QCD Critical Point : Inching Towards Continuum

Rajiv V. Gavai* T. I. F. R., Mumbai, India

Introduction

Our Results on Critical Point

LQCD in Aid of Experiments

Summary

* Work done with Saumen Datta & Sourendu Gupta, QM2012 proceedings & arXiv:1001.3796, 0806.2233.

QCD Structure I, Central China Normal University, Wuhan, China, October 8, 2012

Critical Point : The eV Scale

From Wikipedia

• QCD Critical Point in T- μ_B plane – A fundamental aspect;

♠ QCD Critical Point in T- μ_B plane – A fundamental aspect; Based on symmetries and models, the Expected QCD Phase Diagram

From Rajagopal-Wilczek Review

• QCD Critical Point in $T-\mu_B$ plane – A fundamental aspect; Based on symmetries and models, the Expected QCD Phase Diagram

From Rajagopal-Wilczek Review

- Search for its location using *ab initio* methods
- Search for it in the experiments RHIC, FAIR,...

♠ QCD Critical Point in T- μ_B plane – A fundamental aspect; Based on symmetries and models, the Expected QCD Phase Diagram

From Rajagopal-Wilczek Review

- Search for its location using *ab initio* methods
- Search for it in the experiments RHIC, FAIR,...
- What hints can Lattice QCD investigations provide ?

Why Lattice QCD ?

- Lattice QCD Most Reliable and Completely parameter-free way to extract non-perturbative physics relevant to Heavy Ion Colliders.
- The Transition Temperature T_c , the Equation of State (used now in 'elliptic flow' analysis), and the Wróblewski Parameter λ_s etc. (Wuppertal-Budapest, HotQCD, GG '02)

Why Lattice QCD ?

- Lattice QCD Most Reliable and Completely parameter-free way to extract non-perturbative physics relevant to Heavy Ion Colliders.
- The Transition Temperature T_c , the Equation of State (used now in 'elliptic flow' analysis), and the Wróblewski Parameter λ_s etc. (Wuppertal-Budapest, HotQCD, GG '02)
- Flavour Correlations (C_{BS}) and Charm Diffusion Coefficient D are some more such examples for RHIC Physics. (Gavai-Gupta, PRD 2006 & Banerjee et al. PRD 2012)

The $\mu \neq 0$ problem : Quark Type

• Mostly staggered quarks used in these simulations. Broken flavour and spin symmetry on lattice.

The $\mu \neq 0$ problem : Quark Type

- Mostly staggered quarks used in these simulations. Broken flavour and spin symmetry on lattice.
- Domain Wall or Overlap Fermions better. BUT Computationally expensive.
- Introduction of μ a la Bloch & Wettig (PRL 2006 & PRD2007)

The $\mu \neq 0$ problem : Quark Type

- Mostly staggered quarks used in these simulations. Broken flavour and spin symmetry on lattice.
- Domain Wall or Overlap Fermions better. BUT Computationally expensive.
- Introduction of μ a la Bloch & Wettig (PRL 2006 & PRD2007)
- Unfortunately breaks chiral symmetry ! (Banerjee, Gavai & Sharma PRD 2008; PoS (Lattice 2008); PRD 2009)
- Good News : Problem Solved !

Overlap Lattice Action with exact chiral invariance at nonzero μ and any a now exists (Gavai & Sharma , arXiv : 1111.5944; PLB in press, Narayanan-Sharma JHEP '11).

The $\mu \neq 0$ problem : The Measure

Simulations can be done IF Det M > 0. However, det M is a complex number for any $\mu \neq 0$: The Phase/sign problem

The $\mu \neq 0$ problem : The Measure

Simulations can be done IF Det M > 0. However, det M is a complex number for any $\mu \neq 0$: The Phase/sign problem

Several Approaches proposed in the past two decades :

- Two parameter Re-weighting (Z. Fodor & S. Katz, JHEP 0203 (2002) 014).
- Imaginary Chemical Potential (Ph. de Forcrand & O. Philipsen, NP B642 (2002) 290; M.-P. Lombardo & M. D'Elia PR D67 (2003) 014505).
- Taylor Expansion (C. Allton et al., PR D68 (2003) 014507; R.V. Gavai and S. Gupta, PR D68 (2003) 034506).
- Canonical Ensemble (K. -F. Liu, IJMP B16 (2002) 2017, S. Kratochvila and P. de Forcrand, Pos LAT2005 (2006) 167.)
- Complex Langevin (G. Aarts and I. O. Stamatescu, arXiv:0809.5227 and its references for earlier work).

Why Taylor series expansion?

- Ease of taking continuum and thermodynamic limit.
- Better control of systematic errors.

Why Taylor series expansion?

- Ease of taking continuum and thermodynamic limit.
- Better control of systematic errors.
- E.g., $\exp[\Delta S]$ factor makes this exponentially tough for re-weighting.
- Discretization errors propagate in an unknown manner in re-weighting.

Why Taylor series expansion?

- Ease of taking continuum and thermodynamic limit.
- Better control of systematic errors.
- E.g., $\exp[\Delta S]$ factor makes this exponentially tough for re-weighting.
- Discretization errors propagate in an unknown manner in re-weighting.

We studied volume dependence at several T to i) bracket the critical region and then ii) tracked its change as a function of volume.

Details of Expansion

Standard definitions yield various number densities and susceptibilities :

$$n_i = \frac{T}{V} \frac{\partial \ln \mathcal{Z}}{\partial \mu_i}$$
 and $\chi_{ij} = \frac{T}{V} \frac{\partial^2 \ln \mathcal{Z}}{\partial \mu_i \partial \mu_j}$.

These are also useful by themselves both theoretically and for Heavy Ion Physics (Flavour correlations, $\lambda_s \dots$)

Denoting higher order susceptibilities by χ_{n_u,n_d} , the pressure P has the expansion in μ :

$$\frac{\Delta P}{T^4} \equiv \frac{P(\mu, T)}{T^4} - \frac{P(0, T)}{T^4} = \sum_{n_u, n_d} \chi_{n_u, n_d} \frac{1}{n_u!} \left(\frac{\mu_u}{T}\right)^{n_u} \frac{1}{n_d!} \left(\frac{\mu_d}{T}\right)^{n_d}$$

QCD Structure I, Central China Normal University, Wuhan, China, October 8, 2012

Details of Expansion

Standard definitions yield various number densities and susceptibilities :

$$n_i = \frac{T}{V} \frac{\partial \ln \mathcal{Z}}{\partial \mu_i}$$
 and $\chi_{ij} = \frac{T}{V} \frac{\partial^2 \ln \mathcal{Z}}{\partial \mu_i \partial \mu_j}$

These are also useful by themselves both theoretically and for Heavy Ion Physics (Flavour correlations, $\lambda_s \dots$)

Denoting higher order susceptibilities by χ_{n_u,n_d} , the pressure P has the expansion in μ :

$$\frac{\Delta P}{T^4} \equiv \frac{P(\mu, T)}{T^4} - \frac{P(0, T)}{T^4} = \sum_{n_u, n_d} \chi_{n_u, n_d} \frac{1}{n_u!} \left(\frac{\mu_u}{T}\right)^{n_u} \frac{1}{n_d!} \left(\frac{\mu_d}{T}\right)^{n_d}$$

QCD Structure I, Central China Normal University, Wuhan, China, October 8, 2012

- From this expansion, a series for baryonic susceptibility can be constructed. Its radius of convergence gives estimate of the location of nearest critical point.
- Successive estimates for the radius of convergence obtained from these using $\sqrt{\frac{n(n+1)\chi_B^{(n+1)}}{\chi_B^{(n+3)}T^2}}$ or $\left(n!\frac{\chi_B^{(2)}}{\chi_B^{(n+2)}T^2}\right)^{1/n}$. We use both and terms up to 8th order in μ .
- All coefficients of the series must be POSITIVE for the critical point to be at real μ , and thus physical.
- We (Gavai-Gupta '05, '09) use up to 8^{th} order. B-RBC so far has up to 6^{th} order.
- 10th & even 12th order may be possible : Ideas to extend to higher orders are emerging (Gavai-Sharma PRD 2012 & PRD 2010) which save up to 60 % computer time.

- From this expansion, a series for baryonic susceptibility can be constructed. Its radius of convergence gives estimate of the location of nearest critical point.
- Successive estimates for the radius of convergence obtained from these using $\sqrt{\frac{n(n+1)\chi_B^{(n+1)}}{\chi_B^{(n+3)}T^2}}$ or $\left(n!\frac{\chi_B^{(2)}}{\chi_B^{(n+2)}T^2}\right)^{1/n}$. We use both and terms up to 8th order in μ .
- All coefficients of the series must be POSITIVE for the critical point to be at real μ , and thus physical.
- We (Gavai-Gupta '05, '09) use up to 8^{th} order. B-RBC so far has up to 6^{th} order.
- 10th & even 12th order may be possible : Ideas to extend to higher orders are emerging (Gavai-Sharma PRD 2012 & PRD 2010) which save up to 60 % computer time.

- From this expansion, a series for baryonic susceptibility can be constructed. Its radius of convergence gives estimate of the location of nearest critical point.
- Successive estimates for the radius of convergence obtained from these using $\sqrt{\frac{n(n+1)\chi_B^{(n+1)}}{\chi_B^{(n+3)}T^2}}$ or $\left(n!\frac{\chi_B^{(2)}}{\chi_B^{(n+2)}T^2}\right)^{1/n}$. We use both and terms up to 8th order in μ .
- All coefficients of the series must be POSITIVE for the critical point to be at real μ , and thus physical.
- We (Gavai-Gupta '05, '09) use up to 8^{th} order. B-RBC so far has up to 6^{th} order.
- 10th & even 12th order may be possible : Ideas to extend to higher orders are emerging (Gavai-Sharma PRD 2012 & PRD 2010) which save up to 60 % computer time.

The Susceptibilities

All susceptibilities can be written as traces of products of M^{-1} and various derivatives of M.

At leading order,

$$\chi_{20} = \frac{T}{V} [\langle \mathcal{O}_2 + \mathcal{O}_{11} \rangle], \qquad \chi_{11} = \frac{T}{V} [\langle \mathcal{O}_{11} \rangle]$$

Here $\mathcal{O}_2 = \operatorname{Tr} M^{-1}M'' - \operatorname{Tr} M^{-1}M'M^{-1}M'$, and $\mathcal{O}_{11} = (\operatorname{Tr} M^{-1}M')^2$. The traces are estimated by a stochastic method (Gottlieb et al., PRL '87): $\operatorname{Tr} A = \sum_{i=1}^{N_v} R_i^{\dagger} A R_i / 2N_v$, and $(\operatorname{Tr} A)^2 = 2 \sum_{i>j=1}^{L} (\operatorname{Tr} A)_i (\operatorname{Tr} A)_j / L(L-1)$, where R_i is a complex vector from a set of N_v subdivided in L independent sets.

The Susceptibilities

All susceptibilities can be written as traces of products of M^{-1} and various derivatives of M.

At leading order,

$$\chi_{20} = \frac{T}{V} [\langle \mathcal{O}_2 + \mathcal{O}_{11} \rangle], \qquad \chi_{11} = \frac{T}{V} [\langle \mathcal{O}_{11} \rangle]$$

Here $\mathcal{O}_2 = \text{Tr } M^{-1}M'' - \text{Tr } M^{-1}M'M^{-1}M'$, and $\mathcal{O}_{11} = (\text{Tr } M^{-1}M')^2$. The traces are estimated by a stochastic method (Gottlieb et al., PRL '87): Tr $A = \sum_{i=1}^{N_v} R_i^{\dagger} A R_i / 2N_v$, and $(\text{Tr } A)^2 = 2 \sum_{i>j=1}^{L} (\text{Tr } A)_i (\text{Tr } A)_j / L(L-1)$, where R_i is a complex vector from a set of N_v subdivided in L independent sets. Higher order NLS are more involved. E.g.,

$$\chi_{40} = \frac{T}{V} \left[\left\langle \mathcal{O}_{1111} + 6\mathcal{O}_{112} + 4\mathcal{O}_{13} + 3\mathcal{O}_{22} + \mathcal{O}_4 \right\rangle - 3 \left\langle \mathcal{O}_{11} + \mathcal{O}_2 \right\rangle^2 \right].$$

Here the notation $\mathcal{O}_{ij\cdots l}$ stands for the product, $\mathcal{O}_i\mathcal{O}_j\cdots \mathcal{O}_l$ and $\mathcal{O}_3 = 2 \text{ Tr } (M^{-1}M')^3 - 3 \text{ Tr } M^{-1}M'M^{-1}M'' + \text{ Tr } M^{-1}M''',$ $\mathcal{O}_4 = -6 \text{ Tr } (M^{-1}M')^4 + 12 \text{ Tr } (M^{-1}M')^2M^{-1}M'' - 3 \text{ Tr } (M^{-1}M'')^2 - 3 \text{ Tr } M^{-1}M''' + \text{ Tr } M^{-1}M''''.$

At the 8th order, terms involve operators up to \mathcal{O}_8 which in turn have terms up to 8 quark propagators and combinations of M' and M''. In fact, the entire evaluation of the χ_{80} needs 20 inversions of Dirac matrix.

This can be reduced to 8 inversions using an action linear in μ (Gavai-Sharma PRD 2012 & PRD 2010), leading still to results in agreement with that exponential in μ .

Higher order NLS are more involved. E.g.,

$$\chi_{40} = \frac{T}{V} \left[\left\langle \mathcal{O}_{1111} + 6\mathcal{O}_{112} + 4\mathcal{O}_{13} + 3\mathcal{O}_{22} + \mathcal{O}_4 \right\rangle - 3\left\langle \mathcal{O}_{11} + \mathcal{O}_2 \right\rangle^2 \right].$$

Here the notation $\mathcal{O}_{ij\cdots l}$ stands for the product, $\mathcal{O}_i\mathcal{O}_j\cdots \mathcal{O}_l$ and $\mathcal{O}_3 = 2 \text{ Tr } (M^{-1}M')^3 - 3 \text{ Tr } M^{-1}M'M^{-1}M'' + \text{Tr } M^{-1}M''',$ $\mathcal{O}_4 = -6 \text{ Tr } (M^{-1}M')^4 + 12 \text{ Tr } (M^{-1}M')^2M^{-1}M'' - 3 \text{ Tr } (M^{-1}M'')^2 - 3 \text{ Tr } M^{-1}M''' + \text{Tr } M^{-1}M''''.$

At the 8th order, terms involve operators up to \mathcal{O}_8 which in turn have terms up to 8 quark propagators and combinations of M' and M''. In fact, the entire evaluation of the χ_{80} needs 20 inversions of Dirac matrix.

This can be reduced to 8 inversions using an action linear in μ (Gavai-Sharma PRD 2012 & PRD 2010), leading still to results in agreement with that exponential in μ .

Our Simulations & Results

- Staggered fermions with $N_f = 2$ of $m/T_c = 0.1$; R-algorithm used.
- $m_{\pi}/m_{\rho} = 0.31 \pm 0.01$ (MILC); Kept the same as $a \to 0$ (on all N_t).
- Earlier Lattice : 4 $\times N_s^3$, $N_s = 8$, 10, 12, 16, 24 (Gavai-Gupta, PRD 2005) Finer Lattice : 6 $\times N_s^3$, $N_s = 12$, 18, 24 (Gavai-Gupta, PRD 2009).

Our Simulations & Results

- Staggered fermions with $N_f = 2$ of $m/T_c = 0.1$; R-algorithm used.
- $m_{\pi}/m_{\rho} = 0.31 \pm 0.01$ (MILC); Kept the same as $a \to 0$ (on all N_t).
- Earlier Lattice : 4 × N_s^3 , $N_s = 8$, 10, 12, 16, 24 (Gavai-Gupta, PRD 2005) Finer Lattice : 6 × N_s^3 , $N_s = 12$, 18, 24 (Gavai-Gupta, PRD 2009).
- Even finer Lattice : 8 $\times 32^3$ This Talk (Datta-RVG-Gupta, '12) Aspect ratio, N_s/N_t , maintained four to reduce finite volume effects.
- Simulations made at $T/T_c = 0.90, 0.92, 0.94, 0.96, 0.98, 1.00, 1.02, 1.12, 1.5$ and 2.01. Typical stat. 100-200 in max autocorrelation units.
- T_c defined by the peak of Polyakov loop susceptibility.

• $\frac{T^E}{T_c} = 0.94 \pm 0.01$, and $\frac{\mu_B^E}{T^E} = 1.8 \pm 0.1$ for finer lattice: Our earlier coarser lattice result was $\mu_B^E/T^E = 1.3 \pm 0.3$. Infinite volume result: \downarrow to 1.1(1)

• Critical point at $\mu_B/T \sim 1-2$.

Cross Check on μ^E/T^E

• Use the series directly to construct χ_B for nonzero $\mu \longrightarrow$ smooth curves with no signs of criticality.

Cross Check on μ^E/T^E

• Use the series directly to construct χ_B for nonzero $\mu \longrightarrow$ smooth curves with no signs of criticality.

Use Padé approximants for the series to estimate the radius of convergence.
 Consistent Window with our other estimates.

Critical Point : Story thus far

♠ $N_f = 2$ (magenta) and 2+1 (blue) (Fodor-Katz, JHEP '04). $♡ N_t = 4$ Circles (GG '05 & Fodor-Katz JHEP '02), $N_t = 6$ Box (GG '09).

χ_2 for $N_t = 8$, 6, and 4 lattices

• $N_t = 8$ (Datta-Gavai-Gupta, QM12) and 6 (GG, PRD '09) results agree. $\heartsuit \beta_c(N_t = 8)$ agrees with Gottlieb et al. PR D47,1993.

Radius of Convergence result

At our (T_E, μ_E) for $N_t = 6$, the ratios display constancy for $N_t = 8$ as well. \heartsuit Currently : Similar results at neighbouring $T/T_c \Longrightarrow$ a larger ΔT at same μ_B^E .

Critical Point : Inching Towards Continuum

Lattice predictions along the freezeout curve

• Hadron yields well described using Statistical Models, leading to a freezeout curve in the T- μ_B plane. (Andronic, Braun-Munzinger & Stachel, PLB 2009; Oeschler, Cleymans, Redlich & Wheaton, 2009)

Lattice predictions along the freezeout curve

• Hadron yields well described using Statistical Models, leading to a freezeout curve in the $T-\mu_B$ plane. (Andronic, Braun-Munzinger & Stachel, PLB 2009; Oeschler, Cleymans, Redlich & Wheaton, 2009)

• Plotting these results in the T- μ_B plane, one has the freezeout curve, which was shown to correspond the $\langle E \rangle / \langle N \rangle \simeq 1$. (Cleymans and Redlich, PRL 1998)

(From Braun-Munzinger, Redlich and Stachel nucl-th/0304013)

(From Braun-Munzinger, Redlich and Stachel nucl-th/0304013)

- Note : Freeze-out curve is based soled on data on hadron yields, & gives the (T,μ) accessible in heavy-ion experiments.
- Our Key Proposal : Use the freezeout curve from hadron abundances to *predict* fluctuations using lattice QCD along it. (Gavai-Gupta, TIFR/TH/10-01, arXiv 1001.3796)

• Use the freezeout curve to relate (T, μ_B) to \sqrt{s} and employ lattice QCD predictions along it. (Gavai-Gupta, TIFR/TH/10-01, arXiv 1001.3796)

• Use the freezeout curve to relate (T, μ_B) to \sqrt{s} and employ lattice QCD predictions along it. (Gavai-Gupta, TIFR/TH/10-01, arXiv 1001.3796)

• Define $m_1 = \frac{T\chi^{(3)}(T,\mu_B)}{\chi^{(2)}(T,\mu_B)}$, $m_3 = \frac{T\chi^{(4)}(T,\mu_B)}{\chi^{(3)}(T,\mu_B)}$, and $m_2 = m_1m_3$ and use the Padè method to construct them.

A Marginal change if $T_c = 175$ MeV (Datta, Gavai & Gupta, QM '12).

Gavai-Gupta, '10 & Datta-Gavai-Gupta, QM '12

- Smooth & monotonic behaviour for large \sqrt{s} : $m_1 \downarrow$ and $m_3 \uparrow$.
- Note that even in this smooth region, an experimental comparison is exciting : Direct Non-Perturbative test of QCD in hot and dense environment.

- Smooth & monotonic behaviour for large \sqrt{s} : $m_1 \downarrow$ and $m_3 \uparrow$.
- Note that even in this smooth region, an experimental comparison is exciting : Direct Non-Perturbative test of QCD in hot and dense environment.
- Our estimated critical point suggests non-monotonic behaviour in all m_i , which should be accessible to the low energy scan of RHIC BNL !

- Smooth & monotonic behaviour for large \sqrt{s} : $m_1 \downarrow$ and $m_3 \uparrow$.
- Note that even in this smooth region, an experimental comparison is exciting : Direct Non-Perturbative test of QCD in hot and dense environment.
- Our estimated critical point suggests non-monotonic behaviour in all m_i , which should be accessible to the low energy scan of RHIC BNL !
- Proton number fluctuations (Hatta-Stephenov, PRL 2003)
- Neat idea : directly linked to the baryonic susceptibility which ought to diverge at the critical point. Since diverging ξ is linked to σ mode, which cannot mix with any isospin modes, expect χ_I to be regular.

- Smooth & monotonic behaviour for large \sqrt{s} : $m_1 \downarrow$ and $m_3 \uparrow$.
- Note that even in this smooth region, an experimental comparison is exciting : Direct Non-Perturbative test of QCD in hot and dense environment.
- Our estimated critical point suggests non-monotonic behaviour in all m_i , which should be accessible to the low energy scan of RHIC BNL !
- Proton number fluctuations (Hatta-Stephenov, PRL 2003)
- Neat idea : directly linked to the baryonic susceptibility which ought to diverge at the critical point. Since diverging ξ is linked to σ mode, which cannot mix with any isospin modes, expect χ_I to be regular.
- Leads to a ratio $\chi_Q:\chi_I:\chi_B = 1:0:4$
- Assuming protons, neutrons, pions to dominate, both χ_Q and χ_B can be shown to be proton number fluctuations only.

Aggarwal et al., STAR Collaboration, arXiv : 1004.4959

• Reasonable agreement with our lattice results. Where is the critical point ?

Summary

- Phase diagram in $T \mu$ has begun to emerge: Different methods, \rightsquigarrow similar qualitative picture. Critical Point at $\mu_B/T \sim 1 - 2$.
- Our results for $N_t = 8$ first to begin the inching towards continuum limit.

Summary

- Phase diagram in $T \mu$ has begun to emerge: Different methods, \rightsquigarrow similar qualitative picture. Critical Point at $\mu_B/T \sim 1-2$.
- Our results for $N_t = 8$ first to begin $\stackrel{\circ}{\succeq}$ 0.9 the inching towards continuum limit.
- We showed that Critical Point leads to structures in m_i on the Freeze-Out Curve. Possible Signatue ?

 \heartsuit STAR results appear to agree with our Lattice QCD predictions. \heartsuit

• Our estimate consistent with Fodor & Katz (2002) [$m_\pi/m_
ho=0.31$ and $N_sm_\pi\sim$ 3-4].

• Our estimate consistent with Fodor & Katz (2002) [$m_{\pi}/m_{
ho}=0.31$ and $N_sm_{\pi}\sim$ 3-4].

• Strong finite size effects for small N_s . A strong change around $N_s m_{\pi} \sim 6$. (Compatible with arguments of Smilga & Leutwyler and also seen for hadron masses by Gupta & Ray)

(Ch. Schmidt FAIR Lattice QCD Days, Nov 23-24, 2009.)

Imaginary Chemical Potential

deForcrand-Philpsen JHEP 0811

For $N_f = 3$, they find $\frac{m_c(\mu)}{m_c(0)} = 1 - 3.3(3) \left(\frac{\mu}{\pi T_c}\right)^2 - 47(20) \left(\frac{\mu}{\pi T_c}\right)^4$, i.e., m_c shrinks with μ .

Imaginary Chemical Potential

deForcrand-Philpsen JHEP 0811

For $N_f = 3$, they find $\frac{m_c(\mu)}{m_c(0)} = 1 - 3.3(3) \left(\frac{\mu}{\pi T_c}\right)^2 - 47(20) \left(\frac{\mu}{\pi T_c}\right)^4$, i.e., m_c shrinks with μ .

Problems : i) Positive coefficient for finer lattice (Philipsen, CPOD 2009), ii) Known examples where shapes are different in real/imaginary μ ,

"The Critical line from imaginary to real baryonic chemical potentials in two-color QCD", P. Cea, L. Cosmai, M. D'Elia, A. Papa, PR D77, 2008

