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Introduction

♠ QCD Critical Point in T -µB plane – A fundamental aspect;

Theory Group Seminar, Institut f̈r Kernphysik, Universität Mainz, June 10, 2010 R. V. Gavai Top 3



Introduction

♠ QCD Critical Point in T -µB plane – A fundamental aspect; Based on
symmetries and models, the Expected QCD Phase Diagram

From Rajagopal-Wilczek Review

Theory Group Seminar, Institut f̈r Kernphysik, Universität Mainz, June 10, 2010 R. V. Gavai Top 3



Introduction

♠ QCD Critical Point in T -µB plane – A fundamental aspect; Based on
symmetries and models, the Expected QCD Phase Diagram

From Rajagopal-Wilczek Review

... but could, however, be ...

Theory Group Seminar, Institut f̈r Kernphysik, Universität Mainz, June 10, 2010 R. V. Gavai Top 3



Introduction

♠ QCD Critical Point in T -µB plane – A fundamental aspect; Based on
symmetries and models, the Expected QCD Phase Diagram

From Rajagopal-Wilczek Review

... but could, however, be ...

Τ

Theory Group Seminar, Institut f̈r Kernphysik, Universität Mainz, June 10, 2010 R. V. Gavai Top 3



Introduction

♠ QCD Critical Point in T -µB plane – A fundamental aspect; Based on
symmetries and models, the Expected QCD Phase Diagram

From Rajagopal-Wilczek Review

... but could, however, be ...

Τ

McLerran-

Pisarski 2007, Castorina-Gavai-Satz 2010

Theory Group Seminar, Institut f̈r Kernphysik, Universität Mainz, June 10, 2010 R. V. Gavai Top 3



Introduction

♠ QCD Critical Point in T -µB plane – A fundamental aspect; Based on
symmetries and models, the Expected QCD Phase Diagram

From Rajagopal-Wilczek Review

... but could, however, be ...

Τ

McLerran-

Pisarski 2007, Castorina-Gavai-Satz 2010

Constituent Quark-Gas (CGS)
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The Race is ON
• Between the theorists, to claim a patch on the QCD phase diagram,

• Between the model builders and the lattice folks for precise location,

• Between the phenomenologists to come up with the best tool to find it;
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The Race is ON
• Between the theorists, to claim a patch on the QCD phase diagram,

• Between the model builders and the lattice folks for precise location,

• Between the phenomenologists to come up with the best tool to find it;

• Between the theorists and experimentalists : to establish/locate OR to disprove;

• And, of course, between the various ongoing (RHIC/STAR) and the
proposed/designed experiments (FAIR/CBM).
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The Race is ON
• Between the theorists, to claim a patch on the QCD phase diagram,

• Between the model builders and the lattice folks for precise location,

• Between the phenomenologists to come up with the best tool to find it;

• Between the theorists and experimentalists : to establish/locate OR to disprove;

• And, of course, between the various ongoing (RHIC/STAR) and the
proposed/designed experiments (FAIR/CBM).

♥ In the true “consumer” spirit, careful evaluation of each of the claims is
necessary.
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Lattice QCD Results
• QCD defined on a space time lattice – Best and Most Reliable way to extract

non-perturbative physics.

• Completely parameter-free : ΛQCD and quark masses from hadron spectrum.

• The Transition Temperature Tc, the Equation of State, Flavour Correlations
(CBS) and the Wróblewski Parameter λs are some examples for Heavy Ion
Physics. (Gavai-Gupta, PRD 2006 & PRD 2002)
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The µ 6= 0 problem : Quark Type

• Mostly staggered quarks used in these simulations. Broken flavour and spin
symmetry on lattice =⇒ Nf = 2 simulations may be fine in a→ 0 limit but 3
or 2 +1 problematic.

Theory Group Seminar, Institut f̈r Kernphysik, Universität Mainz, June 10, 2010 R. V. Gavai Top 6



The µ 6= 0 problem : Quark Type

• Mostly staggered quarks used in these simulations. Broken flavour and spin
symmetry on lattice =⇒ Nf = 2 simulations may be fine in a→ 0 limit but 3
or 2 +1 problematic.

• Domain Wall or Overlap Fermions better. BUT Computationally expensive.

• Introduction of µ a la Bloch & Wettig (PRL 2006 & PRD2007)
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The µ 6= 0 problem : Quark Type

• Mostly staggered quarks used in these simulations. Broken flavour and spin
symmetry on lattice =⇒ Nf = 2 simulations may be fine in a→ 0 limit but 3
or 2 +1 problematic.

• Domain Wall or Overlap Fermions better. BUT Computationally expensive.

• Introduction of µ a la Bloch & Wettig (PRL 2006 & PRD2007)

• Unfortunately breaks chiral symmetry ! (Banerjee, Gavai & Sharma PRD 2008;
PoS (Lattice 2008); PRD 2009 )

• Desperately needed : Formalism with Continuum-like (flavour & spin)
symmetries for quarks at nonzero µ and T .
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The µ 6= 0 problem : The Measure

Assuming Nf flavours of quarks, and denoting by µf the corresponding chemical
potentials, the QCD partition function is

Z =
∫
DU exp(−SG)

Q
f Det M(mf,µf ) ,

and the thermal expectation value of an observable O is

〈O〉 =
R
DU exp(−SG) O

Q
f Det M(mf,µf )

Z .
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Simulations can be done IF Det M > 0 for any set of {U} as probabilistic
methods are used to evaluate 〈O〉.
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The µ 6= 0 problem : The Measure

Assuming Nf flavours of quarks, and denoting by µf the corresponding chemical
potentials, the QCD partition function is

Z =
∫
DU exp(−SG)

Q
f Det M(mf,µf ) ,

and the thermal expectation value of an observable O is

〈O〉 =
R
DU exp(−SG) O

Q
f Det M(mf,µf )

Z .

Simulations can be done IF Det M > 0 for any set of {U} as probabilistic
methods are used to evaluate 〈O〉.

However, det M is a complex number for any µ 6= 0 : The Phase/sign problem
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Lattice Approaches

Several Approaches proposed in the past two decades : None as satisfactory as the
usual T 6= 0 simulations. Still scope for a good/great idea !
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Lattice Approaches

Several Approaches proposed in the past two decades : None as satisfactory as the
usual T 6= 0 simulations. Still scope for a good/great idea !

• Two parameter Re-weighting (Z. Fodor & S. Katz, JHEP 0203 (2002) 014 ).

• Imaginary Chemical Potential (Ph. de Frocrand & O. Philipsen, NP B642 (2002) 290; M.-P. Lombardo & M.

D’Elia PR D67 (2003) 014505 ).

• Taylor Expansion (C. Allton et al., PR D66 (2002) 074507 & D68 (2003) 014507; R.V. Gavai and S. Gupta, PR D68 (2003)

034506 ).
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Several Approaches proposed in the past two decades : None as satisfactory as the
usual T 6= 0 simulations. Still scope for a good/great idea !

• Two parameter Re-weighting (Z. Fodor & S. Katz, JHEP 0203 (2002) 014 ).

• Imaginary Chemical Potential (Ph. de Frocrand & O. Philipsen, NP B642 (2002) 290; M.-P. Lombardo & M.

D’Elia PR D67 (2003) 014505 ).

• Taylor Expansion (C. Allton et al., PR D66 (2002) 074507 & D68 (2003) 014507; R.V. Gavai and S. Gupta, PR D68 (2003)

034506 ).

• Canonical Ensemble (K. -F. Liu, IJMP B16 (2002) 2017, S. Kratochvila and P. de Forcrand, Pos LAT2005 (2006) 167.)

• Complex Langevin (G. Aarts and I. O. Stamatescu, arXiv:0809.5227 and its references for earlier work ).
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How Do We Do This Expansion?

Canonical definitions yield various number densities and susceptibilities :

ni = T
V
∂ lnZ
∂µi

and χij = T
V
∂2 lnZ
∂µi∂µj

.

These are also useful by themselves both theoretically and for Heavy Ion Physics
(Flavour correlations, λs . . .)

Denoting higher order susceptibilities by χnu,nd, the pressure P has the expansion
in µ:

∆P
T 4
≡ P (µ, T )

T 4
− P (0, T )

T 4
=
∑
nu,nd

χnu,nd
1
nu!

(µu
T

)nu 1
nd!

(µd
T

)nd
(1)
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• From this expansion, a series for baryonic susceptibility can be constructed. Its
radius of convergence gives the nearest critical point.

• Successive estimates for the radius of convergence obtained from these using√
n(n+1)χ

(n+1)
B

χ
(n+3)
B

T 2
or

(
n! χ

(2)
B

χ
(n+2)
B

T 2

)1/n

. We use both and terms up to 8th order in

µ.

• All coefficients of the series must be POSITIVE for the critical point to be at
real µ, and thus physical.

• We (Gavai-Gupta ’05, ’09) use up to 8th order (B-RBC so far has up to 6th order).
Need 20 inversions of (D +m) on ∼ 500 vectors for a single measurement.

• Ideas to extend to higher orders are emerging (Gavai-Sharma PRD 2010) which save up
to 60 % computer time.
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How Do We Do This Expansion?

CRAY X1 of I L G T I , T I F R, Mumbai
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Our Simulations & Results

• Staggered fermions with Nf = 2 of m/Tc = 0.1; R-algorithm used.

• mρ/Tc = 5.4± 0.2 and mπ/mρ = 0.31± 0.01 (MILC)

• Earlier Lattice : 4 ×N3
s , Ns = 8, 10, 12, 16, 24 (Gavai-Gupta, PRD 2005)

• Lattice used : 6 ×N3
s , Ns = 12, 18, 24 (Gavai-Gupta, PRD 2009). Needed to

determine βc. Our result (βc = 5.425(5)) well bracketed by MILC for
m/Tc = 0.075 and 0.15.
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Our Simulations & Results

• Staggered fermions with Nf = 2 of m/Tc = 0.1; R-algorithm used.

• mρ/Tc = 5.4± 0.2 and mπ/mρ = 0.31± 0.01 (MILC)

• Earlier Lattice : 4 ×N3
s , Ns = 8, 10, 12, 16, 24 (Gavai-Gupta, PRD 2005)

• Lattice used : 6 ×N3
s , Ns = 12, 18, 24 (Gavai-Gupta, PRD 2009). Needed to

determine βc. Our result (βc = 5.425(5)) well bracketed by MILC for
m/Tc = 0.075 and 0.15.

• New Simulations made at T/Tc = 0.89(1), 0.92(1), 0.94(1), 0.97(1), 0.99 (1)
1.00(1), 1.21(1), 1.33(1), 1.48(3) and 1.92(5)

• Typical stat. 50-200 in max autocorrelation units.
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Our Nτ = 4 Results
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• Our estimate consistent with Fodor & Katz (2002) [ mπ/mρ = 0.31 and
nsmπ ∼ 3-4].

• Strong finite size effects for small Ns. A strong change around Nsmπ ∼ 6.
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• TE

Tc
= 0.94± 0.01, and

µEB
TE

= 1.8± 0.1 for finer lattice: Our earlier coarser

lattice result was µEB/T
E = 1.3± 0.3. Infinite volume result: ↓ to 1.1(1)

• Critical point at smaller µB/T ∼ 1− 2.
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More Details

Measure of the seriousness of sign problem : χ11; Nt = 4 & 6 agree.
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Cross Check on µE/TE

♠ Use Padé approximants for the series to estimate the radius of convergence.
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Cross Check on µE/TE

♠ Use Padé approximants for the series to estimate the radius of convergence.
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♥ Consistent Window with our other estimates.
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(Ch. Schmidt FAIR Lattice QCD Days, Nov 23-24, 2009.)
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Searching Experimentally

• Exploit the facts i) susceptibilities diverge near the critical point and ii)
decreasing

√
s increases µB (Rajagopal, Shuryak & Stephanov PRD 1999)

• Look for nonmontonic dependence of the event-by-event fluctuations with
colliding energy.
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Lattice predictions along the freezeout curve

• Hadron yields well described using Statistical Models, leading to a freezeout
curve in the T -µB plane. (Andronic, Braun-Munzinger & Stachel, PLB 2009 ; Oeschler, Cleymans, Redlich &

Wheaton, 2009)
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• Use the freezeout curve computed from hadron abundances to relate (T, µB)to√
s and employ lattice QCD predictions along it. (Gavai-Gupta, TIFR/TH/10-01, arXiv 1001.3796)
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• Use the freezeout curve computed from hadron abundances to relate (T, µB)to√
s and employ lattice QCD predictions along it. (Gavai-Gupta, TIFR/TH/10-01, arXiv 1001.3796)

• Define m1 = Tχ(3)(T,µB)

χ(2)(T,µB)
, m3 = Tχ(4)(T,µB)

χ(3)(T,µB)
, and m2 = m1m3 and use the Padè

method to construct them.
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• Use Tc(µ = 0) = 175 MeV ; for Nt = 4 (boxes) and 6 (circles).
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• Use Tc(µ = 0) = 175 MeV ; for Nt = 4 (boxes) and 6 (circles).
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• Our estimated critical point suggests a peak-like structure in all mi which
would be accessible to the low energy scan of RHIC BNL !!

• Dull, smooth & monotonic behaviour without the critical point.
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• Proton number fluctuations (Hatta-Stephenov, PRL 2003)

• Neat idea : directly linked to the baryonic susceptibility which ought to diverge
at the critical point. Since diverging ξ is linked to σ mode, which cannot mix
with any isospin modes, expect χI to be regular.
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• Proton number fluctuations (Hatta-Stephenov, PRL 2003)

• Neat idea : directly linked to the baryonic susceptibility which ought to diverge
at the critical point. Since diverging ξ is linked to σ mode, which cannot mix
with any isospin modes, expect χI to be regular.

• Leads to a ratio χQ:χI:χB = 1:0:4

• Assuming protons, neutrons, pions to dominate, both χQ and χB can be shown
to be proton number fluctuations only.

• STAR has recently used this idea and constructed the ratio m2 we have.
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• Reasonable agreement with our lattice results. Where is the critical point ?
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• Isentropic trajectories focus at the critical point (Asakawa-Nonaka, PRC 2005).

• This leads to the emission of high pT particles at earlier times.
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(Asakawa-Bass-Nonaka-Müller, INT 2008 workshop).

• Note this is NOT a fluctuations signal but model (EoS) dependent ?
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Summary

• Phase diagram in T − µ has begun to
emerge: Different methods,  similar
qualitative picture. Critical Point at
µB/T ∼ 1− 2.

• Our results for Nt = 6 first to begin
the crawling towards continuum limit.
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Summary
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qualitative picture. Critical Point at
µB/T ∼ 1− 2.

• Our results for Nt = 6 first to begin
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So far no signs of a critical point in the experimental results at CERN.
Will RHIC deliver it for us ? and/or Will it be FAIR ?
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Why Taylor series expansion?

• Ease of taking continuum and
thermodynamic limit.

• E.g., exp[∆S] factor makes this
exponentially tough for re-weighting.
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thermodynamic limit.

• E.g., exp[∆S] factor makes this
exponentially tough for re-weighting.

• Discretization errors propagate in an
unknown manner in re-weighting.

• Better control of systematic errors.
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Why Taylor series expansion?

• Ease of taking continuum and
thermodynamic limit.

• E.g., exp[∆S] factor makes this
exponentially tough for re-weighting.

• Discretization errors propagate in an
unknown manner in re-weighting.

• Better control of systematic errors.

T

µ

V2

V1

We study volume dependence at several T to i) bracket the critical region and
then to ii) track its change as a function of volume.
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Imaginary Chemical Potential

deForcrand-Philpsen JHEP 0811

* QCD critical point

crossover 1rst
0

∞

Real world

X

Heavy quarks

mu,d
ms

µ

  QCD critical point DISAPPEARED

crossover 1rst
0

∞

Real world

X

Heavy quarks

mu,d
ms

µ

For Nf = 3, they find mc(µ)
mc(0)

= 1− 3.3(3)
(
µ
πTc

)2

− 47(20)
(
µ
πTc

)4

, i.e., mc shrinks

with µ.
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For Nf = 3, they find mc(µ)
mc(0)

= 1− 3.3(3)
(
µ
πTc

)2

− 47(20)
(
µ
πTc

)4

, i.e., mc shrinks

with µ.

Problems : i) Positive coefficient for finer lattice (Philipsen, CPOD 2009), ii)
Known examples where shapes are different in real/imaginary µ,
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“The Critical line from imaginary to real baryonic chemical potentials in two-color
QCD”, P. Cea, L. Cosmai, M. D’Elia, A. Papa, PR D77, 2008
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