QCD Critical Point: Marching towards continuum

Rajiv V. Gavai*
T. I. F. R., Mumbai, India

Introduction

Our Lattice Results

Summary

* Work done with Saumen Datta & Sourendu Gupta

Introduction

- QCD defined on a space time lattice Best and Most Reliable way to extract non-perturbative physics.
- ullet Completely parameter-free : Λ_{QCD} and quark masses from hadron spectrum.

Introduction

- QCD defined on a space time lattice Best and Most Reliable way to extract non-perturbative physics.
- ullet Completely parameter-free : Λ_{QCD} and quark masses from hadron spectrum.
- Mostly staggered quarks used in these simulations. Broken flavour and spin symmetry on lattice.
- ullet The expectation value of an observable ${\cal O}$ computed by importance sampling :

$$\langle \mathcal{O} \rangle = \frac{\int DU \exp(-S_G) \ \mathcal{O} \prod_f \mathrm{Det} \ M(m_f, \mu_f)}{\mathcal{Z}}.$$

Simulations can be done IF Det M>0. However, det M is a complex number for any $\mu \neq 0$: The Phase/sign problem.

Lattice Approaches

Several Approaches proposed in the past two decades : None as satisfactory as the usual $T \neq 0$ simulations.

Lattice Approaches

Several Approaches proposed in the past two decades : None as satisfactory as the usual $T \neq 0$ simulations.

- Two parameter Re-weighting (z. Fodor & S. Katz, JHEP 0203 (2002) 014).
- Imaginary Chemical Potential (Ph. de Frocrand & O. Philipsen, NP B642 (2002) 290; M.-P. Lombardo & M. D'Elia PR D67 (2003) 014505).
- Taylor Expansion (C. Allton et al., PR D68 (2003) 014507; R.V. Gavai and S. Gupta, PR D68 (2003) 034506).
- Canonical Ensemble (K. -F. Liu, IJMP B16 (2002) 2017, S. Kratochvila and P. de Forcrand, Pos LAT2005 (2006) 167.)
- Complex Langevin (G. Aarts and I. O. Stamatescu, arXiv:0809.5227 and its references for earlier work).

Detail of Expansion

Text-book definitions yield various number densities and susceptibilities :

$$n_i = \frac{T}{V} \frac{\partial \ln \mathcal{Z}}{\partial \mu_i}$$
 and $\chi_{ij} = \frac{T}{V} \frac{\partial^2 \ln \mathcal{Z}}{\partial \mu_i \partial \mu_j}$.

These are also useful by themselves both theoretically and for Heavy Ion Physics (Flavour correlations, $\lambda_s \dots$)

Denoting higher order susceptibilities by χ_{n_u,n_d} , the pressure P has the expansion in μ :

$$\frac{\Delta P}{T^4} \equiv \frac{P(\mu, T)}{T^4} - \frac{P(0, T)}{T^4} = \sum_{n_u, n_d} \chi_{n_u, n_d} \frac{1}{n_u!} \left(\frac{\mu_u}{T}\right)^{n_u} \frac{1}{n_d!} \left(\frac{\mu_d}{T}\right)^{n_d} \tag{1}$$

Detail of Expansion

Text-book definitions yield various number densities and susceptibilities :

$$n_i = \frac{T}{V} \frac{\partial \ln \mathcal{Z}}{\partial \mu_i}$$
 and $\chi_{ij} = \frac{T}{V} \frac{\partial^2 \ln \mathcal{Z}}{\partial \mu_i \partial \mu_j}$.

These are also useful by themselves both theoretically and for Heavy Ion Physics (Flavour correlations, $\lambda_s \dots$)

Denoting higher order susceptibilities by χ_{n_u,n_d} , the pressure P has the expansion in μ :

$$\frac{\Delta P}{T^4} \equiv \frac{P(\mu, T)}{T^4} - \frac{P(0, T)}{T^4} = \sum_{n_u, n_d} \chi_{n_u, n_d} \frac{1}{n_u!} \left(\frac{\mu_u}{T}\right)^{n_u} \frac{1}{n_d!} \left(\frac{\mu_d}{T}\right)^{n_d} \tag{1}$$

- From this expansion, a series for baryonic susceptibility can be constructed. Its radius of convergence gives the nearest critical point.
- Successive estimates for the radius of convergence obtained from these using $\sqrt{\frac{n(n+1)\chi_B^{(n+1)}}{\chi_B^{(n+3)}T^2}}$ or $\left(n!\frac{\chi_B^{(2)}}{\chi_B^{(n+2)}T^2}\right)^{1/n}$. We use both and terms up to 8th order in μ .
- All coefficients of the series must be POSITIVE for the critical point to be at real μ , and thus physical.
- We (Gavai-Gupta '05, '09) use up to 8^{th} order. Bielefeld-RBC so far has up to 6^{th} order.
- 10th & even 12th order may be possible: Ideas to extend to higher orders are emerging (Gavai-Sharma PRD 2012 & PRD 2010) which save up to 60 % computer time.

- From this expansion, a series for baryonic susceptibility can be constructed. Its radius of convergence gives the nearest critical point.
- Successive estimates for the radius of convergence obtained from these using $\sqrt{\frac{n(n+1)\chi_B^{(n+1)}}{\chi_B^{(n+3)}T^2}}$ or $\left(n!\frac{\chi_B^{(2)}}{\chi_B^{(n+2)}T^2}\right)^{1/n}$. We use both and terms up to 8th order in μ .
- All coefficients of the series must be POSITIVE for the critical point to be at real μ , and thus physical.
- ullet We (Gavai-Gupta '05, '09) use up to 8^{th} order. Bielefeld-RBC so far has up to 6^{th} order.
- 10th & even 12th order may be possible: Ideas to extend to higher orders are emerging (Gavai-Sharma PRD 2012 & PRD 2010) which save up to 60 % computer time.

- From this expansion, a series for baryonic susceptibility can be constructed. Its radius of convergence gives the nearest critical point.
- Successive estimates for the radius of convergence obtained from these using $\sqrt{\frac{n(n+1)\chi_B^{(n+1)}}{\chi_B^{(n+3)}T^2}}$ or $\left(n!\frac{\chi_B^{(2)}}{\chi_B^{(n+2)}T^2}\right)^{1/n}$. We use both and terms up to 8th order in μ .
- All coefficients of the series must be POSITIVE for the critical point to be at real μ , and thus physical.
- ullet We (Gavai-Gupta '05, '09) use up to 8^{th} order. Bielefeld-RBC so far has up to 6^{th} order.
- 10th & even 12th order may be possible: Ideas to extend to higher orders are emerging (Gavai-Sharma PRD 2012 & PRD 2010) which save up to 60 % computer time.

Our Simulations & Results

- Staggered fermions with $N_f=2$ of $m/T_c=0.1$; R-algorithm used.
- $m_\pi/m_
 ho=0.31\pm0.01$; Kept the same as a o0 (on all N_t).
- Earlier Lattice : 4 $\times N_s^3$, $N_s = 8$, 10, 12, 16, 24 (Gavai-Gupta, PRD 2005) Finer Lattice : 6 $\times N_s^3$, $N_s = 12$, 18, 24 (Gavai-Gupta, PRD 2009).

Our Simulations & Results

- Staggered fermions with $N_f=2$ of $m/T_c=0.1$; R-algorithm used.
- $m_\pi/m_
 ho=0.31\pm0.01$; Kept the same as $a\to 0$ (on all N_t).
- Earlier Lattice : 4 $\times N_s^3$, $N_s = 8$, 10, 12, 16, 24 (Gavai-Gupta, PRD 2005) Finer Lattice : 6 $\times N_s^3$, $N_s = 12$, 18, 24 (Gavai-Gupta, PRD 2009).
- $\frac{T^E}{T_c}=0.94\pm0.01$, and $\frac{\mu_B^E}{T^E}=1.8\pm0.1$ for finer lattice: Our earlier coarser lattice result was $\mu_B^E/T^E=1.3\pm0.3$. Infinite volume result: \downarrow to 1.1(1)

Our Simulations & Results

- Staggered fermions with $N_f=2$ of $m/T_c=0.1$; R-algorithm used.
- $m_{\pi}/m_{\rho}=0.31\pm0.01$; Kept the same as $a\to 0$ (on all N_t).
- Earlier Lattice : 4 $\times N_s^3$, $N_s = 8$, 10, 12, 16, 24 (Gavai-Gupta, PRD 2005) Finer Lattice : 6 $\times N_s^3$, $N_s = 12$, 18, 24 (Gavai-Gupta, PRD 2009).
- $\frac{T^E}{T_c} = 0.94 \pm 0.01$, and $\frac{\mu_B^E}{T^E} = 1.8 \pm 0.1$ for finer lattice: Our earlier coarser lattice result was $\mu_B^E/T^E = 1.3 \pm 0.3$. Infinite volume result: \downarrow to 1.1(1)
- T_c defined by the peak of Polyakov loop susceptibility.
- Even finer Lattice : 8×32^3 This Talk Aspect ratio, N_s/N_t , maintained four to reduce finite volume effects.

Critical Point: Story thus far

- $N_f = 2$ (magenta) and 2+1 (blue) (Fodor-Katz, JHEP '04).
- $\heartsuit N_t = 4$ Circles (GG '05 & Fodor-Katz JHEP '02), $N_t = 6$ Box (GG '09).

χ_2 for $N_t=8$, 6, and 4 lattices

- $\spadesuit N_t = 8$ and 6 results agree
- $\heartsuit \ \beta_c(N_t=8)$ agrees with Gottlieb et al. PR D47,1993.

$$\chi_B^n$$
 for $N_t=8$ lattice

- ♠ 100 configurations & 1000 vectors at each point employed.
- \heartsuit More statistics coming in critical region. Window of positivity in anticipated region.

Radius of Convergence result

- \spadesuit At our (T_E, μ_E) for $N_t = 6$, the ratios display constancy for $N_t = 8$ as well.
- \heartsuit Currently : Similar results at neighbouring $T/T_c \Longrightarrow$ a larger ΔT at same μ_B^E .

Consistence check for critical point

- \spadesuit Ideally, all coefficients of the series must be the same at the critical point for both $N_t=8$ and 6.
- ♥ Too far from checking this as errors have to be reduced. Encouraging signs none the less.

Summary

- ullet The method we advocated, and employed for $N_t=4$ and 6, works for $N_t=8$ as well, yielding similar qualitative picture.
- Our new results for $N_t=8$ are first to begin the march towards continuum limit.

Summary

- ullet The method we advocated, and employed for $N_t=4$ and 6, works for $N_t=8$ as well, yielding similar qualitative picture.
- Our new results for $N_t = 8$ are first to begin the march towards continuum limit.

Critical Point location appears the same for $N_t=8$ and 6 at $\mu_B/T\sim 1.8(1)$. Slight shift in temperature to $\frac{T^E}{T_c}=0.96\pm 0.02$; Agrees with $N_t=6$ within errors.

Why Taylor series expansion?

- Ease of taking continuum and thermodynamic limit.
- ullet E.g., $\exp[\Delta S]$ factor makes this exponentially tough for re-weighting.

Why Taylor series expansion?

- Ease of taking continuum and thermodynamic limit.
- \bullet E.g., $\exp[\Delta S]$ factor makes this exponentially tough for re-weighting.
- Discretization errors propagate in an unknown manner in re-weighting.
- Better control of systematic errors.

Why Taylor series expansion?

- Ease of taking continuum and thermodynamic limit.
- ullet E.g., $\exp[\Delta S]$ factor makes this exponentially tough for re-weighting.
- Discretization errors propagate in an unknown manner in re-weighting.
- Better control of systematic errors.

We study volume dependence at several T to i) bracket the critical region and then to ii) track its change as a function of volume.

The critical endpoint (II)

method for locating of the CEP:

- determine largest temperature where all coefficients are positive → T^{CEP}
- determine the radius of convergence at this temperature
 → μ^{CEP}

first non-trivial estimate of $T^{
m CEP}$ by c_8 second non-trivial estimate of $T^{
m CEP}$ by c_{10}

$$\rho_n(p) = \sqrt{c_n/c_{n+2}}$$

$$\rho = \lim_{n \to \infty} \rho_n$$

(Ch. Schmidt FAIR Lattice QCD Days, Nov 23-24, 2009.)

Imaginary Chemical Potential

deForcrand-Philpsen JHEP 0811

For
$$N_f=3$$
, they find $\frac{m_c(\mu)}{m_c(0)}=1-3.3(3)\left(\frac{\mu}{\pi T_c}\right)^2-47(20)\left(\frac{\mu}{\pi T_c}\right)^4$, i.e., m_c shrinks with μ .

Imaginary Chemical Potential

deForcrand-Philpsen JHEP 0811

For
$$N_f = 3$$
, they find $\frac{m_c(\mu)}{m_c(0)} = 1 - 3.3(3) \left(\frac{\mu}{\pi T_c}\right)^2 - 47(20) \left(\frac{\mu}{\pi T_c}\right)^4$, i.e., m_c shrinks with μ .

Problems : i) Positive coefficient for finer lattice (Philipsen, CPOD 2009), ii) Known examples where shapes are different in real/imaginary μ ,

"The Critical line from imaginary to real baryonic chemical potentials in two-color QCD", P. Cea, L. Cosmai, M. D'Elia, A. Papa, PR D77, 2008

