Towards QCD Thermodynamics using Exact Chiral Symmetry on Lattice

Debasish Banerjee, Rajiv V. Gavai & Sayantan Sharma*
T. I. F. R., Mumbai

* Phys. Rev. D78 (2008) 014506, arXiv: 0805.2866, & in preparation.

Towards QCD Thermodynamics using Exact Chiral Symmetry on Lattice

Debasish Banerjee, Rajiv V. Gavai & Sayantan Sharma*
T. I. F. R., Mumbai

Introduction

GW relation and $\mu \neq 0$

Our Results

Summary

* Phys. Rev. D78 (2008) 014506, arXiv: 0805.2866, & in preparation.

Introduction

- The finite temperature transition in our world, i.e., QCD with 2 + 1 flavours of dynamical quarks, is widely accepted to be governed by chiral symmetry.
- Staggered fermions have dominated the area of nonzero temperatures and densities.

Introduction

- The finite temperature transition in our world, i.e., QCD with 2 + 1 flavours of dynamical quarks, is widely accepted to be governed by chiral symmetry.
- Staggered fermions have dominated the area of nonzero temperatures and densities.
- The hadronic screening lengths, advocated by DeTar & Kogut (PRD '87) to explore the large scale composition of QGP, illustrate their deficiency in the pionic screening length.
- Obtained from the long-distance behaviour of the correlator $\langle C_{AB}(z) \rangle = \langle \bar{A}(z) \bar{B}(0) \rangle \langle \bar{A}(0) \rangle \langle \bar{B}(0) \rangle \sim \exp(-\mu(T)z)$, as $z \to \infty$. Here $\bar{A}(z) = \sum_{x,y,t} A(x,y,z,t)/N_s^2 N_t$ is a local meson or baryon operator.

Introduction

- The finite temperature transition in our world, i.e., QCD with 2 + 1 flavours of dynamical quarks, is widely accepted to be governed by chiral symmetry.
- Staggered fermions have dominated the area of nonzero temperatures and densities.
- The hadronic screening lengths, advocated by DeTar & Kogut (PRD '87) to explore the large scale composition of QGP, illustrate their deficiency in the pionic screening length.
- Obtained from the long-distance behaviour of the correlator $\langle C_{AB}(z) \rangle = \langle \bar{A}(z) \bar{B}(0) \rangle \langle \bar{A}(0) \rangle \langle \bar{B}(0) \rangle \sim \exp(-\mu(T)z)$, as $z \to \infty$. Here $\bar{A}(z) = \sum_{x,y,t} A(x,y,z,t)/N_s^2 N_t$ is a local meson or baryon operator.
- Overlap fermions appear to do better.

Overlap Compared with Staggered Fermions

 \clubsuit Local masses $[\sim \ln(C(r)/C(r+1)]$ show nice plateau behaviour for pi & rho for Overlap (left) unlike staggered (right) fermions.

Screening Masses Compared

 \clubsuit The pionic screening length shows significant a^2 corrections for staggered (left) unlike Overlap (right) fermions.

 \spadesuit A fundamental aspect of QCD – Critical Point in T- μ_B plane;

 \spadesuit A fundamental aspect of QCD – Critical Point in T- μ_B plane; Based on symmetries and models, Expected QCD Phase Diagram

From Rajagopal-Wilczek Review

 \spadesuit A fundamental aspect of QCD – Critical Point in T- μ_B plane; Based on symmetries and models,

Expected QCD Phase Diagram

... but could, however, be ...

From Rajagopal-Wilczek Review

 \spadesuit A fundamental aspect of QCD – Critical Point in T- μ_B plane; Based on symmetries and models,

Expected QCD Phase Diagram ... but could, however, be ...

From Rajagopal-Wilczek Review

 \spadesuit A fundamental aspect of QCD – Critical Point in T- μ_B plane; Based on symmetries and models,

Expected QCD Phase Diagram

... but could, however, be ... McLerran-Pisarski 2007

From Rajagopal-Wilczek Review

GW relation and $\mu \neq 0$

 \spadesuit Exact chiral invariance for a lattice fermion operator D is assured if it satisfies the Ginsparg-Wilson relation : $\{\gamma_5, D\} = aD\gamma_5D$.

GW relation and $\mu \neq 0$

- \spadesuit Exact chiral invariance for a lattice fermion operator D is assured if it satisfies the Ginsparg-Wilson relation : $\{\gamma_5, D\} = aD\gamma_5D$.
- In particular, the chiral transformations (Lüscher, PLB 1999) $\delta\psi=\alpha\gamma_5(1-\frac{a}{2}D)\psi$ and $\delta\bar{\psi}=\alpha\bar{\psi}(1-\frac{a}{2}D)\gamma_5$, leave the action $S=\sum\bar{\psi}D\psi$ invariant:

$$\delta S = \alpha \sum_{x,y} \bar{\psi}_x \left[\gamma_5 D + D \gamma_5 - \frac{a}{2} D \gamma_5 D - \frac{a}{2} D \gamma_5 D \right]_{xy} \psi_y = 0 \tag{1}$$

GW relation and $\mu \neq 0$

- \spadesuit Exact chiral invariance for a lattice fermion operator D is assured if it satisfies the Ginsparg-Wilson relation : $\{\gamma_5, D\} = aD\gamma_5D$.
- \spadesuit In particular, the chiral transformations (Lüscher, PLB 1999) $\delta\psi=\alpha\gamma_5(1-\frac{a}{2}D)\psi$ and $\delta\bar{\psi}=\alpha\bar{\psi}(1-\frac{a}{2}D)\gamma_5$, leave the action $S=\sum\bar{\psi}D\psi$ invariant:

$$\delta S = \alpha \sum_{x,y} \bar{\psi}_x \left[\gamma_5 D + D \gamma_5 - \frac{a}{2} D \gamma_5 D - \frac{a}{2} D \gamma_5 D \right]_{xy} \psi_y = 0 \tag{1}$$

♠ Overlap fermions, and Domain Wall fermions in the limit of large fifth dimension satisfy this relation.

Overlap-Dirac Operator

♠ Neuberger (PLB 1998) proposed the overlap-Dirac operator :

$$aD = 1 + A(A^{\dagger}A)^{-1/2} = 1 + \gamma_5 \operatorname{sign}(\gamma_5 A)$$
 with $A = aD_w$, (2)

Overlap-Dirac Operator

♠ Neuberger (PLB 1998) proposed the overlap-Dirac operator :

$$aD = 1 + A(A^{\dagger}A)^{-1/2} = 1 + \gamma_5 \operatorname{sign}(\gamma_5 A)$$
 with $A = aD_w$, (2)

 \spadesuit Here D_w is the Wilson-Dirac Operator given by,

$$aD_w = \frac{1}{2} \{ \gamma_\mu (\partial_\mu^* + \partial_\mu) - a \partial_\mu^* \partial_\mu \} + M, \tag{3}$$

with -2 < M < 0 and ∂_{μ} and ∂_{μ}^* as forward and backward gauge-invariant difference operators. An extra a/a_4 factor for $\mu=4$ at $T\neq 0$.

Overlap-Dirac Operator

♠ Neuberger (PLB 1998) proposed the overlap-Dirac operator :

$$aD = 1 + A(A^{\dagger}A)^{-1/2} = 1 + \gamma_5 \operatorname{sign}(\gamma_5 A)$$
 with $A = aD_w$, (2)

 \spadesuit Here D_w is the Wilson-Dirac Operator given by,

$$aD_w = \frac{1}{2} \{ \gamma_\mu (\partial_\mu^* + \partial_\mu) - a \partial_\mu^* \partial_\mu \} + M, \tag{3}$$

with -2 < M < 0 and ∂_{μ} and ∂_{μ}^* as forward and backward gauge-invariant difference operators. An extra a/a_4 factor for $\mu=4$ at $T\neq 0$.

 \spadesuit quark with a mass : D(ma) = ma + (1 - ma/2)D

Domain Wall Fermions

♠ Proposed by Kaplan (PLB 1992), a convenient form for Domain Wall fermion action (Shamir, NPB, 1993) is:

$$S_F = \sum_{s,s'=1}^{N_5} \sum_{x,x'} \bar{\psi}(x,s) D_{dw}(x,s;x',s') \psi(x',s') , \qquad (4)$$

Domain Wall Fermions

♠ Proposed by Kaplan (PLB 1992), a convenient form for Domain Wall fermion action (Shamir, NPB, 1993) is:

$$S_F = \sum_{s,s'=1}^{N_5} \sum_{x,x'} \bar{\psi}(x,s) D_{dw}(x,s;x',s') \psi(x',s') , \qquad (4)$$

where D_{dw} is defined in terms of D_w as

$$D_{dw}(x,s;x',s') = [a_5D_w + 1]\delta_{s,s'} - [P_-\delta_{s,s'-1} + P_+\delta_{s,s+1'}], \qquad (5)$$

with boundary conditions $P_+\psi(x,0)=-am\ P_+\psi(x,N_5)$ and $P_-\psi(x,N_5+1)=-am\ P_-\psi(x,1).$

Domain Wall Fermions

♠ Proposed by Kaplan (PLB 1992), a convenient form for Domain Wall fermion action (Shamir, NPB, 1993) is:

$$S_F = \sum_{s,s'=1}^{N_5} \sum_{x,x'} \bar{\psi}(x,s) D_{dw}(x,s;x',s') \psi(x',s') , \qquad (4)$$

where D_{dw} is defined in terms of D_w as

$$D_{dw}(x,s;x',s') = [a_5D_w + 1]\delta_{s,s'} - [P_-\delta_{s,s'-1} + P_+\delta_{s,s+1'}], \qquad (5)$$

with boundary conditions $P_+\psi(x,0)=-am\ P_+\psi(x,N_5)$ and $P_-\psi(x,N_5+1)=-am\ P_-\psi(x,1).$

 \spadesuit Only light modes attached to the wall(s) are physical. Divide out heavy modes by having the $D_{dw}(am)/D_{dw}(am=1)$ as the effective Domain Wall operator in \mathcal{Z} .

9

As outlined in Edwards & Heller (PRD 63, 2001), one can integrate out the fermionic fields in the fifth direction to rewrite the above ratio as

$$[(1+am)-(1-am)\gamma_5 \tanh(\frac{N_5}{2}\ln|T|)],$$
 (6)

with
$$T = (1 + a_5\gamma_5 D_w P_+)^{-1} (1 - a_5\gamma_5 D_w P_-)$$
.

As outlined in Edwards & Heller (PRD 63, 2001), one can integrate out the fermionic fields in the fifth direction to rewrite the above ratio as

$$[(1+am) - (1-am)\gamma_5 \tanh(\frac{N_5}{2}\ln|T|)], \qquad (6)$$

with
$$T = (1 + a_5\gamma_5 D_w P_+)^{-1} (1 - a_5\gamma_5 D_w P_-)$$
.

- \heartsuit Taking the limit $N_5 \to \infty$ for $a_5 = 1$, one obtains sign function of log |T|, proving that the DWF satisfy the Ginsparg-Wilson relation in this limit.
- \heartsuit Taking the limit $a_5 \to 0$ such that $L_5 = a_5 N_5 = \text{constant}$, one can show $N_5 \ln T \to L_5 \gamma_5 D_{dw}$. Further, for $L_5 \to \infty$, DWF reduce to the overlap fermions.
- We use this form in our numerical work.

- Ideally, one should construct the conserved charge as a first step.
- Non-locality makes it difficult, even non-unique (Mandula, 2007).

- Ideally, one should construct the conserved charge as a first step.
- Non-locality makes it difficult, even non-unique (Mandula, 2007).
- Simpler alternative : $D_w \to D_w(a\mu)$ by $K(a\mu) = \exp(a\mu)$ and $L(a\mu) = \exp(-a\mu)$ in positive/negative time direction respectively. (Bloch and Wettig, PRL 2006; PRD 2007).

- Ideally, one should construct the conserved charge as a first step.
- Non-locality makes it difficult, even non-unique (Mandula, 2007).
- Simpler alternative : $D_w \to D_w(a\mu)$ by $K(a\mu) = \exp(a\mu)$ and $L(a\mu) = \exp(-a\mu)$ in positive/negative time direction respectively. (Bloch and Wettig, PRL 2006; PRD 2007).
- Note $\gamma_5 D_w(a\mu)$ is no longer Hermitian, requiring an extension of the sign function. B & W proposal : For complex $\lambda = (x + iy)$, sign $(\lambda) = \text{sign}(x)$.

- Ideally, one should construct the conserved charge as a first step.
- Non-locality makes it difficult, even non-unique (Mandula, 2007).
- Simpler alternative : $D_w \to D_w(a\mu)$ by $K(a\mu) = \exp(a\mu)$ and $L(a\mu) = \exp(-a\mu)$ in positive/negative time direction respectively. (Bloch and Wettig, PRL 2006; PRD 2007).
- Note $\gamma_5 D_w(a\mu)$ is no longer Hermitian, requiring an extension of the sign function. B & W proposal : For complex $\lambda = (x + iy)$, sign $(\lambda) = \text{sign}(x)$.
- Gattringer-Liptak, PRD 2007, showed for M=1 numerically that no μ^2 divergences exist for the free case (U =1).

• We show this to be true analytically and for all M as well. Furthermore, this holds for all functions such that $K(a\mu) \cdot L(a\mu) = 1$ for Overlap (Banerjee, Gavai, Sharma, PRD 2008) and Domain Wall Fermions (Gavai, Sharma 2008).

- We show this to be true analytically and for all M as well. Furthermore, this holds for all functions such that $K(a\mu) \cdot L(a\mu) = 1$ for Overlap (Banerjee, Gavai, Sharma, PRD 2008) and Domain Wall Fermions (Gavai, Sharma 2008).
- We claim that chiral invariance is lost for nonzero μ . Note that

$$\delta S = \alpha \sum_{x,y} \bar{\psi}_x \left[\gamma_5 D(a\mu) + D(a\mu) \gamma_5 - \frac{a}{2} D(0) \gamma_5 D(a\mu) - \frac{a}{2} D(a\mu) \gamma_5 D(0) \right]_{xy} \psi_y ,$$
(7)

under Lüscher's chiral transformations.

- We show this to be true analytically and for all M as well. Furthermore, this holds for all functions such that $K(a\mu) \cdot L(a\mu) = 1$ for Overlap (Banerjee, Gavai, Sharma, PRD 2008) and Domain Wall Fermions (Gavai, Sharma 2008).
- We claim that chiral invariance is lost for nonzero μ . Note that

$$\delta S = \alpha \sum_{x,y} \bar{\psi}_x \left[\gamma_5 D(a\mu) + D(a\mu) \gamma_5 - \frac{a}{2} D(0) \gamma_5 D(a\mu) - \frac{a}{2} D(a\mu) \gamma_5 D(0) \right]_{xy} \psi_y , \qquad (7)$$

under Lüscher's chiral transformations.

However, the sign function definition above merely ensures

$$\gamma_5 D(a\mu) + D(a\mu)\gamma_5 - a D(a\mu)\gamma_5 D(a\mu) = 0 , \qquad (8)$$

which is not sufficient to make $\delta S = 0$.

- We show this to be true analytically and for all M as well. Furthermore, this holds for all functions such that $K(a\mu) \cdot L(a\mu) = 1$ for Overlap (Banerjee, Gavai, Sharma, PRD 2008) and Domain Wall Fermions (Gavai, Sharma 2008).
- We claim that chiral invariance is lost for nonzero μ . Note that

$$\delta S = \alpha \sum_{x,y} \bar{\psi}_x \left[\gamma_5 D(a\mu) + D(a\mu) \gamma_5 - \frac{a}{2} D(0) \gamma_5 D(a\mu) - \frac{a}{2} D(a\mu) \gamma_5 D(0) \right]_{xy} \psi_y , \qquad (7)$$

under Lüscher's chiral transformations.

However, the sign function definition above merely ensures

$$\gamma_5 D(a\mu) + D(a\mu)\gamma_5 - a D(a\mu)\gamma_5 D(a\mu) = 0 , \qquad (8)$$

which is not sufficient to make $\delta S=0$. True for both Overlap and Domain Wall fermions and any K,L.

Consequences

- Exact Chiral Symmetry on lattice lost for any $\mu \neq 0$: Real or Imaginary! Note $D_w(a\mu)$ is Hermitian for the latter case.
- \bullet μ -dependent mass for even massless quarks.

Consequences

- Exact Chiral Symmetry on lattice lost for any $\mu \neq 0$: Real or Imaginary! Note $D_w(a\mu)$ is Hermitian for the latter case.
- \bullet μ -dependent mass for even massless quarks.
- Only smooth chiral condensates : No (clear) chiral transition for any (large) μ possible. How small a, or large N_T may suffice ?
- All coefficients of a Taylor expansion in μ do have the chiral invariance but the series will be smooth and should always converge.

What if ...

 \spadesuit the chiral transformations were $\delta\psi=\alpha\gamma_5(1-\frac{a}{2}D(a\mu))\psi$ and $\delta\bar{\psi}=\alpha\bar{\psi}(1-\frac{a}{2}D(a\mu))\gamma_5$?

What if ...

- \spadesuit the chiral transformations were $\delta\psi=\alpha\gamma_5(1-\frac{a}{2}D(a\mu))\psi$ and $\delta\bar{\psi}=\alpha\bar{\psi}(1-\frac{a}{2}D(a\mu))\gamma_5$? $\delta S=0$ then clealy.
- Not allowed since $\gamma_5 D(a\mu)$ is not Hermitian.

What if ...

- \spadesuit the chiral transformations were $\delta\psi=\alpha\gamma_5(1-\frac{a}{2}D(a\mu))\psi$ and $\delta\bar{\psi}=\alpha\bar{\psi}(1-\frac{a}{2}D(a\mu))\gamma_5$? $\delta S=0$ then clealy.
- Not allowed since $\gamma_5 D(a\mu)$ is not Hermitian.
- Symmetry transformations should not depend on "external" parameter μ . Chemical potential is introduced for charges N_i with $[H,N_i]=0$. At least the symmetry should not change as μ does.

What if ...

- \spadesuit the chiral transformations were $\delta\psi=\alpha\gamma_5(1-\frac{a}{2}D(a\mu))\psi$ and $\delta\bar{\psi}=\alpha\bar{\psi}(1-\frac{a}{2}D(a\mu))\gamma_5$? $\delta S=0$ then clealy.
- Not allowed since $\gamma_5 D(a\mu)$ is not Hermitian.
- Symmetry transformations should not depend on "external" parameter μ . Chemical potential is introduced for charges N_i with $[H,N_i]=0$. At least the symmetry should not change as μ does.
- Moreover, symmetry groups different at each μ . Recall we wish to investigate $\langle \bar{\psi}\psi \rangle(a\mu)$ to explore if chiral symmetry is restored.
- The symmetry group remains same at each T with $\mu=0$ $\Longrightarrow \langle \bar{\psi}\psi \rangle (am=0,T)$ is an order parameter for the chiral transition.

Our Results

- We investigated thermodynamics of free overlap and domain wall fermions with an aim to examine the continuum limit analytically and numerically.
- Analytically, we prove the absence of μ^2 -divergences for general K and L. Our numerical results were for tuning the irrelevant parameter M to obtain small deviations from continuum limit on coarse lattices.

Our Results

- We investigated thermodynamics of free overlap and domain wall fermions with an aim to examine the continuum limit analytically and numerically.
- Analytically, we prove the absence of μ^2 -divergences for general K and L. Our numerical results were for tuning the irrelevant parameter M to obtain small deviations from continuum limit on coarse lattices.
- Energy density and pressure can be obtained from $\ln Z = \ln \det D_{ov}$ by taking T and V, or equivalently a_4 and a, partial derivatives.

Our Results

- We investigated thermodynamics of free overlap and domain wall fermions with an aim to examine the continuum limit analytically and numerically.
- Analytically, we prove the absence of μ^2 -divergences for general K and L. Our numerical results were for tuning the irrelevant parameter M to obtain small deviations from continuum limit on coarse lattices.
- Energy density and pressure can be obtained from $\ln Z = \ln \det D_{ov}$ by taking T and V, or equivalently a_4 and a, partial derivatives.
- Dirac operator is diagonal in momentum space. Use its eigenvalues to compute \mathcal{Z} :

$$\begin{split} \lambda_{\pm} &= 1 - [sgn\left(\sqrt{h^2 + h_5^2}\right)h_5 \pm i\sqrt{h^2}]/\sqrt{h^2 + h_5^2} \text{ , with } \\ h_i &= -\sin ap_i \text{, i =1, 2 and 3, } h_4 = -a \ \sin(a_4p_4)/a_4 \text{ and } \\ h_5 &= M - \sum_{i=1}^3 [1 - \cos(ap_i)] - a[1 - \cos(a_4p_4)]/a_4. \end{split}$$

• Easy to show that $\epsilon = 3P$ for all a and a_4 .

- Easy to show that $\epsilon = 3P$ for all a and a_4 .
- I will show results for ϵ/ϵ_{SB} which is also P/P_{SB} .

- Easy to show that $\epsilon = 3P$ for all a and a_4 .
- I will show results for ϵ/ϵ_{SB} which is also P/P_{SB} .
- Hiding p_i -dependence in terms of known functions g, d and f, the energy density on an $N^3 \times N_T$ lattice is found to be

$$\epsilon a^4 = \frac{2}{N^3 N_T} \sum_{p_i, n} F(\omega_n) = \frac{2}{N^3 N_T} \sum_{p_i, n} \left[(g + \cos \omega_n) + \sqrt{d + 2g \cos \omega_n} \right]$$

$$\times \left[\frac{(1 - \cos \omega_n)}{d + 2g \cos \omega_n} + \frac{\sin^2 \omega_n (g + \cos \omega_n)}{(d + 2g \cos \omega_n) (f + \sin^2 \omega_n)} \right] (9)$$

where ω_n are the Matsubara frequencies.

- Easy to show that $\epsilon = 3P$ for all a and a_4 .
- I will show results for ϵ/ϵ_{SB} which is also P/P_{SB} .
- Hiding p_i -dependence in terms of known functions g, d and f, the energy density on an $N^3 \times N_T$ lattice is found to be

$$\epsilon a^4 = \frac{2}{N^3 N_T} \sum_{p_i, n} F(\omega_n) = \frac{2}{N^3 N_T} \sum_{p_i, n} \left[(g + \cos \omega_n) + \sqrt{d + 2g \cos \omega_n} \right]$$

$$\times \left[\frac{(1 - \cos \omega_n)}{d + 2g \cos \omega_n} + \frac{\sin^2 \omega_n (g + \cos \omega_n)}{(d + 2g \cos \omega_n) (f + \sin^2 \omega_n)} \right] (9)$$

where ω_n are the Matsubara frequencies.

Can be evaluated using the standard contour technique or numerically.

• Poles at $\omega = \pm i \sinh^{-1} \sqrt{f}$ and Poles (branch points) at $\pm i \cosh^{-1} \frac{d}{2a}$.

- Poles at $\omega = \pm i \sinh^{-1} \sqrt{f}$ and Poles (branch points) at $\pm i \cosh^{-1} \frac{d}{2g}$.
- Evaluating integrals, $\epsilon a^4 = 4N^{-3} \sum_{p_j} \left[\sqrt{f/1+f} \right]$ $\left[\exp(N_T \sinh^{-1} \sqrt{f}) + 1 \right]^{-1} + \epsilon_3 + \epsilon_4 \quad \text{where} \quad f = \sum_i \sin^2(ap_i).$

- Poles at $\omega = \pm i \sinh^{-1} \sqrt{f}$ and Poles (branch points) at $\pm i \cosh^{-1} \frac{d}{2g}$.
- Evaluating integrals, $\epsilon a^4 = 4N^{-3} \sum_{p_j} \left[\sqrt{f/1+f} \right]$ $\left[\exp(N_T \sinh^{-1} \sqrt{f}) + 1 \right]^{-1} + \epsilon_3 + \epsilon_4 \quad \text{where} \quad f = \sum_i \sin^2(ap_i).$
- Can be seen to go to ϵ_{SB} as $a \to 0$ for all M.

More Details : T=0, $\mu \neq 0$

• Defining $K(\mu) + L(\mu) = 2R \cosh \theta$ and $K(\mu) - L(\mu) = 2R \sinh \theta$, the same treatment as above goes through by substituting $\sin \omega_n \to R \sin(\omega_n - i\theta)$ and $\cos \omega_n \to R \cos(\omega_n - i\theta)$.

More Details : T=0, $\mu \neq 0$

- Defining $K(\mu) + L(\mu) = 2R \cosh \theta$ and $K(\mu) L(\mu) = 2R \sinh \theta$, the same treatment as above goes through by substituting $\sin \omega_n \to R \sin(\omega_n i\theta)$ and $\cos \omega_n \to R \cos(\omega_n i\theta)$.
- Energy density is also functionally the same with $F(1,\omega_n) \to F(R,\omega_n i\theta)$.
- Additional observable, number density: Has the same pole structure so similar computation.

$$\epsilon a^4 = (\pi N^3)^{-1} \sum_{p_j} \left[2\pi \text{Res } F(R, \omega) \Theta \left(K(a\mu) - L(a\mu) - 2\sqrt{f} \right) + \int_{-\pi}^{\pi} F(R, \omega) d\omega - \int_{-\pi}^{\pi} F(1, \omega) d\omega \right].$$

$$\epsilon a^4 = (\pi N^3)^{-1} \sum_{p_j} \left[2\pi \text{Res } F(R, \omega) \Theta \left(K(a\mu) - L(a\mu) - 2\sqrt{f} \right) + \int_{-\pi}^{\pi} F(R, \omega) d\omega - \int_{-\pi}^{\pi} F(1, \omega) d\omega \right].$$

- $R = K(a\mu) \cdot L(a\mu) = 1$ ensures cancellation of the last two terms and the canonical result in the continuum limit $a \to 0$.
- If $R \neq 1$, one has a μ^2 divergence in the continuum limit as well as violation of Fermi surface since $\epsilon \neq 0$ for any μ .

$$\epsilon a^4 = (\pi N^3)^{-1} \sum_{p_j} \left[2\pi \text{Res } F(R, \omega) \Theta \left(K(a\mu) - L(a\mu) - 2\sqrt{f} \right) + \int_{-\pi}^{\pi} F(R, \omega) d\omega - \int_{-\pi}^{\pi} F(1, \omega) d\omega \right].$$

- $R = K(a\mu) \cdot L(a\mu) = 1$ ensures cancellation of the last two terms and the canonical result in the continuum limit $a \to 0$.
- If $R \neq 1$, one has a μ^2 divergence in the continuum limit as well as violation of Fermi surface since $\epsilon \neq 0$ for any μ .
- K and L should be such that $K(a\mu) L(a\mu) = 2a \ \mu + \mathcal{O}(a^3)$ with K(0) = 1 = L(0).

$$\epsilon a^4 = (\pi N^3)^{-1} \sum_{p_j} \left[2\pi \text{Res } F(R, \omega) \Theta \left(K(a\mu) - L(a\mu) - 2\sqrt{f} \right) + \int_{-\pi}^{\pi} F(R, \omega) d\omega - \int_{-\pi}^{\pi} F(1, \omega) d\omega \right].$$

- $R = K(a\mu) \cdot L(a\mu) = 1$ ensures cancellation of the last two terms and the canonical result in the continuum limit $a \to 0$.
- If $R \neq 1$, one has a μ^2 divergence in the continuum limit as well as violation of Fermi surface since $\epsilon \neq 0$ for any μ .
- K and L should be such that $K(a\mu) L(a\mu) = 2a \ \mu + \mathcal{O}(a^3)$ with K(0) = 1 = L(0).
- Generalization to $T \neq 0$ and $\mu \neq 0$ case straightforward. One merely needs two different contours depending on pole locations and value of θ .

- \clubsuit Zero temperature contribution : as $N_T \to \infty$, ω sum becomes integral which we estimated numerically.
- \clubsuit Continuum limit by holding $\zeta = N/N_T = LT$ fixed and increasing N_T .

- \clubsuit Zero temperature contribution : as $N_T \to \infty$, ω sum becomes integral which we estimated numerically.
- \clubsuit Continuum limit by holding $\zeta = N/N_T = LT$ fixed and increasing N_T .

- \clubsuit Zero temperature contribution : as $N_T \to \infty$, ω sum becomes integral which we estimated numerically.
- \clubsuit Continuum limit by holding $\zeta = N/N_T = LT$ fixed and increasing N_T .

 \heartsuit Results for M=1 agree with Hegde et al. (free energy); Smaller corrections than for Staggered or Wilson fermions.

 \heartsuit Results for M=1 agree with Hegde et al. (free energy); Smaller corrections than for Staggered or Wilson fermions.

 $\heartsuit 1.50 \leq M \leq 1.60$ seems optimal, with 2-3 % deviations already for $N_T = 12$.

Domain Wall Fermions $(a_5 \rightarrow 0)$

Rajiv V. Gavai and Sayantan Sharma, in preparation.

Domain Wall Fermions ($a_5 \rightarrow 0$)

Rajiv V. Gavai and Sayantan Sharma, in preparation.

 $\diamondsuit L_5 \ge 14$ seems to be large enough to get L_5 -independent results.

Domain Wall Fermions $(a_5 \rightarrow 0)$

Rajiv V. Gavai and Sayantan Sharma, in preparation.

- $\diamondsuit L_5 \ge 14$ seems to be large enough to get L_5 -independent results.
- \diamondsuit Optimal range again seems to be $1.50 \le M \le 1.60$.

Domain Wall Fermions ($a_5 = 1$)

Rajiv V. Gavai and Sayantan Sharma, in preparation.

Domain Wall Fermions ($a_5 = 1$)

Rajiv V. Gavai and Sayantan Sharma, in preparation.

- \diamondsuit $\zeta \geq 4$ seems to be large enough to get thermodynamic limit.
- \diamondsuit Optimal range now seems to be $1.40 \le M \le 1.50$; M = 1.9 used by Chen et al. (PRD 2001) in their study of order parameters of FTQCD.

 \diamondsuit Two Observables : $\Delta\epsilon(\mu,T)=\epsilon(\mu,T)-\epsilon(0,T)$ and Susceptibility, $\sim \partial^2 \ln \mathcal{Z}/\partial \mu^2.$

- \diamondsuit Two Observables : $\Delta\epsilon(\mu,T)=\epsilon(\mu,T)-\epsilon(0,T)$ and Susceptibility, $\sim \partial^2 \ln \mathcal{Z}/\partial \mu^2$.
- \diamondsuit For odd N_T and large enough μ the sign function is undefined as an eigenvalue becomes pure imaginary.

- \diamondsuit Two Observables : $\Delta \epsilon(\mu,T) = \epsilon(\mu,T) \epsilon(0,T)$ and Susceptibility, $\sim \partial^2 \ln \mathcal{Z}/\partial \mu^2$.
- \diamondsuit For odd N_T and large enough μ the sign function is undefined as an eigenvalue becomes pure imaginary.
- \diamondsuit Former computed for two $r=\mu/T=0.5$ and 0.8 while latter for $\mu=0$

- \diamondsuit Two Observables : $\Delta \epsilon(\mu,T) = \epsilon(\mu,T) \epsilon(0,T)$ and Susceptibility, $\sim \partial^2 \ln \mathcal{Z}/\partial \mu^2$.
- \diamondsuit For odd N_T and large enough μ the sign function is undefined as an eigenvalue becomes pure imaginary.
- \diamondsuit Former computed for two $r=\mu/T=0.5$ and 0.8 while latter for $\mu=0$

♥ Susceptibility too behaves the same way as the energy density.

- Susceptibility too behaves the same way as the energy density.
- \heartsuit Again $1.50 \leq M \leq 1.60$ seems optimal, with 2-3 % deviations already for $N_T=12.$

Domain Wall Fermions $(a_5 = 1)$

♥ Again Susceptibility behaves the same way as the energy density.

Domain Wall Fermions $(a_5 = 1)$

- ♥ Again Susceptibility behaves the same way as the energy density.
- \heartsuit Again $1.40 \le M \le 1.50$ seems optimal, with small deviations already $N_T = 12$.

Summary

- Exact chiral symmetry without violation of flavour symmetry important for many studies on lattice, especially for the critical point and the QCD phase diagram in μ –T plane.
- Overlap and Domain wall fermions lose their chiral invariance on introduction of chemical potential in the Bloch-Wettig method and its generalizations.

Summary

- Exact chiral symmetry without violation of flavour symmetry important for many studies on lattice, especially for the critical point and the QCD phase diagram in μ –T plane.
- Overlap and Domain wall fermions lose their chiral invariance on introduction of chemical potential in the Bloch-Wettig method and its generalizations.
- However, any μ^2 -divergence in the continuum limit is avoided for it and an associated general class of functions $K(\mu)$ and $L(\mu)$ with $K(\mu) \cdot L(\mu) = 1$.
- For the choice of $1.5 \le M \le 1.6$ ($1.4 \le M \le 1.5$), both the energy density and the quark number susceptibility at $\mu = 0$ exhibited the smallest deviations from the ideal gas limit for $N_T \ge 12$ for Overlap (Domain Wall) Fermions.