Anomaly at Finite Density & Chemical Potential on Lattice

Rajiv V. Gavai & Sayantan Sharma*
T. I. F. R., Mumbai & Universität Bielefeld

^{*} arXiv: 0906.5188, Phys. Rev. D., in press.

Anomaly at Finite Density & Chemical Potential on Lattice

Rajiv V. Gavai & Sayantan Sharma*
T. I. F. R., Mumbai & Universität Bielefeld

Introduction

Anomaly for $\mu \neq 0$: Continuum

Two simple ideas for Lattice

Summary

^{*} arXiv: 0906.5188, Phys. Rev. D., in press.

 \spadesuit A fundamental aspect of the QCD Phase Diagram is the Critical Point in the T- μ_B plane expected on the basis of symmetries and models.

Expected QCD Phase Diagram

From Rajagopal-Wilczek Review

 \spadesuit A fundamental aspect of the QCD Phase Diagram is the Critical Point in the T- μ_B plane expected on the basis of symmetries and models.

Expected QCD Phase Diagram

... but could, however, be ...

From Rajagopal-Wilczek Review

 \spadesuit A fundamental aspect of the QCD Phase Diagram is the Critical Point in the T- μ_B plane expected on the basis of symmetries and models.

Expected QCD Phase Diagram

... but could, however, be ...

From Rajagopal-Wilczek Review

 \spadesuit A fundamental aspect of the QCD Phase Diagram is the Critical Point in the T- μ_B plane expected on the basis of symmetries and models.

Expected QCD Phase Diagram

... but could, however, be ... McLerran-

Pisarski 2007

From Rajagopal-Wilczek Review

- ♠ Would be nice to have a first principles determination of the phase diagram ⇒ Lattice QCD.
- Two light flavours of quarks are crucial for critical point, as is the exact chiral symmetry on the lattice when the quark mass is tuned to zero.

- ♠ Would be nice to have a first principles determination of the phase diagram ⇒ Lattice QCD.
- Two light flavours of quarks are crucial for critical point, as is the exact chiral symmetry on the lattice when the quark mass is tuned to zero.
- ♠ First Order Chiral Transition for three (or more) massless flavours, while Second Order for two massless ones.
- \heartsuit Temperature dependence of the Chiral Anomaly may be important as well; No CEP if instanton density is small enough below T_{ch} (Pisarski-Wilczek, 1984).

- ♠ Would be nice to have a first principles determination of the phase diagram ⇒ Lattice QCD.
- \heartsuit Two light flavours of quarks are crucial for critical point, as is the exact chiral symmetry on the lattice when the quark mass is tuned to zero.
- ♠ First Order Chiral Transition for three (or more) massless flavours, while Second Order for two massless ones.
- \heartsuit Temperature dependence of the Chiral Anomaly may be important as well; No CEP if instanton density is small enough below T_{ch} (Pisarski-Wilczek, 1984).
- ♦ Type of quarks? Fermions on lattice have a well-known "No-Go" theorem due to Nielsen-Ninomiya.

Popular choices

 Wilson Fermions – Break all chiral symmetries. Well defined flavour and spin, however.

- Kogut-Susskind Fermions Have some chiral symmetry but break flavour and spin symmetry. Only flavour nonsinglet axial symmetry.
- Graphene or Creutz-Boriçi Fermions Have some chiral and spin symmetry but do break flavour symmetry. Only flavour nonsinglet axial symmetry.

- Kogut-Susskind Fermions Have some chiral symmetry but break flavour and spin symmetry. Only flavour nonsinglet axial symmetry.
- Graphene or Creutz-Boriçi Fermions Have some chiral and spin symmetry but do break flavour symmetry. Only flavour nonsinglet axial symmetry.
- Overlap Fermions Almost like continuum; have both correct chiral and flavour symmetry on lattice. They even have an index theorem as well. (Hasenfratz, Laliena & Niedermeyer, PLB 1998; Lüscher PLB 1998.)
- Domain Wall Fermions *small* violations of chiral symmetry $[\sim \exp(-L_5)]$ with exact flavour symmetry on lattice.

- Kogut-Susskind Fermions Have some chiral symmetry but break flavour and spin symmetry. Only flavour nonsinglet axial symmetry.
- Graphene or Creutz-Boriçi Fermions Have some chiral and spin symmetry but do break flavour symmetry. Only flavour nonsinglet axial symmetry.
- Overlap Fermions Almost like continuum; have both correct chiral and flavour symmetry on lattice. They even have an index theorem as well. (Hasenfratz, Laliena & Niedermeyer, PLB 1998; Lüscher PLB 1998.)
- Domain Wall Fermions *small* violations of chiral symmetry [$\sim \exp(-L_5)$] with exact flavour symmetry on lattice.

 \heartsuit Note that chemical potential, μ_B , has to be introduced without violating the symmetries in order to investigate the entire T- μ_B plane.

 \spadesuit The staggered fermions are oft-used, but need $N_t \geq 13$ for restoration on full flavour symmetry.

Golterman, Shamir & Svetitsky, PRD 2006.

 \spadesuit The staggered fermions are oft-used, but need $N_t \geq 13$ for restoration on full flavour symmetry.

 \heartsuit Rooting appears to have more problems for nonzero μ . Use of Overlap fermions therefore seems desirable.

Introducing Chemical Potential

- Ideally, one should construct the conserved charge, N, as a first step, and add μN . But this leads to a^{-2} divergences in the continuum limit.
- Multiply gauge links in positive/negative time direction by $\exp(a\mu)$ and $\exp(-a\mu)$ respectively. No change in chiral invariance for staggered fermions, as a result. (Hasenfratz-Karsch 1982; Kogut et al. 1982; Bilic-Gavai 1983).

Introducing Chemical Potential

- Ideally, one should construct the conserved charge, N, as a first step, and add μN . But this leads to a^{-2} divergences in the continuum limit.
- Multiply gauge links in positive/negative time direction by $\exp(a\mu)$ and $\exp(-a\mu)$ respectively. No change in chiral invariance for staggered fermions, as a result. (Hasenfratz-Karsch 1982; Kogut et al. 1982; Bilic-Gavai 1983).
- Non-locality makes the construction of N difficult for the Overlap case, even non-unique (Mandula, 2007).
- Bloch-Wettig (PRL 2006; PRD 2007) proposal : Use the same prescription as above, i.e., $D_W(0) \to D_W(a\mu)$ in the sign function: $D_{ov} = 1 + \gamma_5 \ sgn(\gamma_5 D_W)$.

Introducing Chemical Potential

- Ideally, one should construct the conserved charge, N, as a first step, and add μN . But this leads to a^{-2} divergences in the continuum limit.
- Multiply gauge links in positive/negative time direction by $\exp(a\mu)$ and $\exp(-a\mu)$ respectively. No change in chiral invariance for staggered fermions, as a result. (Hasenfratz-Karsch 1982; Kogut et al. 1982; Bilic-Gavai 1983).
- Non-locality makes the construction of N difficult for the Overlap case, even non-unique (Mandula, 2007).
- Bloch-Wettig (PRL 2006; PRD 2007) proposal : Use the same prescription as above, i.e., $D_W(0) \to D_W(a\mu)$ in the sign function: $D_{ov} = 1 + \gamma_5 \ sgn(\gamma_5 D_W)$.
- We (Banerjee, Gavai, Sharma, PRD 2008; PoS Lattice 2008; Gattringer-Liptak, PRD 2007.) showed that the resultant overlap fermion action has i) no a^{-2} divergences but ii) unfortunately no chiral invariance for nonzero μ .

 \spadesuit Exact chiral invariance for a lattice fermion operator D is assured if it satisfies the Ginsparg-Wilson relation : $\{\gamma_5, D\} = aD\gamma_5D$.

- \spadesuit Exact chiral invariance for a lattice fermion operator D is assured if it satisfies the Ginsparg-Wilson relation : $\{\gamma_5, D\} = aD\gamma_5D$.
- \spadesuit In particular, the chiral transformations (Lüscher, PLB 1999) $\delta\psi=\alpha\gamma_5(1-\frac{a}{2}D)\psi$ and $\delta\bar\psi=\alpha\bar\psi(1-\frac{a}{2}D)\gamma_5$, leave the action $S=\sum\bar\psi D\psi$ invariant.

- \spadesuit Exact chiral invariance for a lattice fermion operator D is assured if it satisfies the Ginsparg-Wilson relation : $\{\gamma_5, D\} = aD\gamma_5D$.
- \spadesuit In particular, the chiral transformations (Lüscher, PLB 1999) $\delta\psi=\alpha\gamma_5(1-\frac{a}{2}D)\psi$ and $\delta\bar{\psi}=\alpha\bar{\psi}(1-\frac{a}{2}D)\gamma_5$, leave the action $S=\sum\bar{\psi}D\psi$ invariant.
- \clubsuit The chiral invariance is lost for nonzero μ , since

$$\delta S = \alpha \sum_{x,y} \bar{\psi}_x \left[\gamma_5 D(a\mu) + D(a\mu)\gamma_5 - \frac{a}{2} D(0)\gamma_5 D(a\mu) - \frac{a}{2} D(a\mu)\gamma_5 D(0) \right]_{xy} \psi_y , \qquad (1)$$

under Lüscher's chiral transformations.

- \spadesuit Exact chiral invariance for a lattice fermion operator D is assured if it satisfies the Ginsparg-Wilson relation : $\{\gamma_5, D\} = aD\gamma_5D$.
- \spadesuit In particular, the chiral transformations (Lüscher, PLB 1999) $\delta\psi=\alpha\gamma_5(1-\frac{a}{2}D)\psi$ and $\delta\bar{\psi}=\alpha\bar{\psi}(1-\frac{a}{2}D)\gamma_5$, leave the action $S=\sum\bar{\psi}D\psi$ invariant.
- \clubsuit The chiral invariance is lost for nonzero μ , since

$$\delta S = \alpha \sum_{x,y} \bar{\psi}_x \left[\gamma_5 D(a\mu) + D(a\mu) \gamma_5 - \frac{a}{2} D(0) \gamma_5 D(a\mu) - \frac{a}{2} D(a\mu) \gamma_5 D(0) \right]_{xy} \psi_y , \qquad (1)$$

under Lüscher's chiral transformations.

However, the sign function definition of Bloch-Wettig merely ensures

$$\gamma_5 D(a\mu) + D(a\mu)\gamma_5 - a D(a\mu)\gamma_5 D(a\mu) = 0 , \qquad (2)$$

which is not sufficient to make $\delta S = 0$.

 \spadesuit the chiral transformations were $\delta\psi=\alpha\gamma_5(1-\frac{a}{2}D(a\mu))\psi$ and $\delta\bar{\psi}=\alpha\bar{\psi}(1-\frac{a}{2}D(a\mu))\gamma_5$?

 \spadesuit the chiral transformations were $\delta\psi=\alpha\gamma_5(1-\frac{a}{2}D(a\mu))\psi$ and $\delta\bar{\psi}=\alpha\bar{\psi}(1-\frac{a}{2}D(a\mu))\gamma_5$? $\delta S=0$ then clearly.

• Not allowed since $\gamma_5 D(a\mu)$ is not Hermitian.

 \spadesuit the chiral transformations were $\delta\psi=\alpha\gamma_5(1-\frac{a}{2}D(a\mu))\psi$ and $\delta\bar{\psi}=\alpha\bar{\psi}(1-\frac{a}{2}D(a\mu))\gamma_5$? $\delta S=0$ then clearly.

- Not allowed since $\gamma_5 D(a\mu)$ is not Hermitian.
- Symmetry transformations should not depend on "external" parameter μ . Chemical potential is introduced for charges N_i with $[H,N_i]=0$. At least the symmetry should not change as μ does.

- \spadesuit the chiral transformations were $\delta\psi=\alpha\gamma_5(1-\frac{a}{2}D(a\mu))\psi$ and $\delta\bar{\psi}=\alpha\bar{\psi}(1-\frac{a}{2}D(a\mu))\gamma_5$? $\delta S=0$ then clearly.
- Not allowed since $\gamma_5 D(a\mu)$ is not Hermitian.
- Symmetry transformations should not depend on "external" parameter μ . Chemical potential is introduced for charges N_i with $[H,N_i]=0$. At least the symmetry should not change as μ does.
- Moreover, symmetry groups different at each μ . Recall we wish to investigate $\langle \bar{\psi}\psi \rangle(a\mu)$ to explore if chiral symmetry is restored.
- The symmetry group remains same at each T with $\mu=0$ $\Longrightarrow \langle \bar{\psi}\psi\rangle(am=0,T)$ is an order parameter for the chiral transition.

- Accepting the μ -dependent chiral transformations, on the other hand, leads to an index theorem for nonzero μ as well (Bloch-Wettig PRD 2007).
- The zero modes of $D_{ov}(a\mu)$ appear in the chiral anomaly relation.

- Accepting the μ -dependent chiral transformations, on the other hand, leads to an index theorem for nonzero μ as well (Bloch-Wettig PRD 2007).
- The zero modes of $D_{ov}(a\mu)$ appear in the chiral anomaly relation.
- ullet What does nonzero μ do to the usual chiral anomaly in the continuum ?
- Calculations in real time (Qian, Su & Yu ZPC 1994) and Minkowski space-time (Hsu, Sannino & Schwetz MPLA 2001) formalisms show chiral anomaly is unaffected by nonzero μ .
- Conventional wisdom is that chiral anomaly is an ultra-violet effect. So expect no change due to nonzero μ .
- We re-visit the issue using a) Euclidean perturbation theory and b) the nonperturbative Fujikawa method.

Anomaly for $\mu \neq 0$: Continuum results

• Perturbatively we need to compute $\langle \partial_{\mu} j_{\mu}^5 \rangle$, i.e., the triangle diagrams for $\mu \neq 0$.

• Denoting by $\Delta^{\lambda\rho\sigma}(k_1,k_2)$ the total amplitude and contracting it with q_{λ} ,

$$q_{\lambda} \Delta^{\lambda \rho \sigma} = -i g^{2} \operatorname{tr}[T^{a} T^{b}] \int \frac{d^{4} p}{(2\pi)^{4}} \operatorname{Tr} \left[\gamma^{5} \frac{1}{\not p - q' - i \mu \gamma^{4}} \gamma^{\sigma} \frac{1}{\not p - \not k_{1} - i \mu \gamma^{4}} \gamma^{\rho} \right.$$

$$- \gamma^{5} \frac{1}{\not p - i \mu \gamma^{4}} \gamma^{\sigma} \frac{1}{\not p - \not k_{1} - i \mu \gamma^{4}} \gamma^{\rho} + \gamma^{5} \frac{1}{\not p - q' - i \mu \gamma^{4}} \gamma^{\rho} \frac{1}{\not p - \not k_{2} - i \mu \gamma^{4}} \gamma^{\sigma}$$

$$- \gamma^{5} \frac{1}{\not p - i \mu \gamma^{4}} \gamma^{\rho} \frac{1}{\not p - \not k_{2} - i \mu \gamma^{4}} \gamma^{\sigma} \right] .$$

• Denoting by $\Delta^{\lambda\rho\sigma}(k_1,k_2)$ the total amplitude and contracting it with q_{λ} ,

$$q_{\lambda} \Delta^{\lambda \rho \sigma} = -i g^{2} \operatorname{tr}[T^{a} T^{b}] \int \frac{d^{4} p}{(2\pi)^{4}} \operatorname{Tr} \left[\gamma^{5} \frac{1}{\not p - \not q - i \mu \gamma^{4}} \gamma^{\sigma} \frac{1}{\not p - \not k_{1} - i \mu \gamma^{4}} \gamma^{\rho} \right.$$

$$- \gamma^{5} \frac{1}{\not p - i \mu \gamma^{4}} \gamma^{\sigma} \frac{1}{\not p - \not k_{1} - i \mu \gamma^{4}} \gamma^{\rho} + \gamma^{5} \frac{1}{\not p - q - i \mu \gamma^{4}} \gamma^{\rho} \frac{1}{\not p - \not k_{2} - i \mu \gamma^{4}} \gamma^{\sigma}$$

$$- \gamma^{5} \frac{1}{\not p - i \mu \gamma^{4}} \gamma^{\rho} \frac{1}{\not p - \not k_{2} - i \mu \gamma^{4}} \gamma^{\sigma} \right] .$$

 Quadratic Divergent integrals; need cut-off which should be gauge invariant since

$$k_{1\rho}\Delta^{\lambda\rho\sigma}(k_1,k_2) = k_{2\sigma}\Delta^{\lambda\rho\sigma}(k_1,k_2) = 0.$$

• Can be done as for $\mu = 0$ by writing $q_{\lambda} \Delta^{\lambda \rho \sigma} = (-i) \operatorname{tr} [T^a T^b] g^2 \int \frac{d^4 p}{(2\pi)^4} [f(p-k_1,k_2) - f(p,k_2) + f(p-k_2,k_1) - f(p,k_1)].$

- ullet The final result is $\propto f$ due to the structure above.
- Due to nonzero μ , the function f has $(p_4^2 + \vec{p}^2) \to ((p_4 i\mu)^2 + \vec{p}^2)$ in the denominator and terms proportional to μ and μ^2 in the numerator.
- Since the μ^2 terms have Tr $\left[\gamma^5\gamma^4\gamma^\sigma\gamma^4\gamma^\rho\right]\sim\epsilon^{4\sigma4\rho}$, they vanish.

- ullet The final result is $\propto f$ due to the structure above.
- Due to nonzero μ , the function f has $(p_4^2 + \vec{p}^2) \to ((p_4 i\mu)^2 + \vec{p}^2)$ in the denominator and terms proportional to μ and μ^2 in the numerator.
- Since the μ^2 terms have Tr $\left[\gamma^5\gamma^4\gamma^\sigma\gamma^4\gamma^\rho\right]\sim\epsilon^{4\sigma4\rho}$, they vanish.
- Scaling the integration variable by the cut-off Λ , the μ -dependent terms appear with Λ^{-1} , leading to μ independence as $\Lambda \to \infty$: The same anomaly relation as for $\mu = 0$.
- In agreement with earlier calculations in real time (Qian, Su & Yu ZPC 1994) or Minkowski space-time (Hsu, Sannino & Schwetz MPLA 2001), which are more involved.

Anomaly for $\mu \neq 0$: Fujikawa method

Under the chiral transformation of the fermion fields, given by,

$$\psi' = \exp(i\alpha\gamma_5)\psi$$
 and $\bar{\psi}' = \bar{\psi}\exp(i\alpha\gamma_5)$, (3)

the measure changes as

$$\mathcal{D}\bar{\psi}'\mathcal{D}\psi' = \mathcal{D}\bar{\psi}\mathcal{D}\psi \operatorname{Det}\left|\frac{\partial(\bar{\psi}',\psi')}{\partial(\bar{\psi},\psi)}\right| \sim \exp(-2i\alpha \int d^4x \operatorname{Tr}\gamma_5) . \tag{4}$$

Anomaly for $\mu \neq 0$: Fujikawa method

Under the chiral transformation of the fermion fields, given by,

$$\psi' = \exp(i\alpha\gamma_5)\psi$$
 and $\bar{\psi}' = \bar{\psi}\exp(i\alpha\gamma_5)$, (3)

the measure changes as

$$\mathcal{D}\bar{\psi}'\mathcal{D}\psi' = \mathcal{D}\bar{\psi}\mathcal{D}\psi \operatorname{Det}\left|\frac{\partial(\bar{\psi}',\psi')}{\partial(\bar{\psi},\psi)}\right| \sim \exp(-2i\alpha \int d^4x \operatorname{Tr}\gamma_5) . \tag{4}$$

- Evaluate the trace using the eigenvectors of the operator \mathcal{D} for $\mu = 0$.
- Since $\{\gamma_5, \not D\} = 0$, for each finite λ_n , $\phi_n^{\pm} = \phi_n \pm \gamma_5 \phi_n$, eigenvectors of γ_5 with ± 1 eigenvalues, can be used, leading to zero.

- Zero eigenmodes of \mathcal{D} have definite chirality, leading to Tr $\gamma_5 = n_+ n_-$.
- For $\mu \neq 0$, use the eigenvectors of the operator $\mathcal{D}(\mu)$.
- It still anti-commutes with γ_5 but has both an anti-Hermitian and a Hermitian term. Remarkably, it turns out still to be diagonalizable.

- Zero eigenmodes of \mathcal{D} have definite chirality, leading to Tr $\gamma_5 = n_+ n_-$.
- For $\mu \neq 0$, use the eigenvectors of the operator $\mathcal{D}(\mu)$.
- It still anti-commutes with γ_5 but has both an anti-Hermitian and a Hermitian term. Remarkably, it turns out still to be diagonalizable.
- ullet Define two new vectors, ζ_m and υ_m

$$\zeta_m(\mathbf{x},\tau) = e^{\mu\tau} \phi_m(\mathbf{x},\tau) , \quad \psi_m^{\dagger}(\mathbf{x},\tau) = \phi_m^{\dagger}(\mathbf{x},\tau) e^{-\mu\tau} .$$
 (5)

• Easy to show that ζ_m (υ_m^{\dagger}) is the eigenvector of $\mathcal{D}(\mu)$ ($\mathcal{D}(\mu)^{\dagger}$) with the same (purely imaginary) eigenvalue λ_m (- λ_m).

- Further, one can show $\sum_{m} \int \zeta_{m}(\mathbf{x}, \tau) \upsilon_{m}^{\dagger}(\mathbf{x}, \tau) \ d^{4}x = \mathbf{I}$ and $\int \upsilon_{m}^{\dagger}(\mathbf{x}, \tau) \zeta_{m}(\mathbf{x}, \tau) \ d^{4}x = 1$.
- Using these eigenvector spaces of $\mathcal{D}(\mu)$, trace of γ_5 can again be shown to be zero for all non-zero λ_m , leading to Tr $\gamma_5 = n_+ n_-$ for $\mu \neq 0$ as well.
- Both perturbatively, and nonperturbatively, we have shown that the anomaly does not change at finite density, as may have been expected naively.

- Further, one can show $\sum_{m} \int \zeta_{m}(\mathbf{x}, \tau) \upsilon_{m}^{\dagger}(\mathbf{x}, \tau) \ d^{4}x = \mathbf{I}$ and $\int \upsilon_{m}^{\dagger}(\mathbf{x}, \tau) \zeta_{m}(\mathbf{x}, \tau) \ d^{4}x = 1$.
- Using these eigenvector spaces of $\mathcal{D}(\mu)$, trace of γ_5 can again be shown to be zero for all non-zero λ_m , leading to Tr $\gamma_5 = n_+ n_-$ for $\mu \neq 0$ as well.
- Both perturbatively, and nonperturbatively, we have shown that the anomaly does not change at finite density, as may have been expected naively.
- If chiral transformation on lattice is chosen to depend on μ , so that Bloch-Wettig proposal has chiral invariance for $\mu \neq 0$, then the resulting index theorem has μ -dependent zero modes which determine the anomaly, unlike in the continuum.
- It is undesirable for other reasons we pointed out earlier (Banerjee, Gavai, Sharma, PoS Lattice 2008).

A "Gauge-like" Transformation

- A non-unitary transformation of the fermion fields of the QCD action in the presence of μ , given by $\psi'(\mathbf{x},\tau) = \mathrm{e}^{\mu\tau}\psi(\mathbf{x},\tau)$, $\bar{\psi}'(\mathbf{x},\tau) = \bar{\psi}(\mathbf{x},\tau)\mathrm{e}^{-\mu\tau}$, makes the action μ -independent: $S_F(\mu) \to S_F'(0)$.
- It commutes with the Chiral Transformations. Explains the rescaling of eigenvectors, leaving the spectrum unchanged. Preserves anomaly as well.

A "Gauge-like" Transformation

- A non-unitary transformation of the fermion fields of the QCD action in the presence of μ , given by $\psi'(\mathbf{x},\tau) = \mathrm{e}^{\mu\tau}\psi(\mathbf{x},\tau)$, $\bar{\psi}'(\mathbf{x},\tau) = \bar{\psi}(\mathbf{x},\tau)\mathrm{e}^{-\mu\tau}$, makes the action μ -independent: $S_F(\mu) \to S_F'(0)$.
- It commutes with the Chiral Transformations. Explains the rescaling of eigenvectors, leaving the spectrum unchanged. Preserves anomaly as well.
- Easy to see that it works for any local fermion action, including for the lattice action, with $\mu\tau \to a_4\mu*n_4$ leading to the Hasenfratz-Karsch prescription or the more general $f(\mu a_4)*n_4$ to the others.
- Generalization for non-local cases, Overlap fermions, does not appear particularly useful. For the free case $e^{\mu\tau}D_{ov}(\mu=0)e^{-\mu\tau}$ is free of a^{-2} divergence but does not appear to have chiral invariance. :'(

Two simple ideas for Lattice

 Only fermions confined to the domain wall are physical, so introduce a chemical potential only to count them:

$$D_{ov}(\hat{\mu})_{xy} = (D_{ov})_{xy} - \frac{a\hat{\mu}}{2a_4 M} \left[(1 - \gamma_4)U_4(y)\delta_{x,y-\hat{4}} + (\gamma_4 + 1)U_4^{\dagger}(x)\delta_{x,y+\hat{4}} \right] .$$
(6)

Two simple ideas for Lattice

 Only fermions confined to the domain wall are physical, so introduce a chemical potential only to count them:

$$D_{ov}(\hat{\mu})_{xy} = (D_{ov})_{xy} - \frac{a\hat{\mu}}{2a_4 M} \left[(1 - \gamma_4)U_4(y)\delta_{x,y-\hat{4}} + (\gamma_4 + 1)U_4^{\dagger}(x)\delta_{x,y+\hat{4}} \right] . \tag{6}$$

- As the Bloch-Wettig proposal, this too breaks chiral invariance but D_{ov} is defined by the usual sign-function. Bloch-Wettig proposal needs sign-function of a non-Hermitian matrix; not always well-defined.
- Expect a^{-2} -divergences as $a \to 0$. Follow the same prescription used for the Pressure computation (which diverges at zero temperature as Λ^4). Use Large N_{τ} and the same lattice spacing a for subtraction.

- Consider two Observables : $\Delta \epsilon(\mu,T) = \epsilon(\mu,T) \epsilon(0,T)$ and Susceptibility, $\sim \partial^2 \ln \mathcal{Z}/\partial \mu^2$.
- \bullet Former computed for $r=\mu/T=0.5$ while latter for $\mu=0.$

- Consider two Observables : $\Delta \epsilon(\mu,T) = \epsilon(\mu,T) \epsilon(0,T)$ and Susceptibility, $\sim \partial^2 \ln \mathcal{Z}/\partial \mu^2$.
- Former computed for $r = \mu/T = 0.5$ while latter for $\mu = 0$.

This Work (Gavai-Sharma)

Banerjee, Gavai & Sharma, PRD 2008.

This Work (Gavai-Sharma)

Banerjee, Gavai & Sharma, PRD 2008.

This Work (Gavai-Sharma)

Banerjee, Gavai & Sharma, PRD 2008.

- ullet Much less M-dependence for our proposal, and
- less oscillations compared to the Bloch-Wettig form.

4th Order Susceptibility : A) $\,\hat{\mu}/s$ and B) $\hat{\mu}/M$

4th Order Susceptibility : A) $\hat{\mu}/s$ and B) $\hat{\mu}/M$

- ullet Divergences can be eliminated; M-dependence milder.
- Slow convergence to the expected continuum value; Can be improved by using higher-link derivatives, or even variations of the coefficients of the $\hat{\mu}$ -term.

2nd Idea: Extend to Local Fermions

• We propose to introduce μ in general by

$$S_F = \sum_{x,y} \bar{\Psi}(x) M(\mu; x, y) \Psi(y)$$

=
$$\sum_{x,y} \bar{\Psi}(x) D(x, y) \Psi(y) + \mu a \sum_{x,y} N(x, y).$$

Here D can be the staggered, overlap, the Wilson-Dirac or any other suitable fermion operator and N(x,y) is the corresponding point-split and gauge invariant number density.

2nd Idea: Extend to Local Fermions

• We propose to introduce μ in general by

$$S_F = \sum_{x,y} \bar{\Psi}(x) M(\mu; x, y) \Psi(y)$$

= $\sum_{x,y} \bar{\Psi}(x) D(x, y) \Psi(y) + \mu a \sum_{x,y} N(x, y).$

Here D can be the the staggered, overlap, the Wilson-Dirac or any other suitable fermion operator and N(x,y) is the corresponding point-split and gauge invariant number density.

This leads to

$$M' = \sum_{x,y} N(x,y)$$
, and $M'' = M''' = M'''' \dots = 0$,

in contrast to the popular $\exp(\pm a\mu)$ -prescription where *all* derivatives are nonzero:

$$M'=M'''...=\sum_{x,y}N(x,y)$$
 and $M''=M''''=M'''''...\neq 0$.

- Lot fewer terms in the Taylor coefficients, especially as the order increases. E.g., in the 4th order susceptibility, $\mathcal{O}_4 = -6 \text{ Tr } (M^{-1}M')^4$ in our proposal, compared to $\mathcal{O}_4 = -6 \text{ Tr } (M^{-1}M')^4 + 12 \text{ Tr } (M^{-1}M')^2 M^{-1}M'' 3 \text{ Tr } (M^{-1}M'')^2 3 \text{ Tr } M^{-1}M'M^{-1}M''' + \text{Tr } M^{-1}M''''$.
- \mathcal{O}_8 has one term in contrast to 18 in the usual case. \Longrightarrow Number of M^{-1} computations needed are lesser.

Summary

- We showed, both perturbatively and non-perturbatively, that the introduction of nonzero μ leaves the anomaly unaffected. The zero modes of the Dirac operator for $\mu=0$ govern it; nonzero μ simply scales the eigenvectors.
- A "gauge-like" symmetry in the continuum can be traced as the reason for anomaly preservation. Local lattice actions can easily adopt it. But how to ensure that for the overlap like non-local fermions remains unclear.

Summary

- We showed, both perturbatively and non-perturbatively, that the introduction of nonzero μ leaves the anomaly unaffected. The zero modes of the Dirac operator for $\mu=0$ govern it; nonzero μ simply scales the eigenvectors.
- A "gauge-like" symmetry in the continuum can be traced as the reason for anomaly preservation. Local lattice actions can easily adopt it. But how to ensure that for the overlap like non-local fermions remains unclear.
- Overlap fermions at finite density could be studied by simply adding the μ -term linearly. The chiral symmetry breaking is similar but the inverse propagator simpler.
- Extending to staggered fermions, it may be less costly to implement this idea and may permit extensions to higher orders.