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Introduction

e QCD defined on a space time lattice — Best and Most Reliable way to extract
non-perturbative physics.

e Completely parameter-free : Agcp and quark masses from hadron spectrum.
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Introduction

e QCD defined on a space time lattice — Best and Most Reliable way to extract
non-perturbative physics.

e Completely parameter-free : Agcp and quark masses from hadron spectrum.

e Mostly staggered quarks used in these simulations. Broken flavour and spin
symmetry on lattice.

e The expectation value of an observable O computed by importance sampling :

[ DU exp(—Sg) OT1sDet M(myg,uy)
<(’)> _ — f frr

Simulations can be done IF Det M > 0. However, det M is a complex number
for any p # 0 : The Phase/sign problem.
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Lattice Approaches

Several Approaches proposed in the past two decades : None as satisfactory as the
usual 17" # 0 simulations.
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Lattice Approaches

Several Approaches proposed in the past two decades : None as satisfactory as the
usual 17" # 0 simulations.

e Two parameter Re-weighting (z. Fodor & S. Katz, JHEP 0203 (2002) 014 ).

[ Imaginary Chemical POtentiaI (Ph. de Frocrand & O. Philipsen, NP B642 (2002) 290; M.-P. Lombardo & M.

D’Elia PR D67 (2003) 014505 ).
e Taylor Expansion (c. Aliton et al., PR D68 (2003) 014507; R.V. Gavai and S. Gupta, PR D68 (2003) 034506 ).
e Canonical Ensemble (k. -F. Liu, 1JMP B16 (2002) 2017, S. Kratochvila and P. de Forcrand, Pos LAT2005 (2006) 167.)

[ Com p|eX I_a ngeVin (G. Aarts and |I. O. Stamatescu, arXiv:0809.5227 and its references for earlier work )
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Detail of Expansion

Text-book definitions yield various number densities and susceptibilities :

_T90lnZ

2
n; = and T o“IlnZ

V' O Xij = V(‘?uia,uj

These are also useful by themselves both theoretically and for Heavy lon Physics
(Flavour correlations, As...)

Denoting higher order susceptibilities by Xy, n, the pressure P° has the expansion
In L

™ T4 T4 Wl \NT

nU7nd

AP _ P(p,T) P(O,T): ZX d 1 (Mu)”“ 1 (ud)nd
nung
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From this expansion, a series for baryonic susceptibility can be constructed. lts
radius of convergence gives the nearest critical point.

Successive estimates for the radius of convergence obtained from these using

n(n+1)x %Y 2\ i
e or | nl—is . We use both and terms up to 8th order in
XpB T2 XB 7>

L.

All coefficients of the series must be POSITIVE for the critical point to be at
real p, and thus physical.

We (Gavai-Gupta ‘05, '09) use up to 8" order. Bielefeld-RBC so far has up to 6! order.

10th & even 12th order may be possible : ldeas to extend to higher orders are
emerging (Gavai-harma PRD 2012 & PRD 2010) Which save up to 60 % computer time.
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From this expansion, a series for baryonic susceptibility can be constructed. lts
radius of convergence gives the nearest critical point.

Successive estimates for the radius of convergence obtained from these using

n(n+1)x4 &2\ |
e or | nl—E— . We use both and terms up to 8th order in
xp T? xp ~T?

L.

All coefficients of the series must be POSITIVE for the critical point to be at
real p, and thus physical.

We (Gavai-Gupta ‘05, '09) use up to 8" order. Bielefeld-RBC so far has up to 6" order.

10th & even 12th order may be possible : ldeas to extend to higher orders are
emerging (Gavai-sharma PRD 2012 & PRD 2010) Which save up to 60 % computer time.
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Our Simulations & Results

e Staggered fermions with Ny = 2 of m /T, = 0.1; R-algorithm used.
o m,/m,=0.31=£0.01; Kept the same as a — 0 (on all IVy).

e Earlier Lattice : 4 x N3, N, = 8, 10, 12, 16, 24 (Gavai-Gupta, PRD 2005)
Finer Lattice : 6 ><N§, Ns = 12, 18, 24 (Gavai-Gupta, PRD 2009).
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Our Simulations & Results

e Staggered fermions with Ny = 2 of m /T, = 0.1; R-algorithm used.
o m,/m,=0.31=£0.01; Kept the same as a — 0 (on all IVy).

e Earlier Lattice : 4 x N3, N, = 8, 10, 12, 16, 24 (Gavai-Gupta, PRD 2005)
Finer Lattice : 6 ><N§, Ns = 12, 18, 24 (Gavai-Gupta, PRD 2009).

E
° T%;E = 0.94 £+ 0.01, and ;—% = 1.8 & 0.1 for finer lattice: Our earlier coarser

lattice result was % /T = 1.3 4 0.3. Infinite volume result: | to 1.1(1)
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Our Simulations & Results

e Staggered fermions with Ny = 2 of m /T, = 0.1; R-algorithm used.
o m,/m,=0.31=£0.01; Kept the same as a — 0 (on all IVy).

e Earlier Lattice : 4 x N3, N, = 8, 10, 12, 16, 24 (Gavai-Gupta, PRD 2005)
Finer Lattice : 6 ><N§, Ns = 12, 18, 24 (Gavai-Gupta, PRD 2009).

E
e 7;7 = 0.94 £+ 0.01, and ;ﬁ—g = 1.8 & 0.1 for finer lattice: Our earlier coarser

lattice result was % /T = 1.3 40.3. Infinite volume result: | to 1.1(1)
e 7. — defined by the peak of Polyakov loop susceptibility.

e Even finer Lattice : 8 x32% — This Talk
Aspect ratio, N;/N;, maintained four to reduce finite volume effects.
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Critical Point : Story thus far

1.1
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® Ny = 2 (magenta) and 2+1 (blue) (Fodor-Katz, JHEP '04).
O N = 4 Circles (GG '05 & Fodor-Katz JHEP '02), N; = 6 Box (GG '09).
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xe2 for N; =8, 6, and 4 lattices
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& N; = 8 and 6 results agree
O B.(Ny = 8) agrees with Gottlieb et al. PR D47,1993.

Quark Matter 2012, Washington, U.S.A., August 17, 2012 R. V. Gavai



X5 for N; = 8 lattice
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& 100 configurations & 1000 vectors at each point employed.

¢ More statistics coming in critical region. Window of positivity in anticipated
region.
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Radius of Convergence result

 Nt=8 o

o/ 2/6 2/8 4/6  6/8
obtained from ratios of orders

® At our (T, pg) for Ny = 6, the ratios display constancy for N; = 8 as well.
Q Currently : Similar results at neighbouring T'/T. = a larger AT at same u%.
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Consistence check for critical point

10

T/Tc=0.94
n=6
©
Il
ZI—
= 1 |
<7 : n=8
n=4
n=2
HH
0197 1
xg (N=6)

& Ideally, all coefficients of the series must be the same at the critical point for

both N; = 8 and 6.

¢ Too far from checking this as errors have to be reduced. Encouraging signs

none the less.

10
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Summary

e The method we advocated, and
employed for N, = 4 and 6, works
for N; = 8 as well, yielding similar
qualitative picture.

e Our new results for N; = 8 are first
to begin the march towards continuum
limit.
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Summary

e The method we advocated, and
employed for Nt — 4 and 6, WOI’kS [ Critical point estimates:
for N; = 8 as well, yielding similar —~§~ Budapest-Wuppertal Nt=4]

T o & VumbaN-g
qualitative picture.

€ ool 30 GeV Mumbai Nt=4

e Our new results for N; = & are first gl
to begin the march towards continuum
limit. 0.7 :

Critical Point location appears the same for N; = 8 and 6 at up/T ~ 1.8(1).

Slight shift in temperature to j;f = 0.96 £ 0.02 ; Agrees with N; = 6 within
errors.
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Why Taylor series expansion?

e Ease of taking continuum and
thermodynamic limit.

e E.g., exp[AS] factor makes this
exponentially tough for re-weighting.
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Why Taylor series expansion?

e Ease of taking continuum and
thermodynamic limit.

e E.g., exp[AS] factor makes this
exponentially tough for re-weighting.

e Discretization errors propagate in an
unknown manner in re-weighting.

e Better control of systematic errors.
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Why Taylor series expansion?

e Ease of taking continuum and
thermodynamic limit.

T
e E.g., exp[AS] factor makes this
exponentially tough for re-weighting. -
e Discretization errors propagate in an Q/l
unknown manner in re-weighting.
U

e Better control of systematic errors.

We study volume dependence at several T' to i) bracket the critical region and
then to ii) track its change as a function of volume.
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The critieal endpoint (1)~

method for locating of the CEP:

* determine largest temperature where all
coefficients are positive =~ =» TCEP

* determine the radius of convergence at
- | CEP

this temperature

all coefficients
positive:
singularity
on the real
axis!

Ll |
S

first non-trivial estimate of TCEP by cg
second non-trivial estimate of pone by c10

p=cp+c2 (pB/T)2 +cy4 (HB/T)4+

X8 = 2¢3 + 12¢4 (up/T)* + 30cq (np/T)* + -+

1.2

T IT0) pa(p) —a—s

115

095}
09t
085 |
08

palxg) —m— |
LT Fodor, Katz —v— 1
1.05 Gavai, Gupta —e—

0.75 :

Prn(P) = \/Cn/Cnt2

p= lim p,

n—od

(Ch. Schmidt FAIR Lattice QCD Days, Nov 23-24, 2009.)
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Imaginary Chemical Potential

deForcrand-Philpsen JHEP 0811

Real world —— Real world ——

crossover crossover

2 4
For Ny = 3, they find 7<) = 1 —3.3(3) (W“ ) — 47(20) (;‘ ) “i.e., m, shrinks

with L.
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Imaginary Chemical Potential

deForcrand-Philpsen JHEP 0811

Real world —— Real world ——

AN .

HQCD eritical point
N

XN

crossover crossover

2 4
For Ny = 3, they find 7<) = 1 —3.3(3) (W“ ) — 47(20) (Wﬂ ) “i.e., m, shrinks

with L.

Problems : i) Positive coefficient for finer lattice (Philipsen, CPOD 2009), ii)
Known examples where shapes are different in real /imaginary p,
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“The Critical line from imaginary to real baryonic chemical potentials in two-color
QCD", P. Cea, L. Cosmai, M. D'Elia, A. Papa, PR D77, 2008

1-6 T ; T T T T T T T 1.6 T L T T T T T T
i i from the chiral condensate_ i i from the chiral condensate_
1.5 I - A+B(ap)’, wo =0 1.5+ I ---- global fit —
B.1al - Borar —
13- ~ 13- -
P A R R N A R AR N D T R R ol N
-0.2 -0.15 -0.1 005 O 005 0.1 0.15 0.2 -0.2 -0.15 -0.1 005 O 005 0.1 0.15 0.2

(aw)’ (ap)”
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