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Importance of Being Critical

Phase Diagram of Water • One, possibly two,
critical points

• Extreme density
fluctuations
=⇒ Opalescent
turbidity

• Dielectric constant
& Viscosity ↓.

• Many liquid fueled
engines exploit
such supercritical
transitions.
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Latent Heat– & finite Cv
→ First order PT.
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• Continuous ε, & diverging
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• In(Finite) Correleation
Length at 2nd (1st) Order
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• Discontinuous ε – Nonzero
Latent Heat– & finite Cv
→ First order PT.

• Continuous ε, & diverging
Cv → Second order PT.

• In(Finite) Correleation
Length at 2nd (1st) Order
transition.

• “Cross-over” – mere rapid
change in ε, with maybe a
sharp peaked Cv.

Institut für Theoretische Physik, Universität Regensburg, January 22, 2010 R. V. Gavai Top 3



Chiral Symmetry & Effective quark mass

• Spin 1/2 particle of mass m ⇒ Sz = ±1/2. Let z-axis be along its momentum
~P
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• The particle must come to rest in between : m 6= 0.
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Chiral Symmetry & Effective quark mass

• Spin 1/2 particle of mass m ⇒ Sz = ±1/2. Let z-axis be along its momentum
~P : A) [Sz →] along the momentum [~P =⇒]

OR

B) Opposite to it, i. e., [Sz ←] along [~P =⇒] ≡ [Sz →] along [~P ⇐=].

• Particle in state A can be transformed to state B by a Lorentz transformation
along z-axis.

• The particle must come to rest in between : m 6= 0.

• For (Nf) massless particles, A or B do not change into each other: Chiral
Symmetry (SU(Nf)× SU(Nf)).
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• Interactions can break the chiral symmetry dynamically, leading to effective
masses for these particles.

• Light pions and heavy baryons (protons/neutrons) arise this way in QCD (Y.
Nambu, Physics Nobel Prize 2008).
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• Chiral symmetry may get restored at sufficiently high temperatures or densities.
Effective mass then ‘melts’ away, just as magnet loses its magnetic properties
on heating.

• New States at High Temperatures/Density expected on basis of models.
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• Interactions can break the chiral symmetry dynamically, leading to effective
masses for these particles.

• Light pions and heavy baryons (protons/neutrons) arise this way in QCD (Y.
Nambu, Physics Nobel Prize 2008).

• Chiral symmetry may get restored at sufficiently high temperatures or densities.
Effective mass then ‘melts’ away, just as magnet loses its magnetic properties
on heating.

• New States at High Temperatures/Density expected on basis of models.

• Quark-Gluon Plasma is such a phase. It presumably filled our Universe a few
microseconds after the Big Bang & can be produced in Relativistic Heavy Ion
Collisions.

• Much richer structure in QCD : Quark Confinement, Dynamical Symmetry
Breaking.. Lattice QCD should shed light on this all.
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QCD Phase diagram

♠ A fundamental aspect – Critical Point in T -µB plane;
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QCD Phase diagram

♠ A fundamental aspect – Critical Point in T -µB plane; Based on symmetries and
models,
Expected QCD Phase Diagram

From Rajagopal-Wilczek Review

... but could, however, be ...
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QCD Phase diagram

♠ A fundamental aspect – Critical Point in T -µB plane; Based on symmetries and
models,
Expected QCD Phase Diagram

From Rajagopal-Wilczek Review

... but could, however, be ...

Τ

McLerran-

Pisarski 2007
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Lattice QCD Results
• QCD defined on a space time lattice – Best and Most Reliable way to extract

non-perturbative physics.

• Completely parameter-free : ΛQCD and quark masses from hadron spectrum.

• The Transition Temperature Tc, the Equation of State, Flavour Correlations
(CBS) and the Wróblewski Parameter λs are some examples for Heavy Ion
Physics. (Gavai-Gupta, PRD 2006 & PRD 2002)
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• Mostly staggered quarks used in these simulations. Broken flavour and spin
symmetry on lattice =⇒ Nf = 2 simulations may be fine in a→ 0 limit but 3
or 2 +1 problematic.

• Domain Wall or Overlap Fermions better. BUT Computationally expensive.

• Introduction of µ a la Bloch & Wettig (PRL 2006 & PRD2007)

• unfortunately breaks chiral symmetry ! (Banerjee, Gavai & Sharma PRD 2008;
PoS (Lattice 2008); PRD 2009 )
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The µ 6= 0 problem

Assuming Nf flavours of quarks, and denoting by µf the corresponding chemical
potentials, the QCD partition function is

Z =
∫
DU exp(−SG)

Q
f Det M(mf,µf ) ,

and the thermal expectation value of an observable O is

〈O〉 =
R
DU exp(−SG) O

Q
f Det M(mf,µf )

Z .
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Simulations can be done IF Det M > 0 for any set of {U} as probabilisitc
methods are used to evaluate 〈O〉.

Institut für Theoretische Physik, Universität Regensburg, January 22, 2010 R. V. Gavai Top 9



The µ 6= 0 problem

Assuming Nf flavours of quarks, and denoting by µf the corresponding chemical
potentials, the QCD partition function is

Z =
∫
DU exp(−SG)

Q
f Det M(mf,µf ) ,

and the thermal expectation value of an observable O is

〈O〉 =
R
DU exp(−SG) O

Q
f Det M(mf,µf )

Z .

Simulations can be done IF Det M > 0 for any set of {U} as probabilisitc
methods are used to evaluate 〈O〉.

However, det M is a complex number for any µ 6= 0 : The Phase/sign problem
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Lattice Approaches

Several Approaches proposed in the past two decades : None as satisfactory as the
usual T 6= 0 simulations. Still scope for a good/great idea !
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Lattice Approaches

Several Approaches proposed in the past two decades : None as satisfactory as the
usual T 6= 0 simulations. Still scope for a good/great idea !

• Two parameter Re-weighting (Z. Fodor & S. Katz, JHEP 0203 (2002) 014 ).

• Imaginary Chemical Potential (Ph. de Frocrand & O. Philipsen, NP B642 (2002) 290; M.-P. Lombardo & M.

D’Elia PR D67 (2003) 014505 ).

• Taylor Expansion (C. Allton et al., PR D66 (2002) 074507 & D68 (2003) 014507; R.V. Gavai and S. Gupta, PR D68 (2003)

034506 ).
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Several Approaches proposed in the past two decades : None as satisfactory as the
usual T 6= 0 simulations. Still scope for a good/great idea !

• Two parameter Re-weighting (Z. Fodor & S. Katz, JHEP 0203 (2002) 014 ).

• Imaginary Chemical Potential (Ph. de Frocrand & O. Philipsen, NP B642 (2002) 290; M.-P. Lombardo & M.

D’Elia PR D67 (2003) 014505 ).

• Taylor Expansion (C. Allton et al., PR D66 (2002) 074507 & D68 (2003) 014507; R.V. Gavai and S. Gupta, PR D68 (2003)

034506 ).

• Canonical Ensemble (K. -F. Liu, IJMP B16 (2002) 2017, S. Kratochvila and P. de Forcrand, Pos LAT2005 (2006) 167.)

• Complex Langevin (G. Aarts and I. O. Stamatescu, arXiv:0809.5227 and its references for earlier work ).
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Why Taylor series expansion?

• Ease of taking continuum and
thermodynamic limit.

• E.g., exp[∆S] factor makes this
exponentially tough for re-weighting.
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• Discretization errors propagate in an
unknown manner in re-weighting.

• Better control of systematic errors.

Institut für Theoretische Physik, Universität Regensburg, January 22, 2010 R. V. Gavai Top 11



Why Taylor series expansion?

• Ease of taking continuum and
thermodynamic limit.

• E.g., exp[∆S] factor makes this
exponentially tough for re-weighting.

• Discretization errors propagate in an
unknown manner in re-weighting.

• Better control of systematic errors.

T

µ

V2

V1

We study volume dependence at several T to i) bracket the critical region and
then to ii) track its change as a function of volume.
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How Do We Do This Expansion?

Canonical definitions yield various number densities and susceptibilities :

ni = T
V
∂ lnZ
∂µi

and χij = T
V
∂2 lnZ
∂µi∂µj

.

These are also useful by themselves both theoretically and for Heavy Ion Physics
(Flavour correlations, λs . . .)

Denoting higher order susceptibilities by χnu,nd, the pressure P has the expansion
in µ:

∆P
T 4
≡ P (µ, T )

T 4
− P (0, T )

T 4
=
∑
nu,nd

χnu,nd
1
nu!

(µu
T

)nu 1
nd!

(µd
T

)nd
(1)
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• From this expansion, a series for baryonic susceptibility can be constructed. Its
radius of convergence gives the nearest critical point.

• Successive estimates for the radius of convergence can be obtained from these

using

√
n(n+1)χ

(n+1)
B

χ
(n+3)
B

T 2
or

(
n! χ

(2)
B

χ
(n+2)
B

T 2

)1/n

. We use both and terms up to 8th

order in µ.

• All coefficients of the series must be POSITIVE for the critical point to be at
real µ, and thus physical.

• Coefficients for the off-diagonal susceptibility, χ11, can be constructed similarly.

• The ratio χ11/χ20 can be shown to yield the ratio of widths of the measure in
the imaginary and real directions at µ = 0.
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How Do We Do This Expansion?

CRAY X1 of I L G T I , T I F R, Mumbai
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Our Simulations & Results

• Staggered fermions with Nf = 2 of m/Tc = 0.1; R-algorithm used.

• mρ/Tc = 5.4± 0.2 and mπ/mρ = 0.31± 0.01 (MILC)

• Earlier Lattice : 4 ×N3
s , Ns = 8, 10, 12, 16, 24 (Gavai-Gupta, PRD 2005)

• Lattice used : 6 ×N3
s , Ns = 12, 18, 24 (Gavai-Gupta, PRD 2009). Needed to

determine βc. Our result (βc = 5.425(5)) well bracketed by MILC for
m/Tc = 0.075 and 0.15.
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Our Simulations & Results

• Staggered fermions with Nf = 2 of m/Tc = 0.1; R-algorithm used.

• mρ/Tc = 5.4± 0.2 and mπ/mρ = 0.31± 0.01 (MILC)

• Earlier Lattice : 4 ×N3
s , Ns = 8, 10, 12, 16, 24 (Gavai-Gupta, PRD 2005)

• Lattice used : 6 ×N3
s , Ns = 12, 18, 24 (Gavai-Gupta, PRD 2009). Needed to

determine βc. Our result (βc = 5.425(5)) well bracketed by MILC for
m/Tc = 0.075 and 0.15.

• New Simulations made at T/Tc = 0.89(1), 0.92(1), 0.94(1), 0.97(1), 0.99 (1)
1.00(1), 1.21(1), 1.33(1), 1.48(3) and 1.92(5)

• Typical stat. 50-200 in max autocorrelation units.
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• We (RVG & S. Gupta, PRD 2005 and PRD 2009) use
terms up to 8th order in µ.

• Our estimate consistent with Fodor
& Katz (2002) [ mπ/mρ = 0.31 and
Nsmπ ∼ 3-4].
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• We (RVG & S. Gupta, PRD 2005 and PRD 2009) use
terms up to 8th order in µ.

• Our estimate consistent with Fodor
& Katz (2002) [ mπ/mρ = 0.31 and
Nsmπ ∼ 3-4].

• Strong finite size effects for small Ns.
A strong change around Nsmπ ∼ 6.
( Compatible with arguments of Smilga & Leutwyler and also

seen for hadron masses by Gupta & Ray)
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• We (RVG & S. Gupta, PRD 2005 and PRD 2009) use
terms up to 8th order in µ.

• Our estimate consistent with Fodor
& Katz (2002) [ mπ/mρ = 0.31 and
Nsmπ ∼ 3-4].

• Strong finite size effects for small Ns.
A strong change around Nsmπ ∼ 6.
( Compatible with arguments of Smilga & Leutwyler and also

seen for hadron masses by Gupta & Ray)

• TE

Tc
= 0.94±0.01, and

µEB
TE

= 1.8±0.1
for finer lattice: Our earlier coarser
lattice result was µEB/T

E = 1.3±0.3.
Infinite volume result: ↓ to 1.1(1)

• Critical point shifted to smaller
µB/T ∼ 1− 2.
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More Details

Measure of the seriousness of sign problem : χ11; Nt = 4 & 6 agree.
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Cross Check on µE/TE

♠ Use Padé approximants for the series to estimate the radius of convergence.
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♥ Consistent Window with our other estimates.
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(Ch. Schmidt FAIR Lattice QCD Days, Nov 23-24, 2009.)
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Imaginary Chemical Potential

deForcrand-Philpsen JHEP 0811

* QCD critical point

crossover 1rst
0

∞

Real world

X

Heavy quarks

mu,d
ms

µ

  QCD critical point DISAPPEARED

crossover 1rst
0

∞

Real world

X

Heavy quarks

mu,d
ms

µ

For Nf = 3, they find mc(µ)
mc(0)

= 1− 3.3(3)
(
µ
πTc

)2

− 47(20)
(
µ
πTc

)4

, i.e., mc shrinks

with µ.
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* QCD critical point

crossover 1rst
0

∞

Real world

X

Heavy quarks

mu,d
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µ

  QCD critical point DISAPPEARED

crossover 1rst
0

∞

Real world

X

Heavy quarks

mu,d
ms

µ

For Nf = 3, they find mc(µ)
mc(0)

= 1− 3.3(3)
(
µ
πTc

)2

− 47(20)
(
µ
πTc

)4

, i.e., mc shrinks

with µ.

Problems : i) Positive coefficient for finer lattice (Philipsen, CPOD 2009), ii)
Known examples where shapes are different in real/imaginary µ,
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“The Critical line from imaginary to real baryonic chemical potentials in two-color
QCD”, P. Cea, L. Cosmai, M. D’Elia, A. Papa, PR D77, 2008
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Searching Experimentally

• Exploit the facts i) susceptibilities diverge near the critical point and ii)
decreasing

√
s increases µB (Rajagopal, Shuryak & Stephanov PRD 1999)

• Look for nonmontonic dependence of the event-by-event fluctuations with
colliding energy.
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• Fluctuations in mean pT of low pT pions.
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• Fluctuations in mean pT of low pT pions. (K. Grebieszkow, CPOD workshop 2007, GSI, Darmstadt)
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• Define m1 = Tχ(3)(T,µB)

χ(2)(T,µB)
, m3 = Tχ(4)(T,µB)

χ(3)(T,µB)
, and m2 = m1m3 and use Lattice

QCD to obtain them. (Gavai-Gupta, TIFR/TH/10-01, arXiv 1001.3796)

• Use the freezeout curve computed from hadron abundances (Andronic, Braun-Munzinger &

Stachel, PLB 2009) to relate (T, µB)to
√
s.
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• Use the freezeout curve computed from hadron abundances (Andronic, Braun-Munzinger &

Stachel, PLB 2009) to relate (T, µB)to
√
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• Our estimated critical point suggests a peak in all mi which would be accesible
to the low energy scan of RHIC BNL !!
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• Proton number fluctuations (Hatta-Stephenov, PRL 2003)

• Neat idea : directly linked to the baryonic susceptibility which ought to diverge
at the critical point. Since diverging ξ is linked to σ mode, which cannot mix
with any isospin modes, expect χI to be regular.
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• Neat idea : directly linked to the baryonic susceptibility which ought to diverge
at the critical point. Since diverging ξ is linked to σ mode, which cannot mix
with any isospin modes, expect χI to be regular.

• Leads to a ratio χQ:χI:χB = 1:0:4

• Assuming protons, neutrons, pions to dominate, both χQ and χB can be shown
to be proton number fluctuations only.
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• Proton number fluctuations (Hatta-Stephenov, PRL 2003)

• Neat idea : directly linked to the baryonic susceptibility which ought to diverge
at the critical point. Since diverging ξ is linked to σ mode, which cannot mix
with any isospin modes, expect χI to be regular.

• Leads to a ratio χQ:χI:χB = 1:0:4

• Assuming protons, neutrons, pions to dominate, both χQ and χB can be shown
to be proton number fluctuations only.

• Isentropic trajectories focus at the critical point (Asakawa-Nonaka, PRC 2005).

• This leads to the emission of high pT particles at earlier times.
(Asakawa-Bass-Nonaka-Müller, INT 2008 workshop).

• Note this is NOT a fluctuations signal but model (EoS) dependent ?
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Summary

• Phase diagram in T −µ on Nt = 4 has
begun to emerge: Different methods,
 similar qualitative picture.

• Our results for Nt = 6 first to begin
the crawling towards continuum limit.
Will µB/T drop a bit in infinite volume
limit ?
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So far no signs of a critical point in the experimental results at CERN.

Will RHIC deliver it for us ?
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