. Critical Point at μ_B/T ~ 1 − 2.
- Our results for $N_t = 6$ first to begin the crawling towards continuum limit.
- Critical Point leads to structures in m_i on the Freeze-Out Curve.

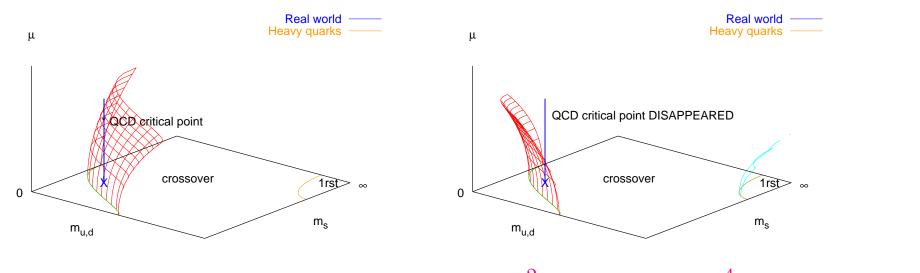
Why Taylor series expansion?


- Ease of taking continuum and thermodynamic limit.
- E.g., $\exp[\Delta S]$ factor makes this exponentially tough for re-weighting.

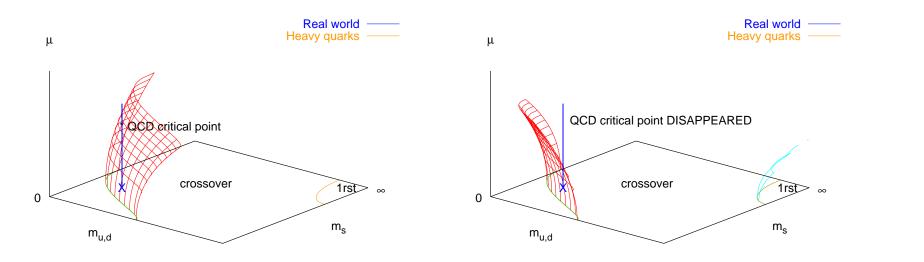

Why Taylor series expansion?

- Ease of taking continuum and thermodynamic limit.
- E.g., $\exp[\Delta S]$ factor makes this exponentially tough for re-weighting.
- Discretization errors propagate in an unknown manner in re-weighting.
- Better control of systematic errors.

Why Taylor series expansion?


- Ease of taking continuum and thermodynamic limit.
- E.g., $\exp[\Delta S]$ factor makes this exponentially tough for re-weighting.
- Discretization errors propagate in an unknown manner in re-weighting.
- Better control of systematic errors.

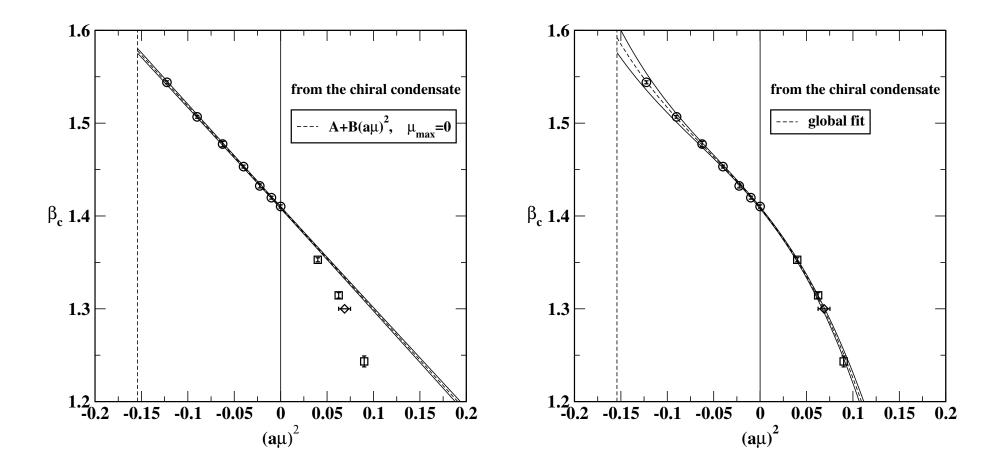
Imaginary Chemical Potential


deForcrand-Philpsen JHEP 0811

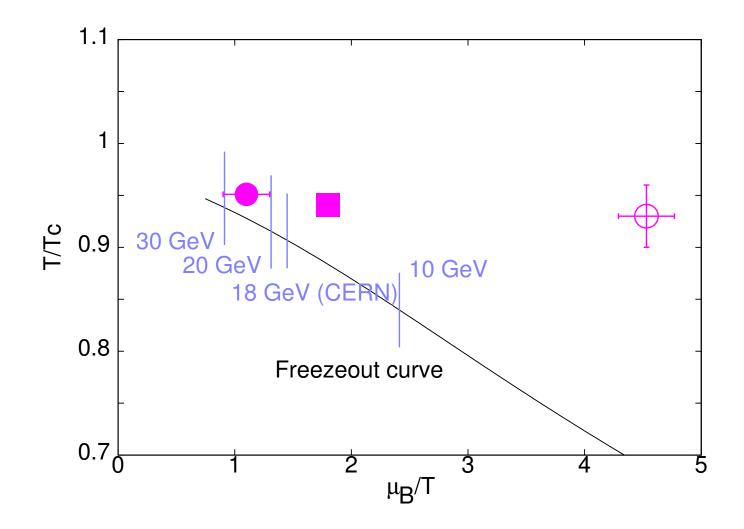
For $N_f = 3$, they find $\frac{m_c(\mu)}{m_c(0)} = 1 - 3.3(3) \left(\frac{\mu}{\pi T_c}\right)^2 - 47(20) \left(\frac{\mu}{\pi T_c}\right)^4$, i.e., m_c shrinks with μ .

Imaginary Chemical Potential

deForcrand-Philpsen JHEP 0811



For $N_f = 3$, they find $\frac{m_c(\mu)}{m_c(0)} = 1 - 3.3(3) \left(\frac{\mu}{\pi T_c}\right)^2 - 47(20) \left(\frac{\mu}{\pi T_c}\right)^4$, i.e., m_c shrinks with μ .


Problems : i) Positive coefficient for finer lattice (Philipsen, CPOD 2009), ii) Known examples where shapes are different in real/imaginary μ ,

Theory Group Seminar, Institut fr Kernphysik, Universität Mainz, June 10, 2010

"The Critical line from imaginary to real baryonic chemical potentials in two-color QCD", P. Cea, L. Cosmai, M. D'Elia, A. Papa, PR D77, 2008

Theory Group Seminar, Institut fr Kernphysik, Universität Mainz, June 10, 2010

