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Introduction

• The finite temperature transition in our world, i.e., QCD with 2 + 1 flavours of
dynamical quarks, is widely accepted to be governed by chiral symmetry.

• Staggered fermions have dominated the area of nonzero temperatures and
densities.
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Introduction

• The finite temperature transition in our world, i.e., QCD with 2 + 1 flavours of
dynamical quarks, is widely accepted to be governed by chiral symmetry.

• Staggered fermions have dominated the area of nonzero temperatures and
densities.

• The hadronic screening lengths, advocated by DeTar & Kogut (PRD ’87) to
explore the large scale composition of QGP, illustrate their deficiency in the
pionic screening length.

• Obtained from the long-distance behaviour of the correlator
〈CAB(z)〉 = 〈Ā(z)B̄(0)〉 − 〈Ā(0)〉〈B̄(0)〉 ∼ exp(−µ(T )z), as z →∞. Here
Ā(z) =

∑
x,y,tA(x, y, z, t)/N2

sNt is a local meson or baryon operator.
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Introduction

• The finite temperature transition in our world, i.e., QCD with 2 + 1 flavours of
dynamical quarks, is widely accepted to be governed by chiral symmetry.

• Staggered fermions have dominated the area of nonzero temperatures and
densities.

• The hadronic screening lengths, advocated by DeTar & Kogut (PRD ’87) to
explore the large scale composition of QGP, illustrate their deficiency in the
pionic screening length.

• Obtained from the long-distance behaviour of the correlator
〈CAB(z)〉 = 〈Ā(z)B̄(0)〉 − 〈Ā(0)〉〈B̄(0)〉 ∼ exp(−µ(T )z), as z →∞. Here
Ā(z) =

∑
x,y,tA(x, y, z, t)/N2

sNt is a local meson or baryon operator.

• Overlap fermions appear to do better.
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Overlap Compared with Staggered Fermions

♣ Local masses [∼ ln(C(r)/C(r + 1)] show nice plateau behaviour for pi & rho
for Overlap (left) unlike staggered (right) fermions.

Gavai, Gupta, Lacaze PRD 2008 Gavai, Gupta PRD 2002
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Screening Masses Compared

♣ The pionic screening length shows significant a2 corrections for staggered (left)
unlike Overlap (right) fermions.

Gavai, Gupta PRD 2002 Gavai, Gupta, Lacaze PRD 2008
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QCD Phase diagram

♠ A fundamental aspect of QCD – Critical Point in T -µB plane;
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QCD Phase diagram

♠ A fundamental aspect of QCD – Critical Point in T -µB plane; Based on
symmetries and models,
Expected QCD Phase Diagram

From Rajagopal-Wilczek Review
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QCD Phase diagram

♠ A fundamental aspect of QCD – Critical Point in T -µB plane; Based on
symmetries and models,
Expected QCD Phase Diagram

From Rajagopal-Wilczek Review

... but could, however, be ...

Τ
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QCD Phase diagram

♠ A fundamental aspect of QCD – Critical Point in T -µB plane; Based on
symmetries and models,
Expected QCD Phase Diagram

From Rajagopal-Wilczek Review

... but could, however, be ...

Τ

McLerran-

Pisarski 2007

ICHIC 2008, International Center, Dona Paula, Goa, September 18, 2008 R. V. Gavai Top 5



GW relation and µ 6= 0

♠ Exact chiral invariance for a lattice fermion operator D is assured if it satisfies
the Ginsparg-Wilson relation : {γ5, D} = aDγ5D.
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GW relation and µ 6= 0

♠ Exact chiral invariance for a lattice fermion operator D is assured if it satisfies
the Ginsparg-Wilson relation : {γ5, D} = aDγ5D.

♠ In particular, the chiral transformations (Lüscher, PLB 1999) δψ = αγ5(1− a
2D)ψ and

δψ̄ = αψ̄(1− a
2D)γ5, leave the action S =

∑
ψ̄Dψ invariant:

δS = α
∑
x,y

ψ̄x

[
γ5D +Dγ5 − a2Dγ5D − a2Dγ5D

]
xy
ψy = 0 (1)
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GW relation and µ 6= 0

♠ Exact chiral invariance for a lattice fermion operator D is assured if it satisfies
the Ginsparg-Wilson relation : {γ5, D} = aDγ5D.

♠ In particular, the chiral transformations (Lüscher, PLB 1999) δψ = αγ5(1− a
2D)ψ and

δψ̄ = αψ̄(1− a
2D)γ5, leave the action S =

∑
ψ̄Dψ invariant:

δS = α
∑
x,y

ψ̄x

[
γ5D +Dγ5 − a2Dγ5D − a2Dγ5D

]
xy
ψy = 0 (1)

♠ Overlap fermions, and Domain Wall fermions in the limit of large fifth
dimension satisfy this relation.
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Overlap-Dirac Operator

♠ Neuberger (PLB 1998) proposed the overlap-Dirac operator :

aD = 1 +A(A†A)−1/2 = 1 + γ5 sign(γ5A) with A = aDw, (2)
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Overlap-Dirac Operator

♠ Neuberger (PLB 1998) proposed the overlap-Dirac operator :

aD = 1 +A(A†A)−1/2 = 1 + γ5 sign(γ5A) with A = aDw, (2)

♠ Here Dw is the Wilson-Dirac Operator given by,

aDw =
1
2
{γµ(∂∗µ + ∂µ)− a∂∗µ∂µ}+M, (3)

with −2 < M < 0 and ∂µ and ∂∗µ as forward and backward gauge-invariant
difference operators. An extra a/a4 factor for µ = 4 at T 6= 0.
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Overlap-Dirac Operator

♠ Neuberger (PLB 1998) proposed the overlap-Dirac operator :

aD = 1 +A(A†A)−1/2 = 1 + γ5 sign(γ5A) with A = aDw, (2)

♠ Here Dw is the Wilson-Dirac Operator given by,

aDw =
1
2
{γµ(∂∗µ + ∂µ)− a∂∗µ∂µ}+M, (3)

with −2 < M < 0 and ∂µ and ∂∗µ as forward and backward gauge-invariant
difference operators. An extra a/a4 factor for µ = 4 at T 6= 0.

♠ quark with a mass : D(ma) = ma+ (1−ma/2)D
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Domain Wall Fermions
♠ Proposed by Kaplan (PLB 1992), a convenient form for Domain Wall fermion
action (Shamir, NPB, 1993) is:

SF =
N5∑

s,s′=1

∑
x,x′

ψ̄(x, s)Ddw(x, s;x′, s′)ψ(x′, s′) , (4)
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Domain Wall Fermions
♠ Proposed by Kaplan (PLB 1992), a convenient form for Domain Wall fermion
action (Shamir, NPB, 1993) is:

SF =
N5∑

s,s′=1

∑
x,x′

ψ̄(x, s)Ddw(x, s;x′, s′)ψ(x′, s′) , (4)

where Ddw is defined in terms of Dw as

Ddw(x, s;x′, s′) = [a5Dw + 1]δs,s′ − [P−δs,s′−1 + P+δs,s+1′] , (5)

with boundary conditions P+ψ(x, 0) = −am P+ψ(x,N5) and
P−ψ(x,N5 + 1) = −am P−ψ(x, 1).
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Domain Wall Fermions
♠ Proposed by Kaplan (PLB 1992), a convenient form for Domain Wall fermion
action (Shamir, NPB, 1993) is:

SF =
N5∑

s,s′=1

∑
x,x′

ψ̄(x, s)Ddw(x, s;x′, s′)ψ(x′, s′) , (4)

where Ddw is defined in terms of Dw as

Ddw(x, s;x′, s′) = [a5Dw + 1]δs,s′ − [P−δs,s′−1 + P+δs,s+1′] , (5)

with boundary conditions P+ψ(x, 0) = −am P+ψ(x,N5) and
P−ψ(x,N5 + 1) = −am P−ψ(x, 1).

♠ Only light modes attached to the wall(s) are physical. Divide out heavy modes
by having the Ddw(am)/Ddw(am = 1) as the effective Domain Wall operator in
Z.
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♥ As outlined in Edwards & Heller (PRD 63, 2001), one can integrate out the
fermionic fields in the fifth direction to rewrite the above ratio as

[(1 + am)− (1− am)γ5tanh(
N5

2
ln |T |)] , (6)

with T = (1 + a5γ5DwP+)−1(1− a5γ5DwP−).
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♥ As outlined in Edwards & Heller (PRD 63, 2001), one can integrate out the
fermionic fields in the fifth direction to rewrite the above ratio as

[(1 + am)− (1− am)γ5tanh(
N5

2
ln |T |)] , (6)

with T = (1 + a5γ5DwP+)−1(1− a5γ5DwP−).

♥ Taking the limit N5 →∞ for a5 = 1, one obtains sign function of log |T |,
proving that the DWF satisfy the Ginsparg-Wilson relation in this limit.

♥ Taking the limit a5 → 0 such that L5 = a5N5 = constant, one can show
N5 lnT → L5γ5Ddw. Further, for L5 →∞, DWF reduce to the overlap fermions.

♥ We use this form in our numerical work.

ICHIC 2008, International Center, Dona Paula, Goa, September 18, 2008 R. V. Gavai Top 9



Introducing Chemical Potential

• Ideally, one should construct the conserved charge as a first step.

• Non-locality makes it difficult, even non-unique (Mandula, 2007).

ICHIC 2008, International Center, Dona Paula, Goa, September 18, 2008 R. V. Gavai Top 10



Introducing Chemical Potential

• Ideally, one should construct the conserved charge as a first step.

• Non-locality makes it difficult, even non-unique (Mandula, 2007).

• Simpler alternative : Dw → Dw(aµ) by K(aµ) = exp(aµ) and
L(aµ) = exp(−aµ) in positive/negative time direction respectively. (Bloch and
Wettig, PRL 2006; PRD 2007).
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Introducing Chemical Potential

• Ideally, one should construct the conserved charge as a first step.

• Non-locality makes it difficult, even non-unique (Mandula, 2007).

• Simpler alternative : Dw → Dw(aµ) by K(aµ) = exp(aµ) and
L(aµ) = exp(−aµ) in positive/negative time direction respectively. (Bloch and
Wettig, PRL 2006; PRD 2007).

• Note γ5Dw(aµ) is no longer Hermitian, requiring an extension of the sign
function. B & W proposal : For complex λ = (x+ iy), sign(λ) = sign (x).
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Introducing Chemical Potential

• Ideally, one should construct the conserved charge as a first step.

• Non-locality makes it difficult, even non-unique (Mandula, 2007).

• Simpler alternative : Dw → Dw(aµ) by K(aµ) = exp(aµ) and
L(aµ) = exp(−aµ) in positive/negative time direction respectively. (Bloch and
Wettig, PRL 2006; PRD 2007).

• Note γ5Dw(aµ) is no longer Hermitian, requiring an extension of the sign
function. B & W proposal : For complex λ = (x+ iy), sign(λ) = sign (x).

• Gattringer-Liptak, PRD 2007, showed for M = 1 numerically that no µ2

divergences exist for the free case (U =1).
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• We show this to be true analytically and for all M as well. Furthermore, this
holds for all functions such that K(aµ) · L(aµ) = 1 for Overlap (Banerjee,
Gavai, Sharma, PRD 2008) and Domain Wall Fermions (Gavai, Sharma 2008).
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• We show this to be true analytically and for all M as well. Furthermore, this
holds for all functions such that K(aµ) · L(aµ) = 1 for Overlap (Banerjee,
Gavai, Sharma, PRD 2008) and Domain Wall Fermions (Gavai, Sharma 2008).

• We claim that chiral invariance is lost for nonzero µ. Note that

δS = α
∑
x,y

ψ̄x

[
γ5D(aµ)+D(aµ)γ5−a2D(0)γ5D(aµ)−a

2
D(aµ)γ5D(0)

]
xy
ψy ,

(7)
under Lüscher’s chiral transformations.
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• We show this to be true analytically and for all M as well. Furthermore, this
holds for all functions such that K(aµ) · L(aµ) = 1 for Overlap (Banerjee,
Gavai, Sharma, PRD 2008) and Domain Wall Fermions (Gavai, Sharma 2008).

• We claim that chiral invariance is lost for nonzero µ. Note that

δS = α
∑
x,y

ψ̄x

[
γ5D(aµ)+D(aµ)γ5−a2D(0)γ5D(aµ)−a

2
D(aµ)γ5D(0)

]
xy
ψy ,

(7)
under Lüscher’s chiral transformations.

• However, the sign function definition above merely ensures

γ5D(aµ) +D(aµ)γ5 − a D(aµ)γ5D(aµ) = 0 , (8)

which is not sufficient to make δS = 0.
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• We show this to be true analytically and for all M as well. Furthermore, this
holds for all functions such that K(aµ) · L(aµ) = 1 for Overlap (Banerjee,
Gavai, Sharma, PRD 2008) and Domain Wall Fermions (Gavai, Sharma 2008).

• We claim that chiral invariance is lost for nonzero µ. Note that

δS = α
∑
x,y

ψ̄x

[
γ5D(aµ)+D(aµ)γ5−a2D(0)γ5D(aµ)−a

2
D(aµ)γ5D(0)

]
xy
ψy ,

(7)
under Lüscher’s chiral transformations.

• However, the sign function definition above merely ensures

γ5D(aµ) +D(aµ)γ5 − a D(aµ)γ5D(aµ) = 0 , (8)

which is not sufficient to make δS = 0. True for both Overlap and Domain
Wall fermions and any K,L.
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Consequences

• Exact Chiral Symmetry on lattice lost for any µ 6= 0 : Real or Imaginary! Note
Dw(aµ) is Hermitian for the latter case.

• µ-dependent mass for even massless quarks.
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Consequences

• Exact Chiral Symmetry on lattice lost for any µ 6= 0 : Real or Imaginary! Note
Dw(aµ) is Hermitian for the latter case.

• µ-dependent mass for even massless quarks.

• Only smooth chiral condensates : No (clear) chiral transition for any (large) µ
possible. How small a, or large NT may suffice ?

• All coefficients of a Taylor expansion in µ do have the chiral invariance but the
series will be smooth and should always converge.
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What if . . .

♠ the chiral transformations were δψ = αγ5(1− a
2D(aµ))ψ and

δψ̄ = αψ̄(1− a
2D(aµ))γ5 ?
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What if . . .

♠ the chiral transformations were δψ = αγ5(1− a
2D(aµ))ψ and

δψ̄ = αψ̄(1− a
2D(aµ))γ5 ? δS = 0 then clealy.

• Not allowed since γ5D(aµ) is not Hermitian.

ICHIC 2008, International Center, Dona Paula, Goa, September 18, 2008 R. V. Gavai Top 13



What if . . .

♠ the chiral transformations were δψ = αγ5(1− a
2D(aµ))ψ and

δψ̄ = αψ̄(1− a
2D(aµ))γ5 ? δS = 0 then clealy.

• Not allowed since γ5D(aµ) is not Hermitian.

• Symmetry transformations should not depend on “external” parameter µ.
Chemical potential is introduced for charges Ni with [H,Ni] = 0. At least the
symmetry should not change as µ does.
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What if . . .

♠ the chiral transformations were δψ = αγ5(1− a
2D(aµ))ψ and

δψ̄ = αψ̄(1− a
2D(aµ))γ5 ? δS = 0 then clealy.

• Not allowed since γ5D(aµ) is not Hermitian.

• Symmetry transformations should not depend on “external” parameter µ.
Chemical potential is introduced for charges Ni with [H,Ni] = 0. At least the
symmetry should not change as µ does.

• Moreover, symmetry groups different at each µ. Recall we wish to investigate
〈ψ̄ψ〉(aµ) to explore if chiral symmetry is restored.

• The symmetry group remains same at each T with µ = 0
=⇒ 〈ψ̄ψ〉(am = 0, T ) is an order parameter for the chiral transition.
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Our Results

• We investigated thermodynamics of free overlap and domain wall fermions with
an aim to examine the continuum limit analytically and numerically.

• Analytically, we prove the absence of µ2-divergences for general K and L. Our
numerical results were for tuning the irrelevant parameter M to obtain small
deviations from continuum limit on coarse lattices.
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Our Results

• We investigated thermodynamics of free overlap and domain wall fermions with
an aim to examine the continuum limit analytically and numerically.

• Analytically, we prove the absence of µ2-divergences for general K and L. Our
numerical results were for tuning the irrelevant parameter M to obtain small
deviations from continuum limit on coarse lattices.

• Energy density and pressure can be obtained from lnZ = ln det Dov by taking
T and V , or equivalently a4 and a, partial derivatives.
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Our Results

• We investigated thermodynamics of free overlap and domain wall fermions with
an aim to examine the continuum limit analytically and numerically.

• Analytically, we prove the absence of µ2-divergences for general K and L. Our
numerical results were for tuning the irrelevant parameter M to obtain small
deviations from continuum limit on coarse lattices.

• Energy density and pressure can be obtained from lnZ = ln det Dov by taking
T and V , or equivalently a4 and a, partial derivatives.

• Dirac operator is diagonal in momentum space. Use its eigenvalues to compute
Z:
λ± = 1− [sgn

(√
h2 + h2

5

)
h5 ± i

√
h2]/

√
h2 + h2

5 , with

hi = − sin api, i =1, 2 and 3, h4 = −a sin(a4p4)/a4 and
h5 = M −∑3

i=1[1− cos(api)]− a[1− cos(a4p4)]/a4.
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• Easy to show that ε = 3P for all a and a4.
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• Easy to show that ε = 3P for all a and a4.

• I will show results for ε/εSB which is also P/PSB.
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• Easy to show that ε = 3P for all a and a4.

• I will show results for ε/εSB which is also P/PSB.

• Hiding pi-dependence in terms of known functions g, d and f , the energy
density on an N3 ×NT lattice is found to be

εa4 =
2

N3NT

∑
pi,n

F (ωn) =
2

N3NT

∑
pi,n

[
(g + cosωn) +

√
d+ 2g cosωn

]
×

[
(1− cosωn)
d+ 2g cosωn

+
sin2 ωn(g + cosωn)

(d+ 2g cosωn)(f + sin2 ωn)

]
.(9)

where ωn are the Matsubara frequencies.
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• Easy to show that ε = 3P for all a and a4.

• I will show results for ε/εSB which is also P/PSB.

• Hiding pi-dependence in terms of known functions g, d and f , the energy
density on an N3 ×NT lattice is found to be

εa4 =
2

N3NT

∑
pi,n

F (ωn) =
2

N3NT

∑
pi,n

[
(g + cosωn) +

√
d+ 2g cosωn

]
×

[
(1− cosωn)
d+ 2g cosωn

+
sin2 ωn(g + cosωn)

(d+ 2g cosωn)(f + sin2 ωn)

]
.(9)

where ωn are the Matsubara frequencies.

• Can be evaluated using the standard contour technique or numerically.
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Analytic Evaluation : µ = 0.
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Analytic Evaluation : µ = 0.
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• Poles at ω = ±i sinh−1√f
and Poles (branch points) at
±i cosh−1 d

2g.

• Evaluating integrals, εa4 =
4N−3

∑
pj

[√
f/1 + f

]
[exp(NT sinh−1√f) + 1]−1

+ε3 + ε4 , where f =∑
i sin

2(api).
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• Poles at ω = ±i sinh−1√f
and Poles (branch points) at
±i cosh−1 d

2g.

• Evaluating integrals, εa4 =
4N−3

∑
pj

[√
f/1 + f

]
[exp(NT sinh−1√f) + 1]−1

+ε3 + ε4 , where f =∑
i sin

2(api).

• Can be seen to go to εSB as
a→ 0 for all M.

ICHIC 2008, International Center, Dona Paula, Goa, September 18, 2008 R. V. Gavai Top 16



More Details : T = 0, µ 6= 0

• Defining K(µ) + L(µ) = 2R cosh θ and K(µ)− L(µ) = 2R sinh θ, the same
treatment as above goes through by substituting sinωn → R sin(ωn − iθ) and
cosωn → R cos(ωn − iθ).
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• Defining K(µ) + L(µ) = 2R cosh θ and K(µ)− L(µ) = 2R sinh θ, the same
treatment as above goes through by substituting sinωn → R sin(ωn − iθ) and
cosωn → R cos(ωn − iθ).

• Energy density is also functionally the same with F (1, ωn)→ F (R,ωn − iθ).

• Additional observable, number density : Has the same pole structure so similar
computation.
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Divergence Cancellation at T = 0, µ 6= 0
• Doing the contour integral, the energy density turns out to be :

εa4 = (πN3)−1
∑
pj

[
2πRes F (R,ω)Θ

(
K(aµ)− L(aµ)− 2

√
f
)

+
∫ π
−π F (R,ω)dω − ∫ π−π F (1, ω)dω

]
.
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Divergence Cancellation at T = 0, µ 6= 0
• Doing the contour integral, the energy density turns out to be :

εa4 = (πN3)−1
∑
pj

[
2πRes F (R,ω)Θ

(
K(aµ)− L(aµ)− 2

√
f
)

+
∫ π
−π F (R,ω)dω − ∫ π−π F (1, ω)dω

]
.

• R = K(aµ) · L(aµ) = 1 ensures cancellation of the last two terms and the
canonical result in the continuum limit a→ 0.

• If R 6= 1, one has a µ2 divergence in the continuum limit as well as violation of
Fermi surface since ε 6= 0 for any µ.
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Fermi surface since ε 6= 0 for any µ.

• K and L should be such that K(aµ)− L(aµ) = 2a µ+O(a3) with
K(0) = 1 = L(0).
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• Doing the contour integral, the energy density turns out to be :
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[
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(
K(aµ)− L(aµ)− 2

√
f
)

+
∫ π
−π F (R,ω)dω − ∫ π−π F (1, ω)dω

]
.

• R = K(aµ) · L(aµ) = 1 ensures cancellation of the last two terms and the
canonical result in the continuum limit a→ 0.

• If R 6= 1, one has a µ2 divergence in the continuum limit as well as violation of
Fermi surface since ε 6= 0 for any µ.

• K and L should be such that K(aµ)− L(aµ) = 2a µ+O(a3) with
K(0) = 1 = L(0).

• Generalization to T 6= 0 and µ 6= 0 case straightforward. One merely needs two
different contours depending on pole locations and value of θ.
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Numerical Evaluation

♣ Zero temperature contribution : as NT →∞, ω sum becomes integral which
we estimated numerically.
♣ Continuum limit by holding ζ = N/NT = LT fixed and increasing NT .
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Approach to SB-Limit
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Banerjee, Gavai & Sharma , PRD78, 2008 Hegde, Karsch, Laermann & and Shcheredin, arXiv:0801.4883
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♥ Results for M = 1 agree with Hegde et al. (free energy); Smaller corrections
than for Staggered or Wilson fermions.
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2)

Banerjee, Gavai & Sharma , PRD78, 2008 Hegde, Karsch, Laermann & and Shcheredin, arXiv:0801.4883

♥ Results for M = 1 agree with Hegde et al. (free energy); Smaller corrections
than for Staggered or Wilson fermions.

♥ 1.50 ≤M ≤ 1.60 seems optimal, with 2-3 % deviations already for NT = 12.
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Domain Wall Fermions (a5→ 0)
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Domain Wall Fermions (a5→ 0)
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♦ L5 ≥ 14 seems to be large enough to get L5-independent results.
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♦ L5 ≥ 14 seems to be large enough to get L5-independent results.

♦ Optimal range again seems to be 1.50 ≤M ≤ 1.60.
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Domain Wall Fermions (a5 = 1)
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Domain Wall Fermions (a5 = 1)
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♦ ζ ≥ 4 seems to be large enough to get thermodynamic limit.
♦ Optimal range now seems to be 1.40 ≤M ≤ 1.50; M = 1.9 used by Chen et al.
(PRD 2001) in their study of order parameters of FTQCD.
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Numerical Evaluation
♦ Two Observables : ∆ε(µ, T ) = ε(µ, T )− ε(0, T ) and Susceptibility,
∼ ∂2 lnZ/∂µ2.
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♦ For odd NT and large enough µ the sign function is undefined as an eigenvalue
becomes pure imaginary.

ICHIC 2008, International Center, Dona Paula, Goa, September 18, 2008 R. V. Gavai Top 23



Numerical Evaluation
♦ Two Observables : ∆ε(µ, T ) = ε(µ, T )− ε(0, T ) and Susceptibility,
∼ ∂2 lnZ/∂µ2.

♦ For odd NT and large enough µ the sign function is undefined as an eigenvalue
becomes pure imaginary.

♦ Former computed for two r = µ/T = 0.5 and 0.8 while latter for µ = 0
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♥ Susceptibility too behaves the same way as the energy density.
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♥ Susceptibility too behaves the same way as the energy density.

♥ Again 1.50 ≤M ≤ 1.60 seems optimal, with 2-3 % deviations already for
NT = 12.
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♥ Again Susceptibility behaves the same way as the energy density.
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♥ Again Susceptibility behaves the same way as the energy density.

♥ Again 1.40 ≤M ≤ 1.50 seems optimal, with small deviations already NT = 12.
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Summary

• Exact chiral symmetry without violation of flavour symmetry important for
many studies on lattice, especially for the critical point and the QCD phase
diagram in µ–T plane.

• Overlap and Domain wall fermions lose their chiral invariance on introduction
of chemical potential in the Bloch-Wettig method and its generalizations.
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Summary

• Exact chiral symmetry without violation of flavour symmetry important for
many studies on lattice, especially for the critical point and the QCD phase
diagram in µ–T plane.

• Overlap and Domain wall fermions lose their chiral invariance on introduction
of chemical potential in the Bloch-Wettig method and its generalizations.

• However, any µ2-divergence in the continuum limit is avoided for it and an
associated general class of functions K(µ) and L(µ) with K(µ) · L(µ) = 1.

• For the choice of 1.5 ≤M ≤ 1.6 (1.4 ≤M ≤ 1.5), both the energy density and
the quark number susceptibility at µ = 0 exhibited the smallest deviations from
the ideal gas limit for NT ≥ 12 for Overlap (Domain Wall) Fermions.
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